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Periodic minimal surfaces

Tadashi Nagano1 and Brian Smyth2

Introduction

The interest in triply-periodic minimal surfaces in space seems to date from
the work of H. A. Schwarz [11], beginning in 1865 with the construction of the

first examples (see §7). Ali subséquent work known to us is restncted to thèse

examples. We hâve found the work of Neovius [14] particularly beautiful and

useful.
A triply-periodic minimal surface properly immersed in space corresponds to a

minimal immersion / of a compact oriented surface X into a fiât 3-torus T. With
the induced conformai structure X is a compact Riemann surface and / is a

conformai minimal immersion. Our object is then to study conformai minimal
immersions of compact Riemann surfaces in flat 3-tori. This is also the point of
view of Nagano-Smyth [6, 8] and Meeks [5]. The correct setting for this is the
Jacobi variety of X and universality (see §1) plays an indispensable rôle.

The main question studied hère is:
For a given compact Riemann surface X admitting some conformai minimal
immersion f into a flat 3-torus T describe the set of ail such immersions.

In this set there may be further immersions which are closely related to / and

we call them associâtes of / (see §2). To describe thèse we first take a lift of / to
universal covers, that is, f:X-+R3. The classical Bonnet déformation gives a

one-parameter family of (isometric) conformai minimal immersions /e:X—»JR3

(0^6<tt). For certain values of 6 thèse may be triply-periodic and project to
conformai minimal immersions of X in flat 3-tori. Thèse projections are the
non-trivial associâtes of /. The great advantage of the Jacobi variety is that thèse
associâtes are discernible directly from / and the structure of this variety. This can
be found in §2.

The set of conformai minimal immersions of X in flat 3-tori divides into two
sets; those having non-trivial associâtes and those which do not. Theorem 2

1 Research supported by N.S.F. Grant MCS 7606953.
2 Research supported by S.F.B. 40 "Theoretische Mathematik" at the University of Bonn.
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30 TADASHI NAGANO AND BRIAN SMYTH

describes the former set in terms of the codimension-3 abelian subvarieties of the
Jacobi variety of X. It follows that in genus 3 any two conformai minimal
immersions are associate.

Theorem 1 gives a criterion for existence of associâtes. When / is particularly
nice, in that it has a high degree of symmetry (see §5) and a non-trivial associate

exists, Theorem 3 shows that / has countably many non-trivial associâtes and that

/ is roughly the "real part" of a holomorphic immersion of X in a complex
3-torus Tx x T\ x Tl9 where 7\ is some complex 1-torus. Essentially the same
resuit was also obtained by Meeks [5]; in the form given hère it généralises easily
to minimal surfaces in flat n-tori. This and other features of the gênerai case we
treat in a separate paper. Theorem 3 serves as a good way of generating new
periodic surfaces; for example the conditions of Theorem 3 are satisfied by the
Schwarz surfaces of genus 3 and 9 (see §7) by the work of Neovius [14].

Theorem 4 is an extension of an earlier resuit [6] on the hyperelliptic case.
The final section is given over to remarks on examples of compact minimal
surfaces and some conséquences of Theorems 2 and 3.

The second author is grateful for the support and hospitality of the S.F.B. 40

at the University of Bonn while this work was being done.

1. The Jacobi map

Let X be a compact Riemann surface of genus p and complex structure
denoted J. Let f) dénote the complex p-dimensional vector space of ail holomorphic

one-forms on X The natural map

given by intégration of the forms in l) over the cycles in Ht(X, Z) is additive in the
first argument and complex linear in the other and so defines a cononical
homomorphism

The image of a is a free abelian group in ^ * and is well known to be a lattice A in
ï)*, and the quotient complex torus A \)*/A is called the Jacobi variety of X
Fixing a point xo€X as origin and taking any path y from x0 to x in X, we see
that the functional Syeï)* dépends only on x to within an élément of A. The
projection of this functional to A is then denoted a(x) because it is independent
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of y. By varying the end-point x it is easy to see that this map a:X-*A is

holomorphic. When p > 0 Riemann-Roch tells us that a is an immersion, that is,

the differential a* is nowhere singular. The map a is called the Jacobi map and is,

by Abel's theorem, an imbedding (see Gunning [2]). The natural complex
structure on A will also be denoted J.

Given a Riemann surface X, a map / of X into a real torus T will be called a

harmonie map if every real linear one-form on T pulls back under / to the real

part of a holomorphic one-form on X. Such a map is the Jacobi map and it is

universal in this class of maps in the following sensé: For any harmonie map
f:X—» T, there corresponds a unique affine map h:A-> T such that /= h© a. By
an affine map we mean a composition of a homomorphism from A to T, and a

translation in T in that order. In proving universality, suppose first /(x0) e, where

x0 is the base point for the Jacobi map a above; this we can always arrange by
translation
V, the space of harmonie one-forms on T is identified with the dual vector space
V*. Then / induces a linear map k : V* —» f), where \) is considered as a real vector

space. The transpose of this real linear map k is a real linear map fi :!)*—» V. It is

straightforward to check that h(A)<^ L, where Ais the lattice of the Jacobi variety
in ï)*. Thus h induces a homomorphism from A to T, which we dénote also h.

From our construction, / and h <> a are harmonie maps agreeing on first cohomol-

ogy, and it foilows easily that they differ by a translation in T. When /(jc0) ^ e,

there is the added translation by -/(x0) in T.

Let X be a fixed compact Riemann surface and /:X—? T a conformai minimal
immersion of X into a flat torus T of real dimension 3. Fixing any point jcog X we

may assume, after a translation in T, that /(x0) e, the identity élément of T. We
will show that / is harmonie in the sensé defined above. A linear one-form w on T
is the differential of a local linear function p on T. Since / is minimal, pof is

a locally defined function of X which is harmonie with respect to the induced
Riemannian structure on X. Hence it is the real part of a (locally defined)
function F on X which is holomorphic with respect to the induced complex
structure-and this coincides with the original complex structure on X since / is

conformai. Thus /*w Re (dF) on a domain in X, and it foilows that /*w is the
real part of a holomorphic one-form on X. Now by universality of the Jacobi map
(with base point x0) of the Riemann surface X, we hâve a unique homomorphism
h:A-+T such that the left half of the diagram
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commutes. If h is not surjective, f(X) must be an affine subtorus of T, so X is itself
a torus and / is an affine map. This case is really of no interest, so we assume that
h is surjective. The compact subgroup Ker h may not be connectée!; however,
denoting its identity component by (Ker h)0, we hâve the projection homomorph-
ism h0 into another 3-torus To and the finite covering tt which makes the other
half of the diagram commute. Let h0 © a f0 and consider the real 3-torus
To A/(Ker h)0 with the flat metric lifted from T by means of the covering map
ir. Then

is a conformai minimal immersion of X into another flat 3-torus To. We call f0 the

primitive of f. It will sometimes be technically convenient to work with primitives.
The results for non-primitives will be the same modulo finite covers.

Remark. In the case of genus p 0, a harmonie map / into T is constant. The
case p 1 is spécial and trivial, for then / is just an affine map, from universality.
So henceforth, we will only consider p>l. When p>l, the Gauss map of a

minimal immersion /:X—» T is a branched cover of the two-sphere of degree

p-1. This is a simple conséquence of the Gauss-Bonnet theorem, and we will use
this fact in a moment. Consequently p cannot be 2 (cf. [6] or Lemma 1 below
also).

