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Group représentations without groups

P. Gabriel (Zurich) and Ch. Riedtmann (Basel)

If fc is an algebraically closed field of characteristic p > 0 and G a finite group,
we know by Dade [3], Janusz [7] and Kupisch [8] that blocks of the group-algebra
fc[G] with cyclic defect groups are Morita-equivalent to algebras arising from
Brauer trees [7]. Hère we show that the latters coincide with the algebras, which
are stably équivalent to symmetric Nakayama-algebras (as suggested by M.
Auslander we call an algebra Nakayama if it is generalized uniserial in the sensé

of Nakayama, i.e. if it has finite dimension and every indécomposable module has

only one composition séries; for stable équivalence we refer to [1] or to 1.2

below).

1. The main résulte

1.1 We first recall that a quiver consists in vertices and in arrows Connecting
thèse vertices together. In Fig. 1 and Fig. 2 we give two concrète examples. The
first of thèse quivers is the so-called cycle Ze with e vertices.

If k is a field, we get a k-representation V of a quiver Q by attaching a

fc-vector space V(i) to each vertex i and a fc-linear map V(a): V(i) —> V(j) to

Figure 1 Figure 2
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each arrow a:i -* j of Q. The dimension of V is by définition dim V —

£, dim V(0- In practice, we shall hâve to restrict our représentations by some
constraints, which we describe now: A composed arrow from i to / is a séquence
of vertices and arrows (j1 an,..., ax | ï) with n > 0, i domain (a^, range (am)
domain (am+i) for 1 < m < n and range (an) / ; in case n 0 we further require
that i /. The composed arrows from i to j freely generate a vector space k(i,j),
and the formai composition law given by (m | /3P,..., /3X | /) • (j | an,..., ax \ i)
(m | 0P,..., 0i? an,..., <*! | i) clearly induces bilinear composition maps k(i, j) x
fc(j, m) -> k(Um), (a,8)^>8a. An idéal I of Q consists in subspaces I(i,7")<=
fc(i, j) such that |3I(i, j) <= J(i, m) for any j3:j-»m and I(i, j)y <^ I(h, j) for any
7 : h —» i.

The pair (Q, I) is called # bounden quiver. A k-representation of (Q, I) is a

k-représentation V of Q subjected to the supplementary condition V(a) 0,

\fael(i,j) (where V(a) is defined in the obvious way, when a is a linear
combination of composed arrows!). Of course, it suffices to submit V to the
relations V(as) 0, where as runs through a family of generators of L Therefore,
if («s)ses is such a family, we simple say that (Q, I) is the bounden quiver defined
by Q and the relations as=0, se S. The category of its k -représentations is
denoted by Modk (Q, I).

For instance, we dénote by Z£ the cycle of height < h +1 with e vertices, i.e.
the bounden quiver defined by Ze and the e possible relations Yh+1 0. A
k -représentation of Z£ is called an h-wreath of e vector spaces. Besides Z£ we also
consider the bounden quiver (Q,I) defined by the quiver Q of example 2 and the
following relations:

0 ao«ll«7«6«5«l«O«ll«7«6 «5«l«0«ll«7«6«5«l«0«ll
«1010 01<*O 07040201 020101008 «3«10«9 «4«3«l0

a4j32 04«3 a7«6«5«l«0«ll«7«6«5«l «6«5«l«0«ll«7«6«5«l«0

a11a7a6a5a1a0«ii«7«6«5 «704 07«6 0i0io0807 08070402

a9a4a3 ai0a9a4 alo/38 0iO«9 aiao«n«7«6«5«i«o«n«7

a6a5a1ao«ll«7«6«5«l + 040201 «9«4 + 080704

ao«ll«7«6«5«l«O«ll«7 + 0100807 «3«10 + 0201010 0.

1.2. One of our main theorems, stated in the particular case of the bounden
quiver just defined, will be that Modk (Q, I) is stably équivalent to Modk Z\\.
Stable équivalence is defined as follows: first remember that the stable category <€

attached to an abelian category % has the same objects as c€, and that the set of
morphisms Hom(M, JV) from M to N in ^ consists in équivalence classes of
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morphisms from MtoNin <8. More precisely, two morphisms /, g : M—» N in <8

are considérée as équivalent, if g-f is factorized through a projective object. A
stable équivalence is an équivalence between the stable catégories.

If M is an object of c€, it will be convenient to write M for M considérée as an
object of *€. If M is non-projective and has a local ring of endomorphisms, the
quotient Hom (M, M) of Hom (M, M) is also local, hence M is indécomposable in
<ë. In the cases we consider, the stable category <# therefore inherits from * the

property that each object is a finite direct sum of indécomposable summands with
local rings of endomorphisms. In particidar, the map M^>M induces a bijection
between the types isomorphism classes) of non-projective indécomposable
objects of % and the types of indécomposables of (ë.

The indécomposable objects of ModkZ£ are easy to describe: Dénote by
60,.. •, eh the natural basis of kh+1. For any natural numbers s, i, m such that
0 ^ s, i^e — 1 and 1 < m < h +1 set Vs>m(i) 0, kep where / is subjected to the
conditions 0</<m and s+/^i mod e. Connect the spaces Vs,m(0),..., Vsm(e-
1) by linear maps 7 V(y) such that 7e, e}+1 if / < m — 2 and 7em_i 0. Thus
we get an indécomposable wreath of length m, and it is well known that every
h-wreath of e vector spaces is a direct sum of such représentations Vs,m.

Moreover Vsm is projective (and injective) in ModkZg iff m h + l.
In the example considered above we see, as a conséquence of the existence of

a stable équivalence between Modk Z\\ and Modk (Q, I), that (Q, 1) admits 12 • 18

types of non-projective indécomposable k-représentations.

1.3. Let Q dénote now a gênerai quiver with finitely many vertices. We define
the quiver-algebra of Q as

fc[Q]=0fc(U),

the multiplication being defined in such a way, that

(m|ftw...,p1|h)0'|an,...,a1|î) equals 0 if

and (m | Pt,..., 0l9 o^,..., ax \ ï) if h j. The unit élément is X» (i II 0- If V is a
k -représentation of Q, (BtV(i) bears an obvious (left-) module structure over
fe[Ql and the functor V»-»©,V(i) is a k -linear équivalence between ModkQ
and Mod fc[Q] (we dénote by Mod A the category of left modules over a given
fc-algebra A). If I is an idéal of Q, the "restricted" représentations of the
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bounden quiver (Q, I) correspond under this équivalence to the modules annihi-
lated by 0lsJ I(i, /), i.e. to the modules over the bounden quiver-algebra

In case (Q,I) Z^ we thus get algebras k{Z^\ which are known to be

représentatives for ail selfinjective split basic Nakayama-algebras over fc (a finite
dimensional fc-algebra A with radical / is called split basic if A//-2* k x • • • x fc).

The vector space wreaths furnish a suitable interprétation for the modules over
thèse algebras.

1.4. Our purpose is to classify the finite-dimensional fc-algebras A for which
there exists a fc-linear stable équivalence between ModA and

Modk Mod fc[Zg] for some e, h. In this classification we need quivers of the
following spécial kind:

We say that a quiver Q is a Brauer -quiver iff it is finite and connected and has

the following properties:
a) Q is the union of the cycles which are contained in Q;
b) every vertex belongs to exactly two cycles;
c) any two cycles meet in one vertex at most. For the sake of illustration we

give two examples (Fig. 3 and Fig. 4). Readers wishing to make themselves
familiar with the notion may verify that there are 1 Brauer-quiver-type with 1

vertex, 1 with 2 vertices, 2 with 3, 3 with 4, 6 with 5, 14 with 6, 33 with 7

With every Brauer-quiver Q we associate a tree T: its vertices correspond
bijectively to the cycles of Q, and two vertices of T are matched together by a

(non-oriented) edge iff the corresponding cycles of Q meet. Hence the edges of T

h

Figure 3 Figure 4
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correspond to the vertices of Q. Moreover the edges of T converging at some

common point correspond to the distinct vertices of some cycle of Q. They are
therefore endowed with a cycle order, which we put in concrète form by drawing
T in a plane in such a way that the edges converging at any vertex hâve the
anticlockwise cyclic order. A tree endowed with such cyclic orderings is a
Brauer-tree. Clearly, Q détermines T and reversely. We draw explicitely the trees

Ti and T2 attached to Qx and Q2.

1.5. The cycles of a Brauer-quiver may be divided into two camps, an a- and

a 0-camp, in such a way that neighbouring cycles belong to différent camps. We
implicitely suppose in the sequel that one among the two possible camps has been

baptized a, the other /3 ; we say that Q is orientée.

For any vertex i we dénote by ai and /3i the terminal points of the a- and

/3-arrows starting at i. Thus we get two permutations a:i*->ai and |8 : i —» fii of
the vertices of Q.

LEMMA. y af$ is a cyclic permutation of the vertices of Q.

Proof. If j8 is the identity, y a acts transitively, since Q is connected
(example Qt). Similarly, if a is the identity, 7 j3 is transitive. In the other cases

it is easily seen that there is a vertex s such that as^s^ fis. Take for instance the

Figure 7
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vertex 1 in Q2 (1.4). Then s may be considered as the Connecting vertex of two
quivers Q+ and Q~, which we make more explicit by simply drawing them in case

of Q2.
We may now use induction on the number of vertices and get 7 by "matching

together" the cyclic permutations y+ and 7" of Q+ and Q~. OK.
Let h be a natural number >1 and set exp (2Î7rx/h) eK(x) (or simply e(x) if

there is no danger of confusion). In case s e(x) and t e(y) with 0 < y — x < h, we

agrée that [s, f] e([x, y]) and similarly [s, t[ e([x, y[)... In the sequel, if Q is an
oriented Brauer-quiver with h vertices, we shall identify the set of vertices with
{e(0), e(l),..., e(h -1)}c S! c C in such a way that 7e(i) e(i +1) for each L The
inductive method used in the proof of the previous lemma leads us then to the

following capital observation: if s ^ as for some vertex s, the a-orbit of any
t6 ]s, as[ is contained in ]s, as[; similarly, the 0-orbit of any t e [s, as[ is contained
in [s, as[. An analogous resuit is obtained by permuting a and j3: if s^jSs, the
|3-orbit of any te]s, |3s[ is contained in ]s, |3s[, whereas the a-orbit of any
f e]s, j3s] is contained in ]s, |3s].

In the identification we hâve chosen, the vertices of Q delimit a regular
polygon. We represent the a-arrows by full Unes, the j3-arrows by dotted Unes.

The observations made above then imply that the a-arrows joining the vertices of
an a-orbit are the edges of the convex hull of this a-orbit. Moreover, the convex
hulls of distinct a-orbits do not intersect. As a matter of fact, the datum of an
oriented Brauer quiver with h vertices is essentially équivalent to the datum of an
équivalence relation on {e(0),..., e(h — 1)} such that the convex hulls of two distinct
équivalence classes do not intersect (given such a relation, define as as the first
point équivalent to s coming after s in the anticlockwise orientation of the circle;
then set Pe(i) a1

1.6. The universal covering Q of an oriented Brauer-quiver Q is a quiver
having Z as set of vertices. As for Q, the arrows of Q are associated with
permutations of the vertices, which we still call a and |8 and which are charac-
terized as follows: l<ai —i<h, eh(ai) aeK(0, l^jSi —i^h and eh(/30 j3eh(i)
for ail ieZ. The permutations a and p of Z détermine arrows ai'.i-*ai and
j3i : i —> |3i respectively. We illustrate our définitions by drawing some of the

arrows in the cases of Qt and Q2 (1.4):

Figure 8
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Figure 9

The properties already proved for oriented Brauer quivers infer the following
relations among the permutations a and /3 of Z:a(3 7h+1, ayh yha and
pYh Yhj3, where 7(1) î + 1. Moreover, if we dénote by ai and bi the car-
dinalities of the a- and 0-orbits of e(i) in Q, we have aax(i) i + h |8bl(0-

We endow the universal covering Q with the relations

&alat=0 and aPlft=O

for every i e Z and with

where aai stands for the composition of ai arrows of type a, the first of which
starts at ieZ; a similar définition holds for /3bl. In this way we get an infinité
bounden quiver (Q, î).

In case Q Ql9 the relations aat + ($bl 0 in (Ql9 ït) reduce to a6 +13 0, or
more explicitely to

aI+5al+4Otl+3al+2al+1aI +ft 0.

In a k-représentation V of (Ql9 ïx) the maps V(ft) : V(i) —> V(i + 6) are therefore
uniquely determined by the maps V(a,); moreover, the relations V((3al)V(a,) 0,

V'(aPl)VrOl) 0 may be reinterpreted in terms of the VCa,) as follows

0 V(al+6) V(al+5)V(al+4) V(al+3) V(al+2) V(o,+1) V(o,), Vi € Z.

This furnishes an isomorphism of Modk (Q1? Ix) with Modk Z6, where Z6 is the
bounden quiver defined by

and the relations y7 0. Replacing 6 by any JteN and the relations y7 0 by
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yh+1 0 we get a bounden quiver denoted by Zh, which generalizes Z6 in a very
obvious way.

1.7. Let Q be an oriented Brauer-quiver with h vertices. We construct a

functor R :Modfc Zh -»Modk (Q, f) as follows. If Visa fc-représentation of Zh,
we set

v((3lr).

Moreover, for any vertex reZof Q, the fc-linear map

(RV)(p): (RV)(t)= ©

is given by the matrix

0

0

0

1

0

0

0

1

0

0

0

1

where we simply write y instead of VX7). Similarly, the fc-linear map

(RV)(a):(RV)(t)= © V(plt)-+ © V(p'at)

is given by the matrix

A

CLt-t Ctt-& Ott-

0 0 O

0 0 O

THEOREM. If the maps V(y) satisfy the relations V(y)k+1 0, then (JRV)O)
and (jRV)(a) saris/y the relations of the bounden quiver (Ô, î). The functor
R : Modk Zh -» Modk (Q, î), which is thus defined, maps projectives into projectives
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and induces by passing to the residual catégories a stable équivalence

R : Modk Zh -=> Modk (Q, I).

This theorem will be proved in §4.

1.8. Let Q be an orientée Brauer-quiver with the h vertices

eh(O),eh(l),...,eK(h-l)eC.

A natural number e > 1 is called a period of Q if we hâve

aeh(i 4- e) (aeh(i))eh(e) and ^eh(i + e) (j3eh(0)eh(e), V,.

It is équivalent to say that the induced permutations of the universal covering Q
satisfy

and j3

for any i eZ. Clearly, h and any multiple of h is a period of Q. But there may be

other periods: in the following example (Fig. 10), where h 18, the periods are
the multiples of 6.

Given a period e of Q, we define an e-periodic k-representation of (Q, I) as a
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fc -représentation W of (Q, I) such that

(i)=W(i + e\W(al)=W(al+e) and W(ft) W(ft+e)

for any ieZ. Similarly, an e-periodic morphism f:W->Wf between two e-
periodic représentations is a morphism of Modk (Q, f) such that f(i) f(i + é) for
ail ieZ. The e-periodic fc-représentations and the e-periodic morphisms form a

subcategory of Modk (Q, I), which we dénote by Modk (Q, î).
In an analogous way we may define e-periodic fc-représentations of the

bounden quiver Zh. The subcategory ModkZh of ModkZh formed by the e-
periodic représentations and morphisms is clearly identified with ModkZ£ (1.1).

Our main purpose in this paper is to prove the two following statements.

THEOREM 1. The functor R :Modk Zh-^Modk (Q, I) maps ModkZh-^
Mod fc[Zg] into Modk (Q, ï) and induces a k-linear stable équivalence

Mod fc[Z3 -=> Modk (Q, l).

THEOREM 2 (Ch. Riedtmann). Let A be a connected finite-dimensional
algebra over k, for which there is a k-linear stable équivalence
Mod A -^ Mod fc[Ze] with fi>2. Then Mod A is équivalent to Modk(Q, î) for
some Brauer-quiver Q with h vertices.

Remember that an algebra A is called connected, if A does not admit any
décomposition A=A±xA2 with A1^0^A2. Theorem 2 will be proved in §3,

Theorem 1 in §4.

If h 1, every indécomposable module of length 2 over fc[Ze] is projective.
Hence we hâve Hom (M, N) 0 in Mod k[Zl] whenever M and N are indécomposable

and not isomorphic. Consequently, if Mod A is stably équivalent to
Mod k[Z\\ A is a Nakayama-algebra of height Loewy-length) 2.

1.9. For any h we can interprète Modk (Ô, I) as the category of modules over
some finite-dimensional fc-algebra. We first define a finite bounden quiver (K, J)
having as vertices the points

The permutations a and |8 of Z induce permutations a and (S of ee(Z), which in
turn détermine arrows a, : j ec (i) —> aj ee (ai) and fy : j ee (i) -> fij ec (|3î). The
vertices / ee(0 and the arrows av ft détermine a quiver K which is subjected to
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the following relations: Any composition of an a-arrow and a jS-arrow is 0;
moreover, aaj + |3bj equals 0 for any j=e(O; hère, as in 1.6, aaj stands for the

composition of aj: ai arrows of type a, the first of which starts at j; a similar
définition holds for pb1.

The fc-représentations of the bounden quiver (K, J) obtained by this construction

are clearly identified with the e-periodic représentations of (Q,f). Accord-
ingly, Modk (Q,I) is équivalent to the category of modules over the bounden
quiver-algebra k[K, J], which is finite-dimensional over fc.

For instance, if Q is the oriented Brauer-quiver Q3 of 1.8, and if e 12,

fc[K, J] is isomorphic to the bounden quiver-algebra associated with example 2 of
1.1. In effect, this example is obtained from (K, J) by deleting the arrows of K
corresponding to loops of Q3. Thèse deleted arrows arise in a linear way in the
relations generating J. Therefore they may be eliminated.

1.10. LEMMA. The periods f and the associated permutations yf of a Brauer-
quiver Q are independent of the chosen orientation.

Proof. For a given orientation of Q we hâve defined 7 as aj3. Now set 8 0a.
We hâve to prove that yf ôf for every period /. As a matter of fact we hâve

yfp Qyf 0(a|3a/3 • • • a/3) (papa • • • j3a)|3 ôfp, hence yf ôf. OK.

Clearly, the periods of Q are multiples of some smallest period, which divides
the number h of vertices of Q. Periods dividing h are therefore of particular
interest. They are examined in the following proposition.

PROPOSITION. Let Q be an oriented Brauer-quiver with h vertices and let

d^hbe a period of Q dividing h. Then there is exactly one exceptional orbit in Q,
i.e. either an a-orbit or a P-orbit which is stable under 7d=(a|3)d. Every non-
exceptional a- or p-orbit has m h/d transforms under the action of yd.

Proof. Identify the points of Q with the vertices of a regular polygon as

explained in 1.5. Clearly, an orbit is stable iflE its convex hull contains the center 0

of D {z gC : \z\ ^ 1}. Accordingly, there is at most one stable orbit. Suppose now
that no P-orbit is stable under the "rotation" yd. Call A the union of the disjoint
convex hulls of the différent |3-orbits. By assumption we hâve Oé 4. Let F be the
connected component of 0 in D-A. The intersection of F with the unit circle S! is

the disjoint union of some open arcs
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with i1<i2< - - • <ia<ii + h. Together with the relation 7 afi this implies
ae(ii) =e(i2), ae(i2) e(i3), ae(ia) =e(ix). Since 0 is fixed under the rotation yd9

the component F of 0 in D-F is stable under 7d. Consequently, FD S1 and the
a-orbit {e(ix),..., e(ia)} are stable.

Clearly, the stability of the exceptional a-orbit implies for geometrical reasons
that 1 < ai - i < d whenever e(i) lies on the exceptional orbit. If e(i) does not lie on
the exceptional orbit, we hâve e(i) e ]e(j), ae(/)[ for some eO) belonging to the

exceptional orbit. By 1.5 we know that the complète a-orbit F of e(i) is

then contained in ]e(/), ae(/)[. Therefore, the transforms F, yd(F),
72d(D,..., 7(m~1)d(r) must be disjoint. A similar argument holds for arbitrary
|3-orbits. OK.

Remark. Let us keep in mind that l<ai —i<d whenever e(i) lies as the
exceptional (a-)orbit. If this is not the case, we know that, with the notations
above, both e(i) and ae(i) belong to ]e(j), ae(/)[; accordingly, we either hâve
1 < ai — i < d or h — d < ai — i < h for obvious geometrical reasons. Analogously,
for any i, we hâve either 1 < |3i — i < d or h — d < |3i — i < h.

1.11. In the situation described in Proposition 1.10 it will be convenient to
consider besides Q the quotient Q of Q under the action of 7d. As a matter of
fact, the permutations a and )3 of Q and Q induce permutations of Q:=ed(Z),
which we still call a and |3 and which in turn détermine arrows a, : / ed(i) -» a/
ed(ai) and jS, :; -> |8/=edO0- We dénote by p:Q-^Q the map eh(i) >~* *d(i) ^
eh(mi) and call exceptional the image under p of the exceptional orbit of Q.