As it is our main objective to describe the set of ail conformai minimal
immersions of a given compact Riemann surface X of genus p > 1 in flat 3-tori,
we should first explain when two such immersions are to be considered as only
trivially distinct. Let fa :X-> Ta (a 1, 2) be two conformai minimal immersions
of X in flat tori, normalised by fa(x0) e. If the corresponding homomorphisms
ha:A—>Ta hâve the same kernel (connected or not), then f2—<t>ofu where

^rl^—? T2 is an isomorphism preserving the flat metrics to within a factor; the

isomorphism <f> is clear and that it préserves the flat metrics is a conséquence of
conformality and the fact that the Gauss maps of the fa cover the sphère when

p > 1 (see the Remark above). A homomorphism (isomorphism) between flat tori
preserving the metrics, to within a factor, will be called a homothety (isothety).

DEFINITION. Two conformai minimal immersions fa:X-> Ta(a 1,2) are
équivalent if the kernels of the corresponding homomorphisms ha : A —> Ta hâve the
same identity component.

If fa:X~* Ta(a 1,2) are équivalent conformai minimal immersions then,
dividing the kernels of both of the corresponding homomorphisms out of A, we
obtain a conformai minimal immersion /:X-»T into a flat torus T and
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homotheties 7ra:Ta —>T such that f=7raofa. This / is uniquely determined (to
within isothety) by ft and f2 and can be thought of as the "lowest common
multiple" of fx and f2. We should add that each équivalence class of conformai
minimal immersions contains a unique primitive. Each équivalence class détermines

then a unique real codimension 3 subtorus of A and, since a torus has but a

countable number of subtori, we hâve: The set of inequivalent conformai minimal
immersions of X in flat 3-tori is at most countable.

Let U dénote the kernel of the differential fi* at the identity of A. Let V
dénote the maximal complex subspace of U. Because / h © a is an immersion,
the complex curve a(X) has no tangency with the foliation on A determined by
U. The same is true of the foliation determined by JU, where J dénotes the

complex structure on A; this is because a(X) is complex.

LEMMA 1. For genus p>l, dimc V p-3.
Proof. Since p^2, f(X) lies in no affine subspace of T and so dim U=2p-3.

Writing dimc V=p-r9 we hâve

2p^dim (17 + JU) dim l/+dim JU-dim V

2(2p-3)-2(p-r)
r-3).

So 3^r, and since Vc[/we also hâve 2r^3. This leaves r 2 or 3 as the only
possibilités. Suppose r 2. Choose a basis of V of the form {Çu JÇU..., £p_2,

JÇp-2}' y has codimension one in U so we choose a vector £0 complementary to V
in U. Then the subspace W generated by Ço, JÇ0 and V has complex dimension

p-1 and every parallel translate of it in A is transversal to a(X). The holomor-
phic normal bundle of a(X) is therefore trivial. But the Whitney sum of this
bundle with the tangent bundle of X is itself trivial, being the bundle induced by a

from the tangent bundle of A. It follows that X has trivial tangent bundle, that is,

X is a torus. The contradiction means r 3, ending the proof of Lemma 1.

Remark. We do not know if, in gênerai, V détermines a complex subtorus of
A.

2. Associates

There is a simple way in which we can sometimes construct a conformai
minimal immersion of a compact Riemann surface X in a flat torus from another
such immersion.



34 TADASHI NAGANO AND BRIAN SMYTH

Given a conformai minimal immersion /:X—> T, normalisée! by f(xo) e, we
hâve /=hoa, where h:A-^>T is a certain homomorphism. Assume for the

moment that / is primitive in the sensé of Section 1, that is, Ker h is a subtorus of
A. Denoting by U the subspace tangent to this subtorus at the identity, we set

l/e {cos0 • u + sin0 • Ju \ ue U}.

The foliation parallel to U0 will hâve no tangency with the curve a(X). Suppose

U0 détermines a subtorus (also denoted U0) of A. Then the composition

/e:X—A—A/Ue Te

defines an immersion of X into the 3-torus T0.

LEMMA 2. For a suitable flat metric on Te, the immersion /a:X—» T0 is a

conformai minimal immersion.

Proof. f0 is clearly harmonie in the sensé of Section 1, so we only hâve to show
that there is a natural flat metric on T0 making f0 conformai. Then f0 is a

conformai minimal immersion of X in the flat torus T0.

We now set about defining the natural metric on T0. f induces a Riemannian
metric on X and the corresponding global inner product on forms détermines a

flat Hermitian structure g0 on A. With respect to this structure the orthogonal
complément of V=U(1JU in U is denoted K. By Lemma 1, K is a real
3-dimensional subspace of U and so fi#: JK-» Te(T) is an isomorphism. So we
can pull back the flat metric on T to get an inner product on JK. Extend this
to an inner product on K® JK such that J is orthogonal and JK is orthogonal to
K. The direct sum of this inner product with the original Hermitian structure g0

restricted to V gives a flat Hermitian structure on A, which we dénote by gf
because the construction is unique and dépends only on /.

Define an inner product < )0 on Te(T0) by

(tu h)e g/Ci, k),

where la is the unique élément of

JK9 {cos S Jk -sin 0fc | k e X},

such that he(la)=ta; hère h9 dénotes the projection from A to A/U0. With
respect to the flat metric < )e on T9 the map /e:X-» T0 is a conformai minimal
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immersion. In fact, if you check-and it is easy-you will find that the metric
induced by f0 on X is the same as that induced by /.

If /:X—» T is not primitive, then taking a primitive /' of / we can apply the
above construction to /', when 6 is such that U0 détermines a subtorus of A, to
obtain a conformai minimal immersion fe of X in another flat 3-torus.

DEFINITION. Any conformai minimal immersion of X in a flat 3-torus
which is équivalent to f'e (defined above) for some 0 is called an associate of /; if
0 0 mod 7T, it is équivalent to /' and therefore to / and we call it a trivial
associate.

Equivalently, we might say that two conformai minimal immersions /a:X—>
Ta(a l,2) in flat 3-tori are associâtes if the corresponding homomorphisms
ha:A —> Ta satisfy Ker (h2)* ^ Ker (hO* for some angle 0.

For what conformai minimal immersions /:X—» T does a nontrivial associate

exist? A criterion is given in the next section but the next lemma gives a simpler
necessary condition. Under additional symmetry assumptions on / the variety A',
appearing below, will be determined completely in Theorem 3.

LEMMA 3. Let f:X-*Tbea conformai minimal immersion of a compact
Riemann surface into a flat torus. If f has a nontrivial associate, then V détermines

a complex subtorus of A and f will factor, by a homomorphism, through the

holomorphic immersion

a proja':X >A-^>AIV=Ar

of X into the 3-dimensional abelian variety A'.