PROPOSITION. The quiver Q consisting in ed(Z) and the arrows av ft is a

Brauer-quiver. The exceptional orbit of Q is an m-fold covering of the exceptional
orbit of Q, whereas each non-exceptional orbit of Q is covered by m disjoint orbits of
Q.

Proof. Let us assume for instance that the exceptional orbit is an a-orbit. We
first hâve to prove that the convex hulls of the a-orbits of ed(Z) are disjoint, or
equivalently that, for any ieZ and any je]ed(i),aed(i)[, the whole a-orbit of /
lies in ]ed(i), aed(i)[. Now we know by 1.10 that we hâve either l<ai — i<d or
h - d +1 < ai - i < h. In the first case, we choose a représentative l of j in ]i, ai[;
since the a-orbit F of eh(f) is contained in ]eh(i), aeh(i)[, the a-orbit p(F) of
/ p(ek(0) is contained in p(] eH(i), cteh(i)[) ]ed(i), aed(i)[. In the second case, let
i0 be the greatest number smaller than ai —h such that eh(i0) belongs to the

exceptional orbit. Let further I be the représentative of j in [i0, io+d[. Clearly,
eh(0é[aeH(i),eh(i)]. Therefore, if j does not belong to the exceptional orbit, the
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a-orbit F of eh(l) is contained in [eh(i0)>ehOo + d)[ — [aeh(0, eh(i)]; accordingly
p(r) is contained in p[eh(io),eh(/o+h)[-p[aeh(0,eh(0], i.e. in ]ed(i), «ed(O[, since

p maps [eH(i0), eh(i0 + d)[bijectively onto Q. Finally, if F is exceptional, we set

ri Fn[eh(i0),eh(i0+d)[. Then Fx is contained in [eh(i0)? eh0'o + d)[-[aeh(0,
eh(i)]; accordingly, p^) p(r) is contained in >d(i), «ed(i)[ p[eh(io), eh(i0

The last statements of our proposition follow directly from 1.10. OK.

Figure 11

It is worth noticing that Q can be recovered from Q, provided one knows the
exceptional orbit of Q and the multiplicity m h/d. Assume for instance that the
exceptional orbit A of Q is an a-orbit. Then, if aed(i) ^ed(i) and if ]ed(i), «ed(i)[
does not contain A, we define aeH(i) as eh(j), where / satisfies ed(/) aed(0 and
i-f l</<i + d. Otherwise, we set aeh(0 eh(0, where I is determined by ed(ï) —

aed(0 and i14- h — d +1 < i < i + h. This shows that the datum of a Brauer-quiver Q
together with a period d dividing the number h^d of vertices is équivalent to the

datum of a Brauer-quiver Q having d vertices together with some exceptional cycle
and some multiplicity m h/e > 1.

The relation between Q and Q is illustrated by setting Q Q3 (1.8), d 6,
m 3 and Q Q2 (1.4). The exceptional cycle of Q is {0,1,5}.

1.12. The restdts of 1.11 can be applied in the gênerai case of an arbitrary
period e by setting d (h, é) greatest common divisor of h and e. In this case,
the quiver K described in 1.9 is a (e/d)-fold covering of Q.

As a matter of fact, we are mostly interested in the case where e d. In this
case, K is identified with Q, and the relations generating the binding idéal J of 1.9

may be described directly: Dénote by A, : j -» / and Bi : j -» / the formai compositions

of the arrows of the a- and /3-cycle through a vertex / of K Q. Assuming
that the exceptional cycle is an a-cycle, we get the following constraints

a) Af+B} 0 if the a-cycle through j is exceptional (m fixed multiplicity),
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b) Aj +Bj 0 if the a-cycle through / is not exceptional,
c) a3jft 0 and /^a, 0 for any /.

A k -représentation of K satisfying thèse relations is called a Dade-Janusz-
Kupisch-representation of K. The associated bounden quiver-algebra is called a

DJK-algebra. Attaching to every DJK-representation V of K Ô the représentation

W of Q such that W(j) V(ee(/)), we clearly get an isomorphism
[

Mod k[K, J] -=> Mod£ (Ô, î).

1.13. The preceding constructions are justified by the fact that DJK-algebras
do occur in représentation theory of finite groups. For instance, for any field k of
characteristic p>2, the group-algebra fc[SL2(Fp)] is Monta-équivalent tokxAx
A, where A is the DJK-algebra attached to the Brauer-quiver Q below with
m 2 having the loop a0 as exceptional cycle (the right end of the quiver is

or

according as p 1 or 3 mod 4).

More generally, let G be a finite group with cyclic p-Sylow-subgroups. Let P
be a minimal p-subgroup of G and N its normalizer in G. By Michler [10], if k is

an algebraically closed field of characteristic p > 0, fc[N] is a product of algebras
each of which is Morita-equivalent to some k[Zeem]. Moreover, the scalar-
extension-functor induces a stable équivalence between mod fc[N] and mod fc[G]
(Thompson-Feit-Green).

We hâve to keep this relation to group theory in mind when proving Theorem
1 and 2 (1.8). In effect, by adapting methods of Green [6] and Peacock, it is rather
easy to show that a "block" A connected finite dimensional algebra) is

Morita-equivalent to a DJK-algebra, if some exact functor R : mod k[Zîm]-^
mod A induces a stable équivalence. The simplifying fact in this case, which is the

group theory case, is that R necessarily induces isomorphisms
Ext1 (V, V) -=> Exti (RV, RV) (see [11]). Now Ch. Riedtmann has shown in her
thesis how to get rid of the existence of an exact functor. We reproduce her proof
below.
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2. The lattice-strip of irredudble morphisms

In order to prove our main theorem, we first hâve to scrutinize the morphisms
of the category Mod k[Z^] and to give them a géométrie description.

2.1. We represent the indécomposable fc[Z£]-module Vsrn described in 1.2 by
means of the pair (s+Ze, m)eZ/eZxZ. Since Z/eZ has as éléments the subsets

{s + re: reZ} of Z, Vsm has infinitely many représentatives (s + re, m) in ZxZ,
which we identify with the points of the plane having s + re and m as coordinates
in the skew coordinate System below (e 3 and h 8 in the particular case of Fig.
12).

Figure 12

Just as we represent an indécomposable module by a séries of points, we may
represent a linear map by a séries of arrows. In our picture the séries of arrows
(s + re, m)-*(s + re, m — 1), r6Z, stands for the projection tt : Vsm -» V^-! such
that ir(eo)=eo- Similarly, the injection t: Vg.m-» Vs_lm+1 such that i(eo) el is

represented by a séries of arrows (s + re, m) —> (s — 1 + re, m +1). Thus we get a

lattice-strip formed by vertices and arrows, where the séries of meshes

»(s -1 + re, m 4-1)

(s 4- re, m) m), reZ
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représente the commutative diagram

255

Y.-l.n

Vs_1>m,l<m<h

(V_ltfn stands for Ve_lm; notice that ir ° i 0 if m 1).

2.2. Given two indécomposable wreaths Vsm and Vtq, the morphisms be-
tween them are described as follows. Start with any représentative vertex (s +
re, m) of Vsm and hatch the convex polygon generated by the vertices (i, j) such
that i<s + re and s4-re + l<i+/<s4-re4-m. Let (t + xeyq), (t + (x-l)e,q),...,
(f4-(x-l)e, q) be the représentatives of VtA within the hatched polygon. For any
such a représentative (f+ (x-/)e, q) ail possible compositions of ir- and i-arrows
starting at (s + re, m) and ending at (t + (x-f)e, q) represent the same morphism
M? • ys,m -^ ym- Moreover, the morphisms jx0,..., ft fonn a basis of
Hom(Vsm, Vtq) over fc.

(s+re+m-h-1,h+1) (s-htfe.h+1)

(s+re.1)

Figure 13

In order to describe Hom(Vsm, Vtq) we might equally well start with some

représentative (f+ xe, q) of Vtq and hatch the polygon formed by the vertices (i, /)
such that t + xe < i < f 4- xe + q — 1 and f + xe 4- q < î 4- /. The morphisms ti0,..., ^
are then represented by the compositions of tt- and t-arrows ending at (f 4-xe, q)
and starting at the vertices (s + re,m), (s 4- (r 4- l)e, m),..., (s 4- (r 4- I)e, m), which
lie within the hatched polygon and represent Vs m (see Figure 14).

2.3. Our géométrie description of the morphisms suits also with the stable

category Modk Z£. In this residual category the projective indécomposables Vs,h+1
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(t+q-1+xe,h+1) (t+xe.h+1)

Figure 14

of Modfc Zg vanish. Hence we hâve to delete the vertices (i, h +1) in the

lattice-strip of 2.1. The types isomorphism classes) of indécomposables of
Modfc Zg correspond in a one-to-one onto way to the types of non-projective
indécomposables of ModfcZ£, hence to the sets (s+Ze, m) with l<m<h.
The meshes

standing at the top of the lattice-strip of 2.1 give rise to the relations 0 i ° tt
™° ^'Vijh~^ Vi_1>h in ModfcZ^ (tt and i dénote the residue classes of ir and i).
From thèse relations we deduce the following description of the spaces

Figure 15
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Hom(Vsm, VUCL) of morphisms in ModkZ^. Start with any représentative vertex
(s + re, m) of Vsm and hatch the polygon determined by the points (ij) such
that s + re>i>s + re + m-h and s + re + m >i + j>s + re + l. Let (f + xe,q),
(t + (x — l)e, q)9..., (t + (x — g)e, q) be the représentatives of V^, within the
hatched rectangle. Clearly we hâve g < l with the notations of 2.2. The residue
classes fXg+i,..., & are 0, whereas jll0, jûLg form a basis of Hom V^m, Vtq).

(s+re,m)

(s+re+m-h,h+1-m)

Figure 16

Similarly, if we start with some représentative (t + xe, q) of Vtq, Vsm has

représentatives of the form (s + re, m),..., (s + (r + g)e,m) in the rectangle
formed by the points (i,/) satisfying the inequalities t + xe + q — l>i>r + xe and

The représentatives correspond to the basis éléments

fi0,..., Ag of Hom (Vs>m, Vt,q)(see Figure 17).