Proof. Letting h:A^> T dénote the homomorphism arising from / and U
Ker fiHce, the existence of a non-trivial associate implies that the subspace Ue of
Te(A) détermines a subtorus of A for some angle 0 which is not a multiple of tt.
This last condition tells us that the intersection of the subtori determined by U
and Ue has tangent space V at e and that V détermines a subtorus of A (also
denoted V). Since VcKerfi, the homomorphism h:A-+T projects to a

homomorphism h':A'-*T, where A' A/V, and f=h'°a', where a' is the
projection of X into A\ Because A is an abelian variety, it follows from
Poincaré's Complète Reducibility Theorem (cf. Swinnerton-Dyer [13]) that both
V and A' are also.

We end this section by relating the notion of associâtes defined above to the
classical notion of the associâtes of a minimal immersion of a simply-connected
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surface into Euclidean space. Recall that if <j>:M—> R3 is an isometric minimal
immersion of a Riemannian 2-manifold (normalisée! by <f>(p0) (0, 0,0), for some

poeM), then <j> can be considered as a triple of real harmonie functions on M.
Assuming M is simply-connected, the harmonie conjugates of thèse functions
exist and so define another triple i/r, which is unique when normalised by
<MPo)= (0,0,0). Then <j>0 cos 0<£> + sin Oty gives a minimal isometric immersion of
M into R3 for each value of 6 which, for ail 6 with 0^ 6 < ir, are non-congruent
(assuming <j>(M) is not a portion of a plane in R3). The </>e are called the
associâtes of <f> and </>w/2 is called the conjugate of <j>. In addition to the invariance
of the induced Riemannian metric under this déformation through minimal
immersions, we point out that

i. The Gauss map o\ the immersion <j>0 is the same as for <\>.

ii. (^72)* ~<t>* °J, where J is the compiex structure on M.

Let /:X—» T be a conformai minimal immersion with /(x0) e and corresponding
homomorphism h:A^> T. Let dénote the given flat metric on T and gf the
canonical Hermitian structure on A constructed out of /. Choose x0 in the
universal cover X of X over the point x0; the superscript tilda will always be used

to dénote universal covers. The map a lifts to a holomorphic immersion â:X-+ Â
with â(io) C>, the origin of Â. Let h:Â—» T dénote the linear map of thèse

vector spaces which covers the homomorphism h. Dénote the corresponding inner
products on Â and T by gf and < Then eiew cos 0w + sin dJw defines a

compiex linear isometry of (Â, gf). Let [/ Ker h and Ûe eie[/. The vector space
Â/Û0 inherits a natural inner product )e from gf under the projection
he:Â-~* Â/Ûe. From the définition of gf we know )0 on Â/Û= T. The
Euclidean spaces (Â/Ûe, )0) are ail isometric, the isometry being induced from
the transformation e~ie of Â. Dénote it also e~10 :Â/Ûe —> Â/17. Setting /e
e~ie oh0° â we hâve a one-parameter family of mappings

f9:X-+ÂIÛ=t

Because Û and its parallel translates hâve no tangency with the compiex curve
â(X), the same will be true of Û0, so each f0 is an immersion. In fact, a

straightforward computation from the définition of f0 gives

and (/w/2) * -(/<>)* oj.
Therefore /w/2 is the conjugate of the minimal immersion f0 / and the f0 are

the minimal immersions associate to / in the classical sensé.
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Finally note that f0 covers a minimal immersion of X in a 3-torus if and only if
the same is true of h0 ° â. And the latter holds precisely when Ûe projects to a

subtorus of A - or more explicitly when Ûe H A is a lattice in Ûe, where A AIA.
Then since e~~w will not in gênerai map the lattice he(A) into the lattice ho(A), the
flat torus T0 (Â/Û0)/h0(A) is in gênerai différent from To= T.

We hâve shown

LEMMA 4. Let f:X-*T be a minimal immersion of a compact oriented
surface in a flat 3-torus. Let f dénote a lift of f to universal covers. A non-trivial
associate of f exists if and only if for some 0# 0 mod tt the classical associate fe of f
covers a minimal immersion of X into a flat 3-torus.

3. A criterion for the existence of associâtes

THEOREM 1. Let f.X-^Tbe a minimal immersion of a compact oriented

surface X of genus >1 in a flat 3-torus T. Let f dénote a lift of f to the level of
universal covers and fe an associate of f in the classical sensé. Then f has a
non-trivial associate if and only if, for some 05*0 mod 7r, the image fe(X) is not
dense in the Euclidean space f covering T.

Proof. The necessity should already be clear from Section 2. Assume that /
has no non-trivial associâtes.

Consider X with the induced me trie and complex structure. Then we know
that f=h° a where a:X—» A is the Jacobi map based at xoeX and h:A —> T is

some homomorphism; we are assuming / is normalised by f(xo) e. In the
notation of Section 2, our asumption implies that for each 6^0 mod tt, U0 el°U
does not project to a subtorus of A. A point /3 e f is the image, under the map
e~10 ° he, of some affine subspace B of Â parallel to Û0. If j3é/e(X) then the
subspace É never meets the complex curve â(X) and its projection B in A never
meets a(X). In A the submanifold B has real codimension 3 and is not closed, so
its closure B is parallel to a subtorus of A of codimension 5 0, 1, or 2. The next
step in the proof is to show that B must meet a(X); we postpone the argument on
this point preferring to show first how it is used to complète the proof of the
theorem. It will then follow that there is a séquence {bn} in B projecting to a

séquence {bn} in B with lim bn a(x) for some xeX. Fix xeX over the point
x € X. Let D be a fundamental région for the lattice A in Â containing the origin.
For each positive integer n there exists 8neA such that bn-â(x)-8n e(n)eD
and the convergence of bn to a(x) implies e(n)—> 0. But the very définition of the
Jacobi map tells us that â(x) + 8n â(ynx) for some deck transformation yn of X;
write xn ynx. So lim bn - â(xn) lim e(n) 0. Applying the map e~l0h0 we hâve
at once lim/0(xn) p. Hence fe(X) is dense in f.
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It remains to verify the step:B must meet a(X). This is trivially so when s 0.

Suppose that s 1 but that B does not meet a(X). Consider the parallel one-form
w on A orthogonal to B; as before we use the flat Hermitian metric gf on A,
defined in Section 2. The differential a*w is harmonie on X and, assuming a(X)
and B do not meet, must also be exact. So a*w 0 and this means a(X) lies in a

subtorus parallel to B. But this cannot be, since a(X) always générâtes the Jacobi
variety of X. Therefore B must meet a(X) when s 1. The final hurdle is to show
s cannot be 2.

We will show that if s were equal to 2, the tangent plane fi (x) to the curve
a(X) at a(x) can neither be (i) parallel to B, nor (ii) orthogonal to B. Accepting
this for the moment, it follows that there is a unique real line in^(x) making least

angle with the subspace parallel to B. This then defines a continuous non-singular
line-fleld on the surface X. By the Poincaré theorem on line fields, X must hâve

genus one and this is a contradiction. To prove that (i) and (ii) cannot occur,
dénote by C the subspace of Te(A) parallel to B. With the notation of Section 2,

we note that C contains the subspace V(Bel0K as a subspace of codimension 1.

Therefore

C= V@el0K@{Jeiekt}

for some unit vector kxeK. Extend kt to an orthonormal basis {kly k2, k3} of K.
The maximal complex subspace of C is V©^, JfcJ. When (i) holds, fi (x) is

parallel to C and since fi(x) is complex, it must in fact be parallel to V© {kl9 Jkx}.