2.4. Remarks, a) The lattice obtained from the lattice-strip of 2.1 by deleting
the points (s, h +1) will be called the stable lattice. The rectangle formed by the
points (i,/) satisfying the inequalities s + re>i>s + re + m —h and 5 + re + m>i +

will be called the rectangle starting at (s + re,m) and ending at
— h, h +1 — m).

Figure 17
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b) It should be clear how the morphisms (L» defined above are composed: Let
(f+ (x — n)e, q) be the représentative of Vtq corresponding to ^ in the rectangle
starting at (s + re, m). Let further (u + ye, p), (u + (y - l)e, p),..., (u + (y - d)e, p)
be the représentatives of some Vuv within the rectangle starting at (f +
(x — n)e, q), and let ji'o,..., ïi'd be the associated basis of Hom (VtA, Vu,p)- Then

fl'° ji^is 5e 0 ifï (u 4- (y — i)e, p) lies in the rectangle starting at (s 4- re, m). If this is

so, /if °Mti is one °f our basis éléments in Hom(Vs,m, Vup).
c) Two morphisms ijl:M-*P and i/ : N —» Q in a category <ë are said to be

isomorphic ifï there are isomorphisms a : M^> N and p.P-^ Q such that va j

In the case of the category ModkZ* it is easily seen that every non-zero
morphism /ll : Vs m -» Vtq is isomorphic to one of the morphisms fx0,..., jûLg

described in 2.3.

2.5. In order to apply the stable lattice to catégories, which are stably
équivalent to Modk Z£, we need an internai characterization of the isomorphism
classes of % and t in terms of the category Modk Ze. For this sake we use the

following notion introduced by Auslander and Reiten [1]. For the convenience of
our readers we prove the needed results on irreducible morphisms directly.

DEFINITION. A morphism f:M-^N between indécomposables of an addi-
tive category % is called irreducible iff it is not invertible and, given any

factorization M-^->P—^N of / in % either g is a section (i.e. 3r such that

r°g 1M), or h is a retraction (i.e. 3s such that h ° s 1N). Notice that we do not
require P to be indécomposable (cf. Remark 2.6).

LEMMA. A morphism between indécomposables of Modk Z£ is irreducible iff it
is isomorphic to some tt : Vs,m -* Vs,m_i or some i : Vs,m -> Vs_1>m+1.

Proof. tt is irreducible: Indeed, suppose that ir admits the factorization

vs,m * ^t7 W, ^ Vs,m-U
i

where each Wt is indécomposable, and where no /„ g, is invertible. Then, for each

h &fi factorizes through the radical (-=> Vs+lm_2 if m>3,^0 if m 2) of Vsttn^t:
Otherwise we would hâve Coker gjt 0 and 1 À (Ker gjj): length of Ker g/t.
In the canonical exact séquence

0 -* Ker ft -> Ker (gj,) -» Ker g, -^-» Coker £ -» Coker (g/J -» Coker gt -> 0
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the last two tenus would be zéro. Moreover, as Wt as uniserial (the subobjects are
totally ordered by inclusion) and as g^ 5* 0, we would hâve Im fx => Ker g, ; hence d

and Coker/; would be zéro. The equality 1 A (Ker gI/l) A (Ker/J + A (KergJ
would imply A (Ker/l) 0 or A (Kergl) 0. Hence ft or g, would be invertible.
Therefore gjj and £ g/» factorize through the radical of Vs,m_i, a contradiction to
the surjectivity of tt.

The dual proof holds for i.
Reversely, suppose that il : Vs m -» Vt q

is irreducible. In the canonical factori-
zation Vs m

—^-> Im jlx, ——» Vtq of jut, either p or cr hâve to be isomorphisms. In
the second case for instance, fx is surjective and admits a factorization
Vs,m —* Vs,m-i ~^ Vtj^. By the irreducibility of /ut, t must be a reaction, hence
an isomorphism, and jut is isomorphic to tt. Similarly, if p was invertible, jll would
be isomorphic to t : Vsm -» Vs_lim+1. OK.

2.6. LEMMA. Let M,N be non-projective objects of an abelian category % and
hâve local rings of endomorphisms. A morphism /eHom (M, N) is irreducible in %

iff its residue class /eHom (M, N) is irreducible in the stable category %.

Proof. Suppose that / is irreducible, and let M Q > N be a factoriza-

tion of /. Then f-hg admits some factorization M—^P >N through a

projective P, and / has the factorization M-^1» QïBP—^N. The irreducibility
of f then implies that either (g, gt) or (h, ht) must split. In the first case we know
by Krull-Remak-Schmidt-Azumaya that either g or gr is a section. Hence g is a

section, as M is non-projective. Similarly, if (h, ht) splits, h is a retraction. In both
cases, we see that either g or h splits.

Conversely, if f is irreducible, let /=h ° g be a factorization of /. Then either g

or h splits. In the first case, there is some r such that fg l^. Then rg is an
automorphism of M and g is a section. In the second case, the dual argument
shows that h is a retraction.

Remark. From 2.5 and 2.6 it follows that the irreducible morphisms of
Modfc Zg coincide with the morphisms which are isomorphic either to some ir or
to some ï. From this simple description of the irreducible morphisms we may
deduce that we would get the same notion of irreducibility both for Modk Z£ and

for ModkZe, if we restricted the définition 2.5 to factorizations M—2-~±P > N
in which P is indécomposable. In the gênerai case, however, such a restriction
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would furnish too many irreducible morphisms. Consider for instance the follow-
ing morphism / between DJK-representations:

Figure 18

We suppose hère that h d e 3, so that there is no need for distinguishing
some exceptional orbit. Clearly, Im / is semi-simple of length 2, so that / is not
irreducible. If À /ll, / is factorized through the indécomposable projective DJK-
representation

Figure 19

In case À ^ jul, À ^ 0 and jut ^ 0, however, / would be irreducible if we restricted the

définition 2.5 to factorizations M —^-» P > N, where P would hâve to run
through the existing 12 types of indécomposable DJK-representations.

2.7. LEMMA. Let A be a selfinjective quasifrobenius) artinian ring and P
an indécomposable projective A-module of length ^2.

a) An A-linear map with range P is irreducible iff it is isomorphic to the

inclusion of rad P radical of P) into P.

b) An A-linear map with domain rad P is irreducible iff it is isomorphic either to
the inclusion rad P-^P or to the projection of rad P onto an indécomposable direct
factor of rad P/soc P (soc P socle of P).
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Proof. Clearly, an irreducible map is either surjective or injective. If the
irreducible map f:M-*P was surjective, it would admit a section (P is projec-
tive) and should therefore be invertible (M is indécomposable!). Hence / has to
be a proper injection and is factorized through rad P. By the irreducibility of /,
the factorization M—»radP is a section; it is invertible, since rad P is

indécomposable.

Conversely, let rad P —^-» Q » P be a factorization of the inclusion
i:radP—»P. If h is not a retraction, it cannot be surjective. Hence we get
h(Q) radP, and g is a section. This proves that i is irreducible.

b) Let / : rad P -» N be irreducible. If / is injective, the inclusion i : rad P-+P
admits some factorization rad P —f-+ N —^-> P (P is injective!). By the irreducibility

of i, we see that g is a retraction, hence an isomorphism. On the other hand, if
/ is surjective, / admits a factorization rad P —^-» rad P/soc P ——> N, where p is
the canonical projection. By the irreducibility of /, g has to be a retraction.

Conversely, let ir : rad P/soc P -» Q be the projection onto an indécomposable
direct factor. Let us prove that np is irreducible: consider any factorization

radP >M—^-*Q of irp. Décompose M I@N in such a way, that J is a

direct sum of copies of P, whereas N does not contain any further copy of P.

Suppose that / is not a section and dénote by fl9 f2 and gl5 g2 the components of /
and g relative to the décomposition M I(BN. Then f2 cannot be injective.
Otherwise, there would be some m:N->P such that mf2 inclusion. As f2 is not
a section, Im m would be distinct from rad P and hence equal to P. But then N
would contain some copy of P.

Therefore f2 equals some composition rad P > rad P/soc P —^-» N, and we
get (g2s - ir)p g2f2 -<rrp g2f2- (gj, + g2f2) - g1fl. On the other hand
fx : rad P-*I clearly factorizes through rad I, hence g1f1 and h g2s — tt factorize
through rad Q. This implies for the inclusion cr : Q -» rad P/soc P that

g2s<r TTcr + ha 1Q + hcr,

where ha maps Q into rad Q. Therefore 1Q + ha is invertible, and g2 is a

retraction. OK.

3. The structure of wreath-like algebras

We call an algebra A over a field fc wreath-like if A is finite-dimensional,
connected, and if there is a fc-linear stable équivalence between ModA and
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ModfcZe for some e and h>2. For the sequel of §3 we fix once for ail a

fc-linear équivalence L : Modk Z£ -^ Mod A. Clearly, ModA inherits from
ModfcZ£ the property that every object is a (possibly infinité) direct sum of
objects of type LVsm. This implies in particular that A has only finitely many
types of indécomposables. Thèse indécomposables are finitely generated, and

every A-module is a direct sum of indécomposables [14].
Dénote by mod A the category of finitely generated A-modules, by modkz£

the category of finite-dimensional représentations of Z£. Then mod A is a

subcategory of Mod A, whose objects may be characterized up to isomorphisms
within ModA as the finite direct sums of indécomposables. Consequently, we

may assume without loss of generality that L maps modkZg into mod A and
induces an équivalence between thèse catégories. As I. Reiten has shown, [12],
this implies that A is self-injective.

The équivalence L induces a bijection between the types of non-projective
indécomposables of modk Z£ and of mod A. We shall say that an indécomposable
A-module M is of L-type (s, m) if M-^LV^l equivalently, we then say that
each vertex (s + re, m) is a L-representative of M. The number m is the L-height
of M.

3.1. L-representatives of simple modules: A splits over k and admits e types of
simple modules. Furthermore there is one L-représentative of a simple A-module
in each going down diagonal and one in each going up diagonal of the stable lattice.
The L-height l of a simple A-module has to satisfy at least one of the two following
conditions

and h-

Proof. Consider a going down diagonal

(s,fc)-*(s,fi-l)-> >(s,l)

in the stable lattice. If M is any indécomposable non-projective A-module, we
know by 2.3 that Hom (LVs h, M) 9e 0 iff M has some L-representative on the
given diagonal. In particular, if M is a simple A-module occurring in the top

N/rad N) of some indécomposable A-module N of L-type (s, h), we infer that
M is of L-type (s, l) for some /. On the other hand, as we hâve

Hom(VSjq, VStT)#0 for q^r, there cannot be more than one L-representive of a

simple A-module in the given diagonal. A similar argument applies to going up
diagonals.

Suppose now that (s, l) L-represents some indécomposable A-module S.
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With notations from 2.3 we get HomA(S, S) Hom (VsM VsJ) fcfZ,0© ' * © kAg,
where fX,^ jil+J or 0 according as i+j^g or not. If S is simple, HomA (S, S)

HomA (S, S) is a field, and this implies g 0. On the other hand, we know that
g + 1 equals the number of L-représentatives (s + re, l) within the rectangle
starting at (s, l). This number is 1 iff (s - e, l) does not belong to that rectangle, i.e.
iff h -1 < e or l -1< e.

Finally, A splits, since we hâve k -=* HomA (S, S) for any simple
module S. OK.

Remarks a) We get more précise information on the L-représentatives of
simple A-modules S, T by writing that Hom (S, T) 0 Hom (T, S). This means
that, if (s, 0 is a L-représentative of a simple module, no other vertex within the
two rectangles of Figure 20 below can be a L-représentative of a simple module.
We shall make capital out of this information later on.

b) If a simple A-module S is of L-type (s, 0, the breadth of the rectangle
starting at (s, l) is <e. Therefore, no indécomposable A-module can hâve two
L-représentatives in this rectangle. By 2.3 this implies that the multiplicity of S in
the socle of any indécomposable A-module is <1. The dual argument shows that
the multiplicity of S in the top of any indécomposable A-module is <1.

Projective meshes

3.2. PROPOSITION. Let T be a simple A-module of L-type (t, l) with
projective cover P. Then rad P is of L-type (t + /, h +1 — I) and P/soc P of L-type

l-l,h + l-l).
a) If 1 1, rad P/soc P is indécomposable of L-type (t +1, h — 1).

b) If 1 h, rad P/soc P is indécomposable of L-type (t + h — 1,2).
c) If Kl<h,radP/socP Pa©P0 is the direct sum of two indécomposables
and Pp of L-types respectively (t + l,h-l) and (t +1 -1, h + 2-1).

(s.h)

ts/l)

Figure 20
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Proof. Let M be an indécomposable A-module of L-type (t + l — 1, h + 1 — l).
By 2.3 and 2.4 we know that the fc-vector space Hom (M, T) is generated by
some single f and that any morphism g:N-+ M, such that N is indécomposable
and fg5*0, must be invertible. On the other hand, if p—E-^M-^T is a

factorization of the canonical projection P—>T,p cannot be injective; hence it is
factorized through some g:P/socP-»M, which is invertible since fg^O.

Let us now examine rad P/soc P. By 3.1b) the top of rad P cannot contain two
copies of the same simple module. Distinct summands in a direct sum décomposition

of rad P/soc P are therefore not isomorphic. On the other hand we clearly
hâve (f + l-1, h + l-O^teO modulo eZxO. Therefore we hâve P/soc P-f»T
and À(P)>2, so that the dual of Lemma 2.7 applies: since there are two arrows
terminating at (t +1 -1, h +1 — l) in case 1 < l < h, there are two types of inclusion

maps of direct summands of rad P/soc P into P/soc P. Assertion c) follows
immediately, and similar arguments hold in case l 1, where P3 "vanishes," and
in case l h, where Pa "vanishes."

Finally we know by 2.7 that there are irreducible morphisms rad P->Pa and
rad P -* P3. Hence rad P must be of L-type (t +1, h +1 -1). (See Fig. 21-23.) OK.

Remark. Our proposition shows that, although a projective indécomposable
A-module P has no L-représentative, the stable lattice bears some trace of P,

namely the set of L-représentatives of rad P, Pa9 P3 and P/soc P. This set is called
a projective mesh of P. Of course, the position of the projective meshes within the
stable lattice dépend on A and L.

3.3. Proposition 3.2 admits a dual statement: Let S be a simple A-module of
L-type (s, i) with injective hull Q. Then Q is projective and indécomposable. A
projective mesh of Q is formed by the vertices (s + il — h, h +1 — i), (s + i — h, h — i),
(s + i — h — 1, h + 2 — 0 and (s 4- i — h — 1, h +1 — i) L-representing respectively
rad Q, Qa, Q3 and Q/soc Q. Hère again Qa or Q3 may vanish (if i h or 1).

In the particular case where S is the socle of the projective cover of T, Q
coïncides with P. Writing that the projective meshes of Q and P coincide, we get
(s, i) (t + h, 0 or s f 4- h and i l for a convenient choice of the L-
representative (s, i) of S. This means that the Nakayama permutation T *-» S of
the types of simple A-modules is associated with the translation tt of the stable
lattice defined by ir(t, l) (t + h, l). The set of L-représentatives of simple A-
modules is stable under ir, and projectives meshes are mapped into projective
meshes.

On the other hand, if (r, g) L-represents some indécomposable A-module M,
we know that (r + e,g) also L-represents M. Therefore L-représentatives of
simple A-modules and projective meshes are also stable under the translation e
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(t+1.h) (t.h)
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Case a) 1=1

(t+h.1)

radR P/socP

Figure 21

(t+h.h) (t.h)

Caseb) l-h

Casec) 1<l<h

(t+h.l)
S

Figure 23
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given by e(t, l) (t + e, l). In other words, both h and e are "periods" of the
configuration formed by the stable lattice and the L-représentatives of simple
modules. Clearly, the greatest common divisor d (h, e) is a period too.

The structure of uniserial A-modules

3.4. For each t € Z we dénote by (t, at -1) the vertex lying in the going down
diagonal of (t, 1) and L-representing a simple A-module, say T. The vertex
(at, h + l-af + f) then L-represents radP, if P is the projective cover of T. In
other words, a is the map induced on the first coordinates by the correspondence
T»->radP. Notice that a satisfies by construction the relations f + l<af<f + h
and a(t + h) a(t) + h (confer 3.3).

the top of Pa is simple of L-type (at,a2t-at), and we

Proof. By 3.2 Pa is of L-type (at,h-at + t). By Remark (a) of 3.1 we know
that besides (f, at-t) no vertex of the rectangle ending at (t, at — t) can L-
represent a simple A-module. By 2.3 every simple constituent of the top of Pa

must therefore admit a L-représentative of the form (at, l) with l a2t — at<
h — at + t. The simplicity of the top of Pa follows from the fact that the going
down diagonal of (at, h — at + t) contains only one L-représentative of a simple
module. (See Figure 24.)

3.5. LEMMA. a is a permutation of Z.

Proof. Suppose that atx at2 with tx > t2, and let Tl9 T2 be simple A-modules
of L-types (tl9 att - tt) and (r2, at2-t2). As (tl9 at1-t1) and (t2, at2-t2) lie on the
same going up diagonal of the stable lattice, we hâve Hom (fu T2) ^ 0 and

Tj 4* T2, a contradiction!

LEMMA. If at^
hâve 2

Figure 24
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Now we claim that the injectivity of a together with the formula a(t + h)
a{t) + h imply the surjectivity of a. Indeed, dénote by â :Z/hZ—» Z/hZ the map
induced by a. It is easily verified, that the injectivity of a and our formula imply
the injectivity of à, hence also the surjectivity of â, since Z/hZ is finite. The
surjectivity of à and our formula in turn imply the surjectivity of a. OK.

3.6. DEFINITION. Let M be a non-simple non-projective indécomposable
A-module of L-type (m, I) which has a simple top and a simple socle. If
l > am — m, we say that M is of class a; ifl< am — m, M is said to be of class /3.

PROPOSITION. Let M be an indécomposable A-module of L-type (m, I) and
class a. Let am, a2m,..., ax~1m be the integers x lying in the a-orbit of m and
such that m<x<m + l. Then M has a unique Jordan-Hôlder séries

and the uniserial subquotient MJM1+1 is ofL-type (alm, ai+1m — alm). In particular,

if i 0 and j À — 1, we hâve l aKm — m.

Proof. We use induction on À(M) length of M. By hypothesis the unique
L-représentative of a simple A-module on the going down diagonal through
(m, 0 lies below (m, I). As M has simple top T, (m,am — m) is the only
L-représentative of a simple module within the rectangle starting at (m, /)• In
particular, the unique L-représentative (m + l-g,g) of a simple module on the
going up diagonal through (m, l) cannot lie higher than (m, I). On the other hand,
as M has a simple socle S, (m + l-g, g) necessarily L-represents S.

(m+l/l) (a3m,1) (a2m,1) (ocm/l)

Figure 25



268 P GABRIEL AND CH RIEDTMANN

The lower "going down" edge of the rectangle ending at (m, am — m) cuts the
going up diagonal through (m, ï) at (am — 1, l — am + m + 1). As the projection
S —» M/rad M is zéro, we hâve g < l — am + m. We want to show that rad M is of
L-type (am, l—am + m): For this sake we first consider any submodule N^0 of
M. The socle S of N being simple, N is indécomposable and has some L-
representative in the rectangle starting at (m + l — g,g). On the other hand, the

composed inclusion S —» JV —> M is not zéro in the stable category. The unique
L-representative of N in the rectangle starting at (m + / — g, g) must therefore lie
on the going up diagonal between (m-\-l — g,g) and (m, /)• This holds in particular
for rad M. Moreover, as the projection rad M—» M/rad M is zéro, rad M must be

of L-type (m + l-f,f) with g</<l-am + m.

It remains to show that f=l — am + m: Indeed, let R be of L-type
(am, l — am 4- m) and dénote by il : R —» M a map associated with the composed

arrow (am, l — am + m) -> (m, /)• Since the composition R —^—» M—» T is zéro, jll
factorizes through rad M On the other hand, the inclusion rad M —» M is

isomorphic to some composition rad M —» R —^ M. Hence jll is a retraction of jR

onto rad M; this implies .R-^radM, since R is indécomposable.
This proves our proposition when À (M) 2. In the gênerai case, the rectangle

starting at (am, l — am + m) is contained in the union of the rectangle ending at
(m, am — m) with the rectangle starting at (m, l) and the going down diagonal
through (am,l — am + m). As both rectangles contain no L-representative of a

simple module besides (m, am — m), we infer that the top of rad M is simple of
L-type (am, i) with i < l — am + m. By our induction hypothesis, rad M is uniser-
ial; hence M/soc M is uniserial and our proposition foliows by applying the
induction hypothesis both to rad M and M/soc M. OK.