It is then a simple matter to check that fi (x) contains a vector parallel to

V©{k1}= U, and this contradicts the fact that / is an immersion. So (i) cannot
occur. As to (ii), orthogonality otft(x) to C, with respect to the metric gf on A,
implies that Jel0k2, Jel0k3eft(x); this is impossible since fi(x) is complex. The

proof of Theorem 1 is now complète.

Remark. You will now see from Theorem 1 and the remarks of Section 2 that
for ail but a countable number of 6 with 0^ 6 < tt, the minimal surfaces fe(X) are
dense in Euclidean 3-space. The existence of complète dense minimal surfaces in
Euclidean space was new, to us at least.

4. A spécial kind of conformai minimal immersion and their classification

In studying a conformai minimal immersion /:X-> T of a compact Riemann
surface X into a flat torus, we need only consider the induced homomorphism
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h.A-^T, where A is the Jacobi variety of X. Looking a little doser at the kernel
of h, in fact at the maximal complex subspace V tangent to it at the identity, we
realise that the case where V générâtes a subtorus (also denoted V) of A is of
spécial interest. This case will be our sole interest in this section. V will then be

referred to as the complex codimension-3 subtorus of A annihilated by f; recall
that the codimension was determined in Lemma 1. We see from Lemma 3 that
this is équivalent to saying that there exists a complex 3-torus A' a holomorphic
immersion a':X—» A' and a homomorphism h':A'—» T such that f=h'°af. So

the immersions of this section might be thought of as "complexifiable."
As examples of this kind we hâve

(a) any conformai minimal immersion f:X—>T which has a non-trivial
associate (this is by Lemma 3).

(b) any conformai minimal immersion /:X—? T where X has genus 3 (this
follows from Lemma 1, since V is trivial when p 3).

To classify those conformai minimal immersions of X in flat 3-tori which are

complexifiable, it is first necessary to ciassify the complex codimension-3 subtori
of the Jacobi variety of X. The next theorem shows that there is nothing more to
be done, for two conformai minimal immersions annihilating the same complex
codimension-3 subtorus of A must be associate.

THEOREM 2. Let fa:X-> Ta(a 1, 2) be two conformai minimal immersions

of a compact Riemann surface of genus >1 in flat 3-tori. If fx and f2
annihilate the same complex codimension-3 subtorus of the Jacobi variety of X then

/i and f2 are associâtes.

Remarks, (i) Theorem 2 is the converse of Lemma 3.

(ii) The next corollary is immédiate from b) above.

COROLLARY. If X is a compact Riemann surface of genus 3, then any two
conformai minimal immersions of X in flat 3-tori must be associâtes.

Proof of Theorem 2. This consists of a string of lemmas and will take up the
rest of this section. It is enough to prove the theorem for primitives, so we will
assume fx and f2 primitive and also fa(x0) e for each a.

For a fixed orientation of T there is a unique unit vector field £ normal to X
along / such that {t;, Jv, £} has the given orientation for any non-zero vector v
tangent to X. For each x e X, we let Tf(x) dénote the parallel translate of Çx to the
identity in T giving thereby a map Tf:X^> S2 where S2 dénotes the unit sphère in
Te(T). the Gauss map Ff is well known to be antiholomorphic with respect to the
unique complex structure J° on S2 for which for every tangent vector u the vector
product uxJu always points away from the centre of S2 (cf. [9]).



40 TADASHI NAGANO AND BRIAN SMYTH

Denoting the metric connexion on T by D, the équation DvÇ -f*(Av) for
any vector v tangent to X can be taken as the définition of the second

fundamental form A of the immersion /. In a local complex coordinate z on X
the induced metric ds2 and the second fundamental form are of the form

ds2 2F\dz\2 (F>0)

where a, /3 and F are local functions. The Codazzi équations for A reduce to the

statement that (a-i/3)F w(z) is a holomorphic function of z. It is readily
checked that ilf w(z) dz2 is independent of the choice of local coordinate and

so defines a holomorphic quadratic difïerential on the Riemann surface X. For the
détails the reader is referred to the lecture notes of H. Hopf [3]. A simple
computation shows that |d£/dz| |w(z)|; thus the branch points of the Gauss map
Ff coïncide in order and location with the zeroes of the differential ilf.

LEMMA 5. If fa :X—> Ta (a 1, 2) are two conformai minimal immersions of
X in flat tori which are associâtes, then ilh kiîfl for some complex number À^ 0.

Proof. From the remarks of Section 1, it will be seen that équivalent immersions

induce the same metric and second fundamental forms to within constant
factors. Considère lift /2:X-» T2 of f2 with f2(x0) Ûe f2, where x0 is any point
of X over xoeX, and consider the classical associâtes (J2)e of /2. Since ft is an
associate of f2, we know from Section 2 that for some value of 0, (/2)e covers a

minimal immersion of X in a flat torus which is équivalent to fx. But the sencond
fundamental form of the projected immersion is cos 0 A2 + sin 0JA2, where A2 is

the second fundamental form of f2. It follows then from the définition of il that

ilh - kel0Ofl for some real constant k.

The next is the most important step in the proof of Theorem 2.

LEMMA 6. If /a :X—» Ta (a 1, 2) are conformai minimal immersions of X
annihilating the same complex codimension-3 subtorus V of A, then &f2 Àf2fl for
some non-zero complex number À.

Proof. il is the same for /„ as for its primitive. So we may assume the fa are

primitive. Let a1 : X -* A -> A/V' A' dénote the obvious holomorphic immersion
of X in the complex 3-torus A' A/V. Because VcKer ha we hâve homomorph-
isms h'a:A'~* Ta such that fa h'a° af and because the fa are primitive, the hra

hâve connected kernels. U'a dénotes the tangent space to Ker h'a at the identity of
A'. The complex structure on A' will be denoted also by J. Pull back the flat
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metric on Ta to JU'a via the map h'a and extend this to a Hermitian inner-product
on Te{A') for which J is orthogonal and U'a is orthogonal to JU'a\ dénote the
corresponding Hermitian metric on A' by ga. For each xeX let F(x) dénote the
élément of the projective space P2(C) of ail complex lines passing through the
identity of A' which is parallel to the complex Une a*(Tx(X)). The holomorphic
map F:X-* P2(C) is called the Gauss map of the complex curve a1.

For any non-zero v e TX(X), we hâve, in conséquence of Lemma 1, the unique
décomposition

with za, waeU'a\ hère, and frequently hereafter, we are identifying ail vectors

tangent to A' with their translation to the identity. Since fa h'a° a' is conformai,
it follows that the pair {/wa, Jza} are orthogonal and of equal length relative to ga.

The cross-product Jwa xJza in JU'a détermines a point of the unit sphère Sa in
the subspace JU'a at the identity. This point Fa(x) is independent of v. The
inner-product ga and the décomposition (U'a, JU'a) of Te(A') détermine a complex
bilinear form qa on Te(A') for which

qa(a'*v, a'*u) 0

for every vector v tangent to X In other words, qa(F(x), F(x)) 0. Thus Q F(X)
is contained in a non-singular plane curve of degree 2 in P2(C). Q must then be
the whole curve, that is, the Riemann sphère. But we hâve in fact constructed
above an antiholomorphic diffeomorphism from Q to Sa; call it ira. So Ya
TTa «F. Now h'a identifies the sphère Sa with the unit sphère in Te(Ta) and this
identifies f« with the classical Gauss map of the-immersion fa :X—» Ta. Now as

we saw above, the zeroes of {îfa coincide in order and location with the branch
points of the Gauss map of fa and therefore with those of Fa, and therefore with
those of F (considered as a map from X onto the curve Q of genus zéro in P2(C)).
Hence the zeroes of Ofl and iîh are the same in order and location. Since X is

compact, Of2 kùfi for some non-zero complex constant À.