Remark. Our proposition applies in particular if M is of L-type (m, h). If T is

the top of M and P its projective cover, M is then isomorphic to (P/soc P)IPp,
which is an extension of T by Pa (set P& 0 if am m +1 and Pa 0 if
am m + h). Clearly, M is a maximal A-module of class a. This gives an intrinsic
characterization of the A-modules which are L-represented by vertices on the

upper border of the stable lattice.
If M is a maximal of class a, a simple glance at Figure 26 below shows that

axm m + fi (À =4 in the particular case of the picture). Therefore M has as

length the number of points in the intersection of [m, m + fe[ with the a-orbit of
m.

Moreover, we see that the top of Pa is of L-type (am,a2m — am), whereas its

socle is of L-type (s, as — s) with s ax~1m a~xm + h.

3.7. In the sequel we shall also need the dual statements of the preceding
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(m,am-m)
T

Figure 26

propositions. We produce them hère without proofs:
a) Let I be the injective hull of a simple A-module S of L-type (s, as —s). If

as#s + l, the socle of Ip is simple of L-type (as — h — l,a(as — ï) — as + 1).

Moreover a(as - h -1) > s +1.
b) The map Z -> Z, s »-> as - h -1 is bijective. If we dénote the inverse map

by |8, we get |3(as - h -1) s, hence aj3 (as - h -1) as. In other words, we get

for any xeZ.
c) Let N be an indécomposable A-module of L-type (n, g) and class |3. Let

jS"1^ /3~2n,..., j8~v+1n be the integers x lying in the (3-orbit of n and such that
n>x>n + g-h-l. Then N has a unique Jordan-Hôlder séries

and the uniserial subquotient NJNJ+1 is of L-type (/3~v+J+1n, aj3~v+l+1n-
p~v+1+1n). In particular, g ap"v+1n-n. (See Figure 27).

d) The statement (c) applies in particular if N is of L-type (n, 1). If S is the
socle of N and I its injective hull, N is then isomorphic to the inverse image of
I& c IIS in I. The vertices lying on the lower border of the stable lattice
L-represènt the maximal A-modules of class j3.

e) If the module N of (c) is maximal of class 0, we hâve p~vn n-h. The
maximal A-module of class /3 and L-type (n, 1) has as length the number of
points in the intersection of ]n-h, n] with the /3-orbit of n.

f) Let I be the injective hull of a simple A-module of L-type (s, as -s). The
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Figure 27

socle of Iq is of L-type O^s, afi^s-fi^s); the top of Ia is of L-type (t, at-t)
with t /3s — h £(s — h).

3.8. The Brauer-quiver of a wreath-like algebra

We know by 3.4 and 3.7(b) that the permutations a and /3 of Z commute with
the translation ir : x •-> x H- h. Therefore they induce permutations à and |3 of
eh(Z) {exp (2iir(x/h):xeZ} such that âeK(x) eh(ax) and /3eH(x) eh(j8x), Vxe
Z. We define a quiver Q by taking eh(Z) as set of vertices and by endowing this
set with arrows âp:p-*àp and |3P : p —» |3p.

PROPOSITION. Q is an oriented Brauer quiver with cyclic permutation y : p *-+

exp (2iir/h)p. It has as universal covering Q the set Z endowed with arrows

ax : x —» ax and ^x : x —> f$x.

Proo/. The relation afix x + h + l 7rx + l clearly implies y â/3. It is therefore

enough to prove that the convex hulls of distinct â-orbits do not intersect.
This follows from the following property of the permutation a : if x < y < ax, we
hâve either y<ay<ax or x + fi<ay^y + h. We illustrate the proof of this

property simply by pictures representing the two possible cases:

(ax.1) (oy.1) (y,1)

Figure 28a
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(x1)

The quiver représentation attached to an A-module

3.9. Let J stand for the radical of A. We may assume that A is basic, Le. that
A/J is a product of fields. As we hâve fc -^ HomA (S, S) for any simple module S

(3.1), ail the simple factors of A/J are in fact isomorphic to k.

Let 1A ?h+ • • • + i\e be a partition of unity into orthogonal primitive idem-
potents: t^t), 8^. The primitivity means that, in the direct décomposition

A=Atj1©

the non-isomorphic projective summands Ati, are indécomposable. It is conve-
nient to define i)n for every n gZ by setting Tjn: t^, where n e{l, 2,..., e} is

congruent to n modulo e.

The associated décomposition of the top Â : A/J is

with î}, tï,+J- Clearly, the summands fcifc furnish a complète list of simple
A-modules. We choose the numération in such a way that kr}, is L-represented
by the vertex (i, ai — i).

We know by 3.4 and 3.7(f that the top of the radical Jr\t of At\x has the form

with

and

10 if ai i + h

lf
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If aiVî + h we choose an a, e^/^-J2; its residue class àl al+J2 is then a
basis of T?m W^2)Û- Similarly, if ai 9e i +1, we choose an élément ft g tî3iJt11 - J2; its
residue class ft ft 4-J2 is a basis of ^.(J/J2)^. (As we shall see so, the éléments
ax and ft of A are related to the arrows i —>ai and i—»/3i, which we already
denoted by at and j3,. We hope, that this coïncidence of notations will not lead to
misunderstandings.)

THEOREM. A is identifiée with the k-algebra with unity defined by the

generators r\l9 a,, ft subjected to the relations a)-e) below, where l<i,/<e:

b) at rjtt.a.ri, and 0, T|3jftrïP ifaiïi + h and ajV/ 4-1.

c) ft.,0, 0 aftft if ai*i + h, ot2ii*ai4-1, cyV/ + l and afijïfij + h.

d) «««-i, • • • a^ja, + Àj^pb.-ij • • • j33lj8, 0 /or some scalar kt^0 if ai5e i 4-1 and

e) «a-.ok-.-i, • • • aaIa, 0 î/aî î +1, and P^ftp*»^ ' • • p3jft 0 i/ai î + h.

In the statement of the theorem ai and 6/ are such that aaii i + h and
pbjy y + h (confer 1.6 and 3.8). Furthermore, we agrée that an : ah if an 5e n + h,

and that /3n: pfi if an^n + 1, where ne{l, ...,e} is again assumed to be

congruent to n modulo e.

3.10. Plroo/ of a), b) and c). The relations a) and b) follow directly from our
choices. Let us assume that for some i we hâve ai^i + h, a2i5^ai + l and
Palat 9e 0. Consider a submodule N of A% not containing j3ala, and maximal for
this condition, and set M:=Ar\JN. Clearly, M is generated by m: ri+N and
has simple top and simple socle. Moreover, the séries

0 ç A&alaxm c Jaxm ç: Aa,m c Jm ç Am M

shows that M has at least the following three Jordan-Hôlder factors:

top (M) Am/Jm -^ fcfj,, Ao^m/Jo^m -^ fcfjŒI and

soc(M) Afc.a.m -^ kr}^,.

By Définition 3.6 M is either projective, of class a or of class /3. Let us show that
each of thèse possibilities leads to a contradiction.

First suppose that M is projective. Then fcij^-^socM^fcfjj+h (3.3),
hence /3ai i + ft mode and edOai) ed(i), where d (h, e) greatest common
divisor of h and e. Accordingly, the P-orbit of ed(ai) meets the a-orbit of ed(ai) in
ed(ai) and in ed(i). Since Q=ed(Z) is a Brauer-quiver (1.11), we infer that
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But the assumptions ai^i + h and a2i^ai-\-l mean that
Since the projection p :eh(Z) Q—>ed(Z) Q acts bijec-

tively on non-exceptional orbits (1.11), we infer that both the a-orbit and the
j3-orbit of ed(ai) are exceptional: contradiction.

Now suppose that M is uniserial of class a. Then the Jordan-Hôlder factors of
M are fcf^ kr\w kfj^ with 2<a<ai (3.6). This implies |3ai aai mod e,

hence ed(/3ai) ed(aa0 and ed(aî) cd(j3ai)=ed(aaî) as in the first case. Accord-
ingly, the a-orbit and the /3-orbit of ed(ai) are exceptional: contradiction.

Finally we assume that M is uniserial of class |3. Then the Jordan-Hôlder
factors of M are kfj,, fcTJ3l,..., (3%^ with 2<b<bi (3.7). This implies ai
j8cimode for some c, l<c<b, hence ed(ai) ed(|3c0 and further ed(ai)
^dOc0 ed(0- Hère again we get the contradiction that both the a-orbit and the
|3-orbit of ed(i) are exceptional.

The relation a^jS, 0 is proved in a similar way.

3.11. Proof of d) and e). Set P Ar)l, and dénote by P£ and P^ the coun-
terimages of Pa and P3 c: P/soc P in P. We hâve P'a Aa, by construction of at
and the length of P'a satisfies the relation A(P^) A((P/socP)/P3) A(P/P^) ai
(3.6, Remark). On the other hand, the radical of P'a is given by the équations

JP; Jax J^a, (Aam + Aftjo, Aamal5

which implies by induction

J2P'a Aa^a^a,,..., soc P JailP'a Aaa^t • • • aalar

Replacing a by |3 we get in a similar way

and hence fca^ai-ij • • • aalat kp^-h • • • j33lft, which is équivalent to relation d).
Let us now prove e): Again set P Atj1. The relation ai i + l then implies

P0 0, hence rad P Aa, and soc P J™"1**, Aaa™ i, • • • aala, as in the former
case. The first relation of e) follows from the fact that a^«, soc P <= / soc P 0.

Similar arguments hold for the last relation.

3.12. End of the proof of Theorem 1.9. Let B be the algebra generated by the
éléments r\l9 a,, ft and the relations a)-e). Let <p : B —» A be the homomorphism
which is the identity on the generators. Since the t), form a basis of A modulo J,

and since the a,, ft form a basis of J modulo /2, it is easily seen that rj,, a,, ft
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generate the algebra A. Hence <p is surjective. Now it follows immediately from
the relations a)-e) that the éléments tj,, aa«t • • • <*„& and f}^ • • • /3Plft with a < ai
and b < bi generate Basa vector space. Therefore we hâve dimfc B <£, (ai + 6i).
On the other hand, the knowledge of the length of the maximal uniserial modules
(3.6 and 3.7) implies immediately that dimk Arj, =al + bl. This implies dimk A
X, (ai + bi) ^ dimk B. Hence <p is injective. OK.

3.13. LEMMA. The éléments at and |8l may be chosen in such a way that we
hâve

whenever ai >* i +1 and ai ^ i + h.