LEMMA 7. With the same notation and assumptions as Lemma 6, there exist
a pair of points x' and x" on X such that {Fa(x'), Fa(x")} is a pair of antipodal
points on the sphère Sa for both a 1 and a 2.

Proof. Consider the mapping
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This is an antiholomorphic transformation of Q, the Riemann sphère. The

holomorphic transformation p2
* ° Pi must therefore hâve a fixed point on Q, say

F(x'). Then ptr(x') p2r(x') r(x") for some x"eX différent from x'. In fact

completing the proof of the lemma.
In the proof of Lemma 6 the map h'a identified the unit sphère Sa in the

subspace JU'a with the unit sphère in Te(Ta). The maps Fa and Tta are then
identified with maps - denoted by the same letters - into this latter sphère (which
we will also dénote Sa). With this understanding Fa now stands for the Gauss map
of /«. By Lemma 6, Of2= ke^iî^ for some positive number k. Changing the metric
on T2 by a suitable factor (which formally changes f2 only to within the

équivalence defined in Section 1) allows us to assume ilh= eie(ïfl. Fixing xoeX
over xoeX we let /a :X-> Ta dénote the lift of /« for which fa(x0) 6, the origin
of fa. The Gauss map and holomorphic difïerential arising from fa are invariant
by the deck transformations and the Gauss map is the same for ail associâtes of fa.
We see from the proof of Lemma 5 that the differentials corresponding to /i and
the associate (f2)e of f2 are identical. Let / : T2 -* Ti be a proper linear isometry
whose induced isometry /:S2-> Si carries F2(x') into Fi(x') where x' is chosen as

in Lemma 7. Then the minimal immersions /i and /3= / ° (f2)e of X in t\ induce
the same difïerential on X. As the Gauss map of /3 also projects to a map
F3:X—> Si we can compare it easily with that of /i. In fact

where r is thought of as a holomorphic transformation of Si. From Lemma 6 and
the choice of / it follows that F3 and Fi coïncide at x' and x", so r fixes the

antipodal pair {Fi(x'), F^x")} on St. Stereographic projection from F^x') onto
the corresponding equatorial plane of Sx détermines a complex coordinate s on
Si — {Fi(x')} in terms of which r(s) es for some non-zero complex number c. The
rotational freedom in the choice of / allows us to assume c real and positive.

Now choose an orthonormal hasis {eu e2, e3} for f\ JR3 such that Ft(x;)
corresponds to e3 and s corresponds to x1-^ix2 in the natural identification of

with fi, where {Xi, x2, x3} are the coordinates determined by this basis. To
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avoid confusion between the indices of the immersions and those of this basis, we
relabel as follows: ^ /l5 ^c=/3, r=Tl and rc=T3. We will show i/r and tyc

coincide below. In doing so we make essential use of the fact that the immersions
if/ and i/fc induce the same quadratic difïerential O, hâve Gauss maps difïering
only by a real positive constant c (in the way described in the previous paragraph)
and that the immersions project to the compact surface X. Hère the Boundary
Theorem is important; this says that the image of a compact orientable surface

minimally immersed in a flat 3-torus is always a boundary. This was fîrst proved
by W. Meeks [5]; the right généralisation to arbitrary codimension is given in a

forthcoming paper of the authors. Once we know that i/f and ^c coincide it
follows then that (f2)e projects to a conformai minimal immersion of X into a flat
3-torus which is équivalent to fx. Thus, fx and f2 are associâtes and this will
complète the proof of Theorem 2.

LEMMA 8. $ and i^c coincide,

Proof. Let z dénote a local complex coordinate on X. The choice of coordinates
on R3 gives us a triple (d<j>/dz) (</>i, <t>2, $3) of local holomorphic functions
satisfying X« i $« 0. (cf. [9]); this is the condition that \\f be conformai. It can be
checked that g s°F= (f)3/((f)1-i(l>2)(=-(<f>1 + i(f)2/<f)3) where F is the Gauss map
of ijj and s dénotes stereographic projection from the north pôle (0, 0,1) of the
unit sphère in R3. Write f=4>i-i<t>2> A simple calculation shows that fl
f(dg/dz) dz2 locally. Analogous entities for the immersion i/fc are denoted simi-
larly except for the superscript c. Our information on the quadratic differentials
tells us that fc(dgc/dz) f(dg/dz) and our information on the Gauss maps tells us
that gc c - g. Thus c • fc f or

c(<frï-ite) *i-ty2 (1)

It follows immediately from the équation gc cg and (1) that

<t>C3 ct>3 (2)

Using gc cg once more and the second expression for g above we hâve

ct>\ + i(f)l2 c((t>l + i(t>2). (3)

Solving for <f>c we find

</>i cosh a(f>{ + / sinh a<f>2

<t>l=~i sinh a<f>{+ cosh a<f>2 (4)
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where c ea. We can assume $ and its conjugate surface i£ coincide and hâve the
same tangent plane at xoeX and i^(x0) ^(Jc0) 0, the origin. The identity

between differential triplets is easily derived and implies

where the intégral on the left is along any path from Jc0 to Je on the simply
connected surface X. Thus

4>(z)dz (5)

<f>(z)dz

Applied to the System (4) the équations (5) yield

ty\ cosh a\\fx - sinh aty2 (6)

\\fc2 sinh ai£x 4- cosh a\\f2

Next we use the Boundary Theorem to show that a 0. Each dif/a (or diffca)

defines a harmonie differential r\a (resp. Tj«)onX. Note that di£a then defines the
differential Jt)a where J dénotes the complex structure of X. From (6) we quickly
see that

2(cosh2a + sin^a)^! a tj2

-l-sinh a cosh a^/K J^ + ^aJt)?). (7)

But the Boundary Theorem tells us that Jx ^ïA T72 Jx t?i A ^2 ^ 0- Since

JxTîaAJî|a<0, it follows from (7) that a 0. Now (6) says that ij/c iff and

Lemma 8 and Theorem 2 are completed.

5. The number of associâtes

Given a conformai minimal immersion /:X-»T of a compact Riemann
surface in a flat 3-torus, we inquire how many associâtes it has. Clearly we are
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only interested in counting inequivalent associâtes. We saw in Section 1 that the
number is at most countable. We need only consider for what angles 6, 0< 0< tt,
the subspace el0U (in the notation of Section 2) détermines a subtorus of A. We
show in Theorem 3 that if a non-trivial associate of / exists and the immersion /
has a high degree of symmetry, in a sensé defined below, then associâtes fe exist
for a countable dense set of angles 0. This part of Theorem 3 overlaps a resuit
announced by William Meeks in a summary of his doctoral thesis [5]. The other
part of Theorem 3 gives useful information on the complex structure of X under
the same assumptions of /; in particular, X must cover an elliptic curve.

Let G dénote the group of proper (Le. orientation preserving isometries of X,
relative to the metric induced by /, which extends to isometries of T under the
immersion /. Let Go dénote the subgroup of isometries having a proper extension
to T. Dénote this représentation of Go on the isometry group of T by ix. The
universality of the Jacobi map a of the Riemann surface X provides us with a

faithful représentation p of G on the group of complex affine transformations of
A, which is equivariant with respect to a. With the normalisations a(xo) e and

/(xo) e, we hâve f=h°a for some homomorphism h:A^> T. Now for re Go,

/x(r)° h° a jll(t)°/

h° a° t
h o p(T) o a. (1)

So the affine maps ju,(t)°/i and h°p(T) agrée along the curve a(X); but it is a

well-known property of the Jacobi map that a(X) générâtes the Jacobi variety A,
so

ii(T)oh hop(T). (2)

We could also argue that Equation (1) implies that thèse two affine maps agrée on
first cohomology and so the maps differ by a translation which must in turn be

trivial since a(xo) e. At any rate Equation (2) will hâve a couple of simple
conséquences for us. First, each transformation p(r) préserves the foliation of A
determined by the subspace l/ Ker h*, that is, p(t) permutes the leaves of the
U-foliation. Since the p(r) are complex, the same applies to the foliation
determined by U0 el0U. Thus p(r) préserves the V-foliation on A, where
V U fl JU. Second, since the éléments t e Go are isometries of X, the transformations

p(r) préserve the flat Kâhler metric g0 on A arising from the global
inner-product of one-forms on X (see Section 2). Thus p(r) préserves g0 and the
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foliations de terminée by U and V; therefore it must also préserve the foliation
determined by K, the g0-orthogonal complément of V in U. Since p(r) is

complex, it must also préserve the JK-foliation. Now recalling the définition of the
flat Kâhler metric gf in Section 2, and applying Equation (2), it follows that p(r)
préserves gf.

First we will assume that
(i) / has a non-trivial associate. Then, by Lemma 2, V détermines a complex

subtorus of A. Since p(G0) acts isometrically on (A, gf) preserving the V-
foliation, p projects to a représentation p' of Go on the group of complex
isometries of the complex 3-torus A'' A/V with the projected metric. Recail that

/ factors through the holomorphic immersion

a proj
CL l

that is, f=h'°a' where h'.A'-*T is some homomorphism. Now a' is not
universal (unless p 3) and p' may not be faithful, but apart from this the
situation for a' is the same as would obtain for a when X has genus 3. So to save
ourselves the bother of setting up notation once more in A', we proceed with the

discussion assuming the genus is 3, in which case A' A ; for higher genus one just
mimics the proof with a':X-> A' in place of the Jacobi map.

Let jLt0 dénote the représentation of Go on the linear isometry group of Te(T)
(or T) corresponding to the représentation /x. We assume

(ii) that f has irreducible symmetry, by which we mean that /u,0 is an irreducible
représentation. But the finite rotation groups of 3-dimensional Euclidean space
are well known to be either cyclic, dihedral, tetrahedral, octahedral or
dodecahedral, and of thèse only the last three act irreducibly; however, by the

"crystallographic restriction" a linear symmetry of a lattice in 3-space cannot be

of order 5 and so the dodecahedral group is ruled out. Assumption (ii) then
implies that /u,0(G0) is the group of proper symmetries of a regular tetrahedron or
a cube centred at the origin of Te(T). When necessary, we distinguish thèse two
cases by saying that / has tetrahedral symmetry or octahedral symmetry.

By our assumption dimc A 3 and so A is the sum of the real 3-dimensional
subspaces Û and JÛ which are orthogonal, with respect to gf. By Equation (2)
and (ii) above, the linear représentation p0 corresponding to the affine représentation

p represents Go as the group of proper symmetries of a cube or regular
tetrahedron in JÛ with centre at the origin. Since each p(r) is a complex isometry,
the same remarks apply to po(Go) on the subspaces Û and Ûe. As before, the
lattice of A in Â is denoted A. The assumption (i) means that Û and Ûe project
to subtori of A for some value of 0#Omodir. Consequently, 40= àf) Û and

9Û are lattices in Û invariant by the group Po(Go) acting on Û;
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hère we are using also the fact that po(Go) préserves the lattice A in Â. It follows
from the next lemma that Ao and Ae each contain multiples of a fixed cubic lattice.
We hâve not been able to find a référence for this very elementary fact, so we
include a proof.

LEMMA 9. Two lattices in Euclidean 3-space which are invariant by the octa-
hedral (or tetrahedraï) group must both contain multiples of a fixed cubic lattice.

Proof. Whether the group N is octahedral or tetrahedraï, it can be thought of
as a subgroup of the proper symmetry group of the unit cube C centred at the

origin 6. Let L be any lattice invariant by N and let X dénote the smallest sphère
centred at 6 which meets L. Note that L H X cannot hâve 24 points (else there is a

lattice point, other than C, within^). When N is octahedral, it follows that N has

non-trivial isotropy at each leLHX, and so the N-orbit of / is the set of vertices,
the set of mid-edge points or the set of mid-face points of a cube parallel to G
Since L is N-invariant, it follows that L contains a cubic lattice with generators
parallel to the edges of G When N is tetrahedraï, the same argument works, word
for word, if we can find /eLfl-Swhose orbit has less than 12 points. On the
other hand, if every / has 12 points in its orbit, there can only be a single orbit
(else LOX has at least 24 points) in L D X. But L H X is invariant by inversion, so

for leLH X there exists aeN with al -l, and consequently a2l L Since the
orbit of / has 12 points, it follows that <*2 id. But considering the action of the
éléments of order two in the tetrahedraï group, it follows that L H X is the set of
mid-face points of a cube parallel to G In this case, L itself is a cubic lattice with
generators parallel to the edges of G The lemma now follows for any pair of
N-invariant lattices.

So the lattice Ao contains a cubic lattice A'o and Ae a cubic lattice A'e such that
A'0=rA'o, for some positive real number r. Thus el0A'0= reieA'o is a sublattice of
AC\Û0 and, in particular, is contained in A. More explicitly, r cos 68 + r sin 0J8 e A

for each 8eû'Q. Using ^cz^ it can be checked that, given any pair of integers
(m, n) the angle 6' (O<0'<7r) satisfying

mr sin 6
tan 0' -

mr cos 0 + n

has also the property that

r' cos 6'8 + r' sin 6'J8 e A

for each 8eA'o, where r' is some real number. Therefore Ûe> projects to a
subtorus of A and so fB' projects to a conformai minimal immersion of X into a
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flat 3-torus. Clearly the set of ail such Br is a countable dense subset of the set of
ail angles. When r cos 6 is rational, it follows that the conjugate f^2 projects to X.

There is yet another conclusion to be drawn when (i) and (ii) hold, this time on
the complex structure of X.