Proo/. It is clear that, for a fixed i, the scalar A, appearing in relation d) of 1.9

may be replaced by 1 if we replace either at or ft by some scalar multiple. The
point is that an improvement at i might produce a deterioriation at some /. In
order to proceed to our modifications in a cohérent way, we first consider the
Brauer-quiver Q ed(Z) introduced in 1.11, where d (e, h). If d^h, Q contains
an exceptional orbit; if d h, we choose an arbifrary orbit and call it exceptional.
Since Ô is associated with some Brauer tree (1.4), it is clearly possible to provide
the cycles of Q with a total order satisfying the following conditions: a) The
exceptional cycle is the smallest cycle, b) For any non-exceptional cycle F of Q
there is exactly one cycle A < F having with F one common vertex.

The choice of such a total order détermines our modification process. We
proceed by induction: Assume that for some a-cycle F ail the À,, such that ed(i)
belongs to a cycle E<F, hâve already been replaced by 1 in our procédure. Let U
be the set of éléments ue{l,...,e} such that ÀU5*1 and ed(u)eF. Since the
P -orbit of any such ed(u) is non-exceptional, we know by 1.11 that the vertices
ed0nu), where ueU and 0<n<bu, are ail distinct, and they do not belong to
any cycle E < F. In particular, ail the éléments |3ugA are distinct. Replacing then
by scalar multiples, we can convert Àu into 1 at once for ail the éléments ueU.
Moreover, our modification does not affect the coefficients A» 1, such that

We proceed in a similar way when the first cycle F, which is not yet "clean," is

a p-cycle. OK.

3.14. We can now simplify the description of A by generators and relations
with the following convention : if ai i + h we define an élément ateA by means
of the equality at: —0p«-», * • • ft^ft; similarly, if ai i + l we set ft:
—o^-i-ig • • • aalat. The relations e) are then reduced to a^fix 0 if ai i +1, and to
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&a]a} 0 if aj j + h. Therefore, theorem 3.9 can be restated by saying that A is

identifiée! with the fc-algebra defined by generators 17,, al9 ft (i 1,..., e) submit-
ted to the relations:

a) 1A Vi + • " • + r\e and
b) ax TtAîl, and ft
c) Palat 0 «3jft
d) «„«-! • • • ama, + j33.»-i, • • • jSp^, 0

for any i, je{l,..., e}.

Let Q be the universal covering of the oriented Brauer-quiver associated with
A (3.8). It is now easy to establish an équivalence between ModA and the

category of e-periodic représentations of Q: we may attach to any A-module M
an e-periodic représentation V of Q by setting V(i) r\tM9 V(a,)(jc) a,x and

V(/3,)(x) |8,x (Notice that on the left hand side a, and p, dénote arrows, whereas

on the right hand side they stand for éléments of A!).
Reversely, if V is an e-periodic représentation of Q, we set M

V(l)© • • • 0 V(e) and define the A-module structure on M as follows:

T|,x x, atx V(a,)(x) G V(aî) <= M
and

if x e V(î) <= M. If x e V(j), jV i, we set

0 t),x a,x |3,x.

This finishes the proof of Theorem 2 of § 1.8.

4. Bounden Brauer-quiyer algebras are wreath-like

Our purpose in §4 is to prove Theorem 1 of §1.8. By Q we dénote a fixed
oriented Brauer-quiver with h vertices.

4.1. With any représentation W of the universal covering Ô of Q (1.6) we
associate vector spaces (LW)(s), seZ9 and transition maps (LW)(y):
(LW)(s-l)->(LW)(s) which are described as follows:

(LW)(s)= 0 W(t).
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Moreover y: (LW)(y) maps a family (wt) onto the family (wj) such that

Wt wt if ît* s

and

w: a(wa-i,)- I /3l(w3-.s),
l<Kbs

where a and |8l simply stand for W(aa is) and W(j33 is)W(ft, 2J • • • W(/33 >s).

LEMMA. If W is a représentation of the bounden quiver (Q,ï) (1.6), the

transition maps y (LW)(y) satisfy the relations yh+1 — 0, which means that LW is

a représentation of the bounden quiver Zh.

Proof. Dénote by (t, w) the canonical image of w g W(t) in

(LW)(s)= 0 W(t).
t =SS <.Gtt

We hâve to prove that yh+1(t9 w) 0. With this aim in mind, we first consider the
case s 5* at — 1 and hâve a look at the following figure where 01"1* < s < &lt, i > 1

(confer 1.5 and 1.6). The following relations hold (notice that at-l &bt~1t9

aatt and a|8lr jS'^

(at, aw)- (|3lf, jSHv) in case

even in case af
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y^lt-s(t, w) -(ap% a/3lw) 0.

Therefore we hâve Yh+1(t, w) y*"*1'1^"*1*-* (t, w) 0.
In case s =at — 1, we get in a similar way:

y(U w) (at, aw)

73ott"s (t, w) (at, aw) - (/3c*t, (3aw) (at, aw)

1(t, w) (at + h, aaatw) 0. OK.

at+h t+h ^- —vPrt s-at-1

4.2. Define a représentation VStfn of Zh by setting Vs,m(r) k7r S4 if s<r<
s + m and Vs,m(r) 0 otherwise, where 4 g Vs,m(s) dénotes some symbol playing
the part of a generator of Vsm(l<m<h + 1). Clearly, Vsm is indeœmposable,
and every représentation of Zh is a direct sum of indécomposables of this type
(compare with 1.2). Moreover, Vsm is projective in ModkZh iff m h +1. If this
is so, the map f*-+f(O furnishes a bijection Hom(Vs>h+1, V)-^ V(s) for any
VGModkZh.

On the other hand, consider the représentation Pt of (Q, î) which is defined as

follows: start with some "free generator" irt ePt(t), teZ, and set

{liTt
if

kpl<wt if
0 otherwise

Clearly, Pt is indécomposable and projective (the map Hom (Pt, W) —» W(t),
/»-^/(7rt) is bijective for each WeModk (Q, I)). Using classical Nakayama-type
arguments we see furthermore that any projective représentation of (Q, î) is a
direct sum of copies of Pt for various t.

LEMMA. For any t, LPt is freely generated by the éléments

Olt, plirt)e(LPt)(plt\ i 0,1,..., bt-1.
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In other words, the morphism

h+i > LPt

sending f^ onto (filt, (3lirt) is an isomorphism.

Proof. The constituents (LPt)(s) of LPt are as follows:

a) (LPt)(s)=© fe(pJr,|8J7rt) if &t<s<inf (/3l+1f, «
j=0

where i =0,1,2,. ..,bt-l.

b) (LPt)(s) fc(«lt, alirt)0 f® k(l3Jr, j3J7rt

if alf<s<inf(aI+1r, r + h + 1), where 1 1,2, at.

c) (LPt)(s)= ©f fc((3Jr,(3J7rt) if |3lr

where î 0,1,..., bt-2.
d) (LPt)(s) 0 in any other case.

For i 0,1,..., bt — 1, we hâve

hence (LPt)Ol0 7(LPt)OIt-l)©kOlt, Pl7rt). For any others it is easily verified
that (LPt)(s) y(LPt)(s — 1). By Nakayama's lemma this implies that ^ is an
epimorphism. In order to prove that y^ is invertible, it remains to verify
the equality Is dim (LPt)(s) (h + l)(bt) L,s dim Vp%h+i(s). This is pure
routine. OK.

4.3. Since the functor L commutes with direct limits, it admits a right adjoint
functor R : Modk Zh -* Modk (Q, I), which homological algebra tells us to be the
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following: dénote by à : Pat -» Pt and 0 : Pm ~> Pt the morphisms sending ir^ onto
a7rt and 7r3t onto j3irt respectively. For any VeModkZh and any reZwe then
hâve:

(RV)(t) Hom (LPt, V), («V)(a) Hom (La, V),

Moreover, the adjunction-bijection

u : Hom (LW, V) -^ Hom W, RV)

associâtes with a morphism f:LW-^>V the morphisms u(/):W-^jRV, which

LW V. Hère w' dénotes themaps wg W(r) onto the composition LPt
morphism Pt->W such that w'(Trt) w.

General rules need spécification. In fact, the isomorphism ^ o£ 4 2 allows the

following identifications:

(RV)(t) Hom (LPt, V) -=> Hom (0 V^t h+l9 Vj-^'é V(&t).
i=0

A morphism f:LPt-*V is identified with the séquence ut(/) (/(j3lr, |3l7rt))e

LEMMA. (RV)(p): (RV)(t) -» (RV)(pt) is identified with the map

Osi <bl OsKh

giuen by fhc matrix

O 1

O O

O O

0

1

0

0

0

1

Proof. Consider the square (where |3* Hom(L/31V))

/ 6 Hom (LP,,V) — - Hom (LP3()V)
/k.

©V(/3't)

By définition we hâve



280 P GABRIEL AND CH RIEDTMANN

The last component of this séquence is /(0btt, pNrt), where &btt t + h and
(0btt,Pbt7rt)e(LPt)(f + h). Let us express (j3btt, 0%) in terms of the "basis"
((0lf, Plvt))Osst<zbt of LPt. The following relations hold in (LPt)(f + h) (they are
reduced to the first équation in case bt l):

/327rt)-(|83r, j337rt)

Hence we get by addition

and the last component of M3t(j3*/) equals

f(Pb't, pbtnt) [-yh-yh+'-et ¦ ¦ ¦ -7*+-«""']

In this product the left factor is the last row of B, whereas the right factor is ut(f).
Therefore /(/3b't, /3bt-jrt) is also the last component of Bu,(f). Since the first
components of Bu,(f) and u3,((3*/) coincide trivially, we see that Bu,

*. OK.

4.4. LEMMA. (RV)(a): (RV)(t) -* (RV)(at) is identified with the map

© V((3'a0

given by the matrix

0

0

0

0

0

0

0

0
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Proof. Consider the square

f g Hom (LPt, V) Hom (LPat, V)

281

By définition we hâve

"«,(«*/) ((ot*f)(fi'ott, /3'irŒ,)) &Lâ(fi'at, 0'77«t)))

(f(fitat,fi'airt))

(f(at, air,), 0, 0,...),

where (at, cnr,)e(LPt)(at). We express (af, air,) in ternis of the basis ((fi't, fi'ir,))
of LP, by using the following relations, which hold in (LPt)(at) if bt^l^&t:

ya'-'(t, 17,) (al, air,) - (fit, fivt) (1)

By addition we get:

(at, air,) t"'"^

(2)

(3)

If bf 1 this équation is reduced to (at, air,) 7(f, tt,) and it is true by the very
définition of y. Finally, if at= 1, we hâve to replace équation (1) by ya'~'(t, irt)

- (fit, |3i7,) and équation (2) by

Addition again furnishes équation (3).
In ail the cases we get

fit, ni)
fifit, fiir.)
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and therefore Mat(a*/) A^(/). OK.