Let {ôi,ô2,83} be an orthonormal basis of the cubic lattice ^o- Let Ca stand for
the complex Une through the origin of A spanned by {8a, J8a}. From the above
Ca DA is a lattice in Ca. We also saw above that reie8a eCaC\A. Let Aa dénote
the lattice in Ca spanned by {8a, reie8a}. Now the natural map

carries the lattice Axx42x43 into A. Thus it induces a holomorphic homomorph-
ism with finite kernel (or isogeny in the language of abelian varieties) of

TiXT2x T3 onto A, where Ta is the complex one-torus CJAa.
The construction of A'o is such that p*(G0) contains a complex linear transformation

mapping 8t to 82. This transformation identifies (CuAi) with (C2, A2).

Hence Tt and T2 are isomorphic. Thus, in the case of genus 3, the Jacobi variety
A is isogenous to TtxTtx Tx for some complex torus Tx. For arbitrary genus the

same will be true of A' A/V. We hâve shown

THEOREM 3. Let /: X-* T be a conformai minimal immersion of a compact
Riemann surface X in a flat real 3-torus T. Suppose that

(i) / has a non-trivial associate,
and (ii) / has irreducible symmetry.
Then (a) the associâtes f0 of f (a lift of f) project to conformai minimal immersions

of X in flat real 3 tori, for a countable dense subset of angles in 0 ^ 0 < tt. So f has

countably many inequivalent associâtes.

(b) / factors by a homomorphism through a holomorphic immersion of X in a
3-dimensional abelian variety A' which is isogenous to TixT^xT1!, for some

complex 1-torus Tx.

In particular, from (b), X covers an elliptic curve.

Remarks, (i) Essentially the same resuit was obtained independently by
W. Meeks [5].

(ii) Theorem 3 extends to minimal surfaces in n-tori; the proof will
appear in a separate work.

6. The hyperelliptic case

A compact Riemann surface X of genus p > 1 is called hyperelliptic if it admits
a meromorphic function tr:X-> S of degree 2; S dénotes the Riemann sphère.
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The transformation 0 which exchanges the points of X where tt takes equal
values is holomorphic; 0 is of order 2 (involutive) and has (2p + 2) fixed points by
the Riemann-Hurwitz formula. The transformation S is called the hyperelliptic
automorphism of X and is the only involutive automorphism of X having 2p + 2

fixed points (cf. Gunning [1]).
We showed in [6] that if a hyperelliptic Riemann surface X admits a

conformai minimal immersion in a flat 3-torus, then p is odd, and-more
dramatic-if it admits such an imbedding then its genus must be 3; conversely,

every Riemann surface of genus 3 admitting such an immersion is hyperelliptic.
On the other hand, the method of constructing examples of compact minimal
surfaces in tori by Weyl groups (see [8]) tends to give examples with a considérable

amount of symmetry. In this section, we show that hyperelliptic minimal
surfaces which hâve irreducible symmetry hâve a further restriction on their

gênera. This is

THEOREM 4. Let X be a compact hyperelliptic Riemann surface of genus p
and let f:X—> T be a conformai minimal immersion of X in a flat 3-torus. If f has
irreducible symmetry then p 3 mod 4.

Proof. Normalising / by f(xo) e, where x0 is one of the fixed points ot the

hyperelliptic automorphism 0, we recall from [6] that 0 extends to inversion in the
identity élément e of T. It follows easily that F° 0 =F where F dénotes the Gauss

map of X onto the unit sphère So in Te(T). SinceF is holomorphic (with respect
to one of the two complex structures on So) there exists a holomorphic function r
completing the diagram

S'
The extension of 0 to T has 8 fixed points, so it follows that when / is an

imbedding 0 itself has at most 8 fixed points. This then implies 2p + 2^8, leaving
p 2 and p 3 as the only possibilités. By Lemma 1, p#2, so we hâve p 3

when / is an imbedding. We also showed in [6] that p must be odd. In fact, if B is

the total number of branch points of r we hâve

p -1 degree F, by Gauss-Bonnet,

2 degree r, by the diagram above,

f—), by Riemann-Hurwitz,

2 + B.
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So p 3 + B. It remains only to show that the symmetry assumption of Theorem 4

implies that B is a multiple of 4.

Let G dénote the group of ail proper (i.e. orientation-preserving) isometries of
X - relative to the induced metric - extending under / to isometries of T. Then G
contains the hyperelliptic automorphism B. Let Go dénote the index 2 subgroup of
those éléments of G having proper extensions. Let ix0 dénote the associated

spécial orthogonal représentation of Go on the unit sphère So in Te(T). Clearly

for ail r g Go, where F dénotes the Gauss map of /. By uniqueness of the

hyperelliptic automorphism, 6 ° t t ° B for ail t g Go, and we then hâve another
représentation /xx of Go on the automorphism group of the Riemann sphère
S X/{0} and this action will be effective (i.e. /ai(t) is the identity automorphism
of S only if r is the identity in Go). However the représentation fi0 might not be

effective. The most we can say is that if /ao(t) id (i.e. r extends to a translation
of T) then t is the identity if it has a fixed point on X; but since /Mt) must hâve a

fixed point on S it follows that t or t ° 6 has a fixed point on X and therefore that

t or t2 (t © 0)2 has a fixed point on X; by the previous remark, it follows that
M-oM id always implies t2 id. On projecting the above equivariance law to S

we obtain

r o ^(t) /xo(t) o r

for ail tgG0. Suppose ZxGS is a branch point of r of order /. Then the
/u>1(G0)-orbit of zt consists of branch points of r of the same order. Letting H
dénote the isotropy group of the /LL1(G0)-action at zx and denoting its order by m,
the total number of branch points of r in the orbit is {IIm) |G0|, where |G0| dénotes
the order of Go.

LEMMA 10. H is cyclic of order m 1, 2, 3, 4 or 6.

Proof. Choose any metric on S invariant by the /xx-action of the finite group
Go. The isotropy and linear isotropy groups are isomorphic for ail isometric action
and so the isotropy group H at zx is a cyclic group of order m. Let t be a

generator of H. The assumption of irreducible symmetry tells us that /xo(Go) is the

proper symmetry group of either a cube or a tetrahedron, in particular /ulo(t) has

order nio^ 1, 2, 3 or 4. Since /tii(r) fixes zx it follows that either t or t ° B must fix
Xi € X, where xx e -^"H^i). H t fixes Xi so also does rm°, and since rm° extends to a

translation of T we must hâve Tm° id. Suppose instead that t°B fixes xt. Then if
m0 is even (i.e. m0 2 or 4) it still follows that rm° (r2)w° ((t ° 0)2)n° fixes X! and



Periodic minimal surfaces 51

consequently that rm° id. On the other hand if m0 is odd (i.e. mo= 1 or 3), the

remarks of the previous paragraph imply that rm°#id but (Tm°)2 id. Thus

m^rrio except perhaps when mo= 1 or 3, and then m 2 or 6. This ends the

proof.
Let v:S0-*S be any holomorphic transformation such that v° r(zl) zt and

set k v o r. The map v transforms the représentation jul0 into another représentation

/ll2 of Go on the automorphism group of S. The old equivariance now appears
as

k o jLtiCr) ji2(t) ° k

for ail t g Go. Now the generator t of H chosen above may be assumed to be such

that /ixCr) acts on TZl(S) as multiplication by wt e2lTllm and then /m2(r) must act
as multiplication by w2 e27rIS/m where 0^s<m. Choosing a complex coordinate
on S with origin at zl9 then after differentiating the above equivariance law and

evaluating at zl9 we obtain w[+1 w2 or

/ s-1
— +a
m m

for some non-negative integer a.
If s is relatively prime to m, then /xo(t) has order m and so m 1, 2, 3 or 4.