4.4. We come back now to the adjunction-bijection

Hom (LW9 V) ^> Hom W, RV)

of 4.3. In case V LW we denpte by WW: W —» RLW the morphism associated
with 1LW. Similarly, if W RV, we write <PV : LRV —» V for the inverse image of
Irv-

LEMMA. Let Ss be the simple représentation of (Q, î) such that Ss(t)
and Ss(s) k. Then VSS : Ss -> RLSS is a section and

© Pt,

where t is subjected to the relations as>at>s>t.
Proof. Set V: LSS and dénote by £ a non-zero élément in V(s). We get

V(t) ky%~sC if as > t > s and V(t) 0 otherwise (in fact V-^ Vs,as_s). Let us set
further W: RV RLSS and W'(t) :=aWia^t) + PWifi^t) <= W(t) for any r g Z.
By construction we hâve W(t) ©f fc73t~s£, where i is subjected to the conditions
0<i<bf and s:<|3lf<as. We want to examine W'(t) for various t:

a) Suppose that as — h>t>f}~1t>s — h. By the géométrie properties of
Brauer-quivers examined in 1.5 this condition is équivalent to as>at>s>t. If
a>0 is the first integer such that pat>s, we get W(t) ©,ky&H~sÇ with bt>i>a,
W(a-ir) 0 and W'(r) 13W(p-10 ©Jfe(73lt~s£-73bl H~*0 with fer-
Hence we hâve W(t)= Wf(t)®ky&at~sC

Notice that as>crt 0~1t + h + l>s. This implies that
and further that 0^7f+h~s£ aat(73at~s£)e W(f+ h). In other words, the morphism

<pt:Pt-* RV9 7rt »-? y&at~sÇ maps the generator aatirt of the socle of Pt onto
^t+h-s^^Q Accordingly, <pf i$ a monomorphism. (See Figure below.)

b) Suppose that t s. As in case a) we hâve W(s) ®tky^s~sC with bf > i>0,
W(a~1t) O, W'(s) (3WO-1s) ©Ifc(7pis~sf-73bï"ls~s£) with bs-l>/>0, and

finally W(s)=W'(s)®kÇ.

«s
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The important point now is that a£ 0 /3£. Therefore £ détermines a

monomorphism <ps:Ss-*W, which maps lefc Ss(s) onto £.

c) Suppose that as > t > s. If b > 0 is the largest integer such that as > /3bf, we
hâve W(t) (Btky*n~~*C with 0<i<b. Furthermore we hâve r-l
Pb€t'lt"\a"1t)^s and therefore y^-^eWla^r) and aWia'H) ky1'^. On the
other hand, we hâve pW(p-1t) ®Jk(ym-sC-y&bt~H~sO with 0</<5f-l or
pW(p-1t) ®Jk(ym-sO with 0</<b according as b bt-l or b<bf-l. In
both cases we get W(t) W(t).

d) When t does not satisfy the conditions a), b) or c), we hâve W'(t) W(t)
0.

Our results concerning W(t) may now be exploited as follows: Look at the

map

<P :Ss© © PA -> W RLSS

with components <ps and <pt, where f is subjected to as > at > s > t. For each n we
hâve W(n) W'(n) + Imcp(n). Therefore <p is an epimorphism (Nakayama). On
the other hand, the socle of Ss©(©tPt) is generated by the éléments 1 e k Ss(s)
and aat(7rt)g Pt(t + h). Thèse éléments ail hâve distinct degrees, and we know by
a) and b) that they are mapped onto non-zero éléments. Therefore <p is a

monomorphism, hence an isomorphism.
It remains to show that WSS maps Ss isomorphically onto <ps(Ss). In fact, we

know that ^FSS^O, because LWSS admits the retraction <PLSS (gênerai nonsense!)
and LSSt^O. On the other hand, the only copy of Ss contained in RLSS is q>s(Ss)9

so that there is no alternative. OK.

4.6. LEMMA. If V= Vs>1 the morphism <PV:LRV-+ V is a retraction, and

Ker <f>V-^ © Va-^h+i

where 0<i<bs.

Proof. By 4.3 and 4.4 jRV admits the following description:

if t p~ls with 0<i<bs
otherwise,

where 0eo O, Pet e,_! for i>0 and aet =0 for any i. Therefore, if U: LRV,
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we get by the construction of L that

t/(t) (LKV)(t)= 0 W-^eX

where i is subjected to the conditions 0^i<bs and ap~ls — 1

f$~ls. The transition operator 7 acts according to the formulae

i-^eJ-O-^e,)
if t + l P"Js<s

0 if t ap-ls-l p~l~1 +
(P~lsy et) otherwise

^jjy^ -Cls:hî-.h -^j-Çj*- -^(\ 1 -^J

The élément (/3 ls, eje U(f$ ls) satisfies the relation

h if î>0.

On the other hand, the élément tj: O s, ebs_x)e U(s) satisfies yrj 0. Ac-
cordingly, the morphism

0<Kbs

which maps the canonical generator 4 e Vsl(s) onto 17 e U(s) and £3-.s g

Vp-isM+1(P~ls) onto (/3~ls, el)e I7(j3~ls), is injective on the socles. Therefore, ^ is a

monomorphism. It is also an epimorphism by a Nakayama-type argument, since

©t U(t)/yU(t — 1) has the residue classes of the éléments 17 and (|8~ls, et) as a

basis.

Finally, <PV has ^(0o<,<bs V3-.sh+1) as kernel, because this is true for any
non-zero morphism from VSjl©(©Vp ish+1) to VStl (notice again that
since R<PV admits the section VRV, and since RV^O). OK.

4.7. Proo/ 0/ Theorem 1.7. We already know that i? is a functor from
ModkZK to Modk (Q, I). Accordingly, the maps (RV)(a) and (.RV)(j3) satisfy the
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relations of the bounden quiver (Q, î). Furthermore, as L maps projectives onto
projectives by 4.2, L induces a functor L : Modk (Q, î) -» Modk ZH. Since jR is

right adjoint to the exact functor L, R maps injectives onto injectives. But
injectives coincide obviously with projectives in both catégories. Therefore JR

induces also a functor R : Modk Zh —» Modk (Q, î).
By Lemma 4.5 we know that WW: W—» RLW is mono and has a projective

cokernel if W is simple. Clearly, this is also true if W is semi-simple. Since RL is

an exact functor, our assertion remains valid, if W is a extension of two
semi-simple modules, and even more generally if W admits a finite increasing

séquence of subrepresentations with semi-simple factors. As Modk (Q, î) has

height Loewy-length)<h + l, we infer that *FW is mono and has projective
cokernel for every W. Accordingly, W : 1 -=» RL is an isomorphism. Using 4.6
instead of 4.5 we prove similarly that «f^LJR^l is an isomorphism. OK.

4.8. Proof of Theorem 1 of 1.8. Let us use for R : Modk Zh -^ Modk (Q, î) the
explicit description given by the formulae

(RV)(s)= 0 V(pls).
0<Kbs

Clearly, the functor defined by thèse formulae maps c-periodic représentations
onto e-periodic représentations and induces therefore a functor JRe :ModkZh —>

Modk(Q, î). Moreover, if VeModkZh is projective and e-periodic, JRV is

projective by 4.7 and e-periodic. By the lemma below, Re therefore maps
projectives of Modk Zh onto projectives of Modk (Q, I) and induces a functor

Re : Modk Zh -* Modck (Q, I)

between the stable catégories. Similarly, L : Modk (Q, î) -^Modk Zh induces func-
tors If : Modk (Q, I) -> Modk Zh and Le : Modk (Q, I) -> Modk Zh.

Now consider again the adjunction-bijection

u : Hom (LW, V) ^ Hom (W, RV)

of 4.3. A morphism f:LW-* V consists in maps

fis): 0

the components of which will be denoted by fst. Similarly, a morphism g:W-*
RV consists in maps g(s):W(s)-^0V(|8ls) with components &,„ 0 < i < 5s. In
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case g u(f) the description of u given in 4.3 furnishes the relation

This formula shows in particular that u(Tf) Su(f) if W and V are both
e-periodic. Hère T(/) and S(g) are defined by T(f)(s) f(s-e) and S(g)
g(s-e) for any /€Hom(LW, V) and any geHom(W, JRV). Consequently, u(f)
is e-periodic (i.e. we hâve Su(f) u(f)) iff / is e-periodic (i.e. T/ /). This shows

that Le and Re are adjoint functors, and that the morphisms

VW:W-»RLW and <PV:LRV-+V

are e-periodic if V and W are so. If this is the case, Coker WW and Ker <PV are
projective and e-periodic. Therefore they are projective in Mod£ (Q, /) and
Modfc Zh respectively. Accordingly we hâve l^>ReLe and LeRejl>l as in
4.7. OK.

LEMMA. An e-periodic représentation W of (Q, I) (resp. V of Zh) is projective
in Modk (Ô, î) (resp. in Modk Zh) iff it is projective in Modk (Q, ï) (resp. in
ModkZh).

Proof. We use the following characterization of the projective représentations
of (Ô, î): Start with any représentation W and set W rad WcW. For every
teZ, W'(t) is defined by W'(t) aW(a-1t) + pW(p-1t)<=: W(t). Now choose for
each t a fc-subspace Wt(t) of W(t) such that W(t) W\t)®W1(t). Then W is

projective in Modfc (Q, jf) iff, for any l/€Modk (Q, /), every family of k-linear
maps h(t) : Wx(t) —> 1/(0, * £ Z, can be extended uniquely to a morphism W -» [/.

When W is projective in Modk (Q, /) and e-periodic, we choose the sup-
plementary subspaces W^t) in such a way that W1(t — e) Wx(t) for every t eZ.
For any e-periodic représentation 17, every séquence of k-linear maps
MO: W^O —> 1/(0» t 1,2,..., e, can then be extended uniquely to an e-periodic
family h(t): W^O—» 1/(0» feZ, hence to an e-periodic morphism W-> t/. In
other words, the map

t=e
Home (W, L0 -»- 0 Homfc (W^t), U(t)),f»(f(t) |

t=l

is bijective (hère Homc (W, [/) stands for the space of e-periodic morphisms).
Accordingly, the functor Home (W, is exact, and W is projective in
Modk(Ô,l).

On the other hand, the inclusion-functor Modk (Q, I) -* Modk (Q, I) is left
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adjoint to the exact functor FI defined by

(nW)(t)=
neZ

Therefore it maps projectives onto projectives.
The case Zh is proved in a similar way. OK.
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