We can very quickly see that II m must then be of the form a or \ + a, when m 1,
2 or 3 and of the form a or |+ a when m 4.

If s is not relatively prime to m, then we see from the proof of Lemma 10 that
m 2 or 6 and it again follows quickly that IIm must be of the form j+ a or \+ a.
Now we know that \G0\ is a multiple of |jao(Go)| in gênerai. But when s is not
relatively prime to m we also note from the proof of Lemma 10 that Go contains
an élément of order 2 extending to a translation of T; thus |G0| is a multiple of
2 |jLto(Go)| in this case.

We leave it to the reader to check that whether the immersion / has

octahedral symmetry (i.e. |/ul(G0)| 24) or tetrahedral symmetry (i.e. |ji(G0)| 12,

m^4), the total number of branch points in the orbit of zu namely (l/m) |G0|, is

divisible by 4. Hence the total number of branch points B is divisible by 4 and so

p 3 mod 4. This ends the proof of Theorem 4.

Remark. If / has octahedral symmetry, we can see from the above that B 0

or else B ^ 8. Thus p 3 or else p ^ 11* The classical periodic minimal surfaces of
H. A. Schwarz détermine five singularity-free compact orientable minimal
surfaces in flat 3-tori with octahedral symmetry (see §7); their gênera are ail less than
11, so only in genus 3 hâve we hyperellipticity.
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7. Remarks on examples

We add a few remarks on some examples of compact minimal surfaces in
3-tori to show the viability of the hypothèses in the results above and also some
implications, especially of Theorem 2.

Perhaps it is well to note first of ail that there are infinitely many geometrically
distinct periodic minimal surfaces in JRn, for each n. This is implicit in the

génération of such surfaces from Weyl groups [8]. Furthermore there is no

difficulty in showing that there are infinitely many compact minimal surfaces

in 3-tori satisfying the symmetry condition of Theorem 3.

The method of H. A. Schwarz for generating periodic minimal surfaces in R3

goes as follows: sélect a skew (i.e. non-planar) r-gon P having affine projection
onto some 2-plane which carries P bijectively onto the boundary of a convex
domain D in this plane; the Plateau problem for P has then a unique solution S

with no interior branch points (cf. [4]); let S dénote the group of proper affine
motions generated by the r reflexions in the edges of P; by the Schwarz reflexion
principle (cf. [4]) M=S -2= Uses^Z is a minimal surface whose only possible
branch points occur on the vertices of the 1-complex S P; when S is discrète and

its maximal translational subgroup L is a lattice in R3, the surface M is called

triply-periodic. We will not be concerned with the case where M has branch

points.
We next show how P then détermines a canonical compact orientable surface

X and a canonical minimal immersion of it in the flat 3-torus T=R3/L. First
consider the direct product S x JE with the obvious équivalence relation (denoted
~) which assembles Sx2 as M in R3 (cf. [8]). Let Xr=Sx2/~ dénote the

quotient connected surface and /' the obvious immersion of X' in R3. The left
action of S on itself defines an action of S on X1 which is equivariant with respect
to /'. We obtain then a minimal immersion f0 of the compact surface Xo X'/L in

T= R3/L. The action of the finite group K S/L on Xo and T is equivariant with
respect to /0. Passing to the 2-fold cover if necessary, we obtain a compact
orientable surface X and a minimal immersion /:X—» T. The action of K lifts
also to X and is likewise equivariant for / and isometric with respect to the
induced metric on X. With the induced conformai structure and a choice of
orientation, X becomes a Riemann surface: apart from this trivial choice, the
Riemann surface X, the immersion / and the torus T are cononically determined
by P.

The genus p of X is easily computed. By the Gauss-Bonnet formula the total
curvature of 2 is cr 27r-s, where s is the sum of the exterior angles in the

polygon P. The Gauss-Bonnet formula for the surface X states that 47r(l-p)
equals \K\ a or 2 \K\ a according as Xo is orientable or not.
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When r 4, i.e. the polygon P is a quadrangle, the convexity condition on P is

guaranteed. Schwarz considered the problem of determining ail P which generate
triply-periodic minimal surfaces. Acutally if X contains interior straight-line
segments, we can replace P by another skew quadrangle generating the same

periodic minimal surface and having no interior straight-line segments. With this
latter normalisation on P there are to within congruence only six possible
quadrangles P which generate triply-periodic minimal surfaces. The resuit is

essentially due to Schwarz [11], but Schoenflies [10] later gave a very nice proof.
Thèse six quadrangles are pictured in Stessmann [12] and we foliow his number-
ing, I-VI. Thèse six quadrangles are the simplest polygons that can be made from
the roots of a simple Lie group of rank 3. Indeed, if for each of the Dynkin
diagrams of such groups we take the quadrangles whose first three edges are the

vectors {a^ a2, a3} (in that order) we obtain I, II and V; for the choice {au a3, a2}
we obtain III, VI, and IV. Actually the surface IV has branch points and we set it
aside in the remarks to follow. In each case the group K is the proper octahedral

group (order 24). Apart from Case III, (i) L is the maximal translation group
leaving the set M invariant, (ii) X' is orientable and (iii) L contains éléments
reversing the orientation of X'; so Xo is non-orientable and by the previous
paragraph the genus p is 3, 9, 6 and 7 for the surface X arising from the polygons
I, II, V and VI, respectively. In Case III, X' is orientable, but L contains only
orientation-preserving translations so Xo is orientable; so in this case the genus
works out as 3.

The surfaces X arising in Cases I and III are hyperelliptic because the Gauss

map gives a meromorphic function of degree 2 [1]. In fact in both cases this
function is ramified over the 8 vertices {a}}*=i of a cube inscribed in the sphère.
Thus X is the Riemann surface of

in both cases. By Theorem 2, the immersion of X arising from I and III are
associate, because X has genus 3; it is not difficult to see they are not trivial
associâtes. Both immersions hâve octahedral symmetry, so X satisfies the hypothèses

of Theorem 3; in particular there are infinitely many associâtes.
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Comparing second fondamental forms at a well-chosen point of X we quickly
see that the immersions of X arising from I and III are even conjugate, as was

very ingeniously proved by Neovius with other methods more than ninety years

ago [14]. To him we owe also the construction of the conjugate of II; it is also

triply-periodic and distinct from the other surfaces mentioned hère (see Tafel IV
[14]). It gives a further example, this time of genus 9, of a compact surface

satisfying the hypothèses of Theorem 3.

As a further application of Theorem 2, we hâve the following resuit of W.
Meeks.

COROLLARY. Let f:X-* T be a conformai minimal immerion of a compact
Riemann surface of genus 3 into a flat 3-torus. If the isometry group of the induced
metric on X contains the octahedral group as a subgroup, then X is the Schwarz

surface of genus 3 and f is an associate of the Schwarz immersions of this surface
(Cases I and III above).

The condition on the isometry group can be used to show the Gauss map
branches over the 8 vertices of a cube inscribed in the unit sphère. As we saw
above this détermines that X is the Schwarz surface of genus 3. Finally, Theorem
2 says that ail such immersions of this surface are associate.
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