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Group representations without groups

P. GABRIEL (Ziirich) and Ch. RieEnpTMANN (Basel)

If k is an algebraically closed field of characteristic p >0 and G a finite group,
we know by Dade [3], Janusz [7] and Kupisch [8] that blocks of the group-algebra
k[G] with cyclic defect groups are Morita-equivalent to algebras arising from
Brauer trees [7]. Here we show- that the latters coincide with the algebras, which
are stably equivalent to symmetric Nakayama-algebras (as suggested by M.
Auslander we call an algebra Nakayama if it is generalized uniserial in the sense
of Nakayama, i.e. if it has finite dimension and every indecomposable module has
only one composition series; for stable equivalence we refer to [1] or to 1.2
below).

1. The main results

1.1 We first recall that a quiver consists in vertices and in arrows connecting
these vertices together. In Fig. 1 and Fig. 2 we give two concrete examples. The
first of these quivers is the so-called cycle Z, with e vertices.

If kK is a field, we get a k-representation V of a quiver Q by attaching a
k-vector space V(i) to each vertex i and a k-linear map V(a): V(i) — V(j) to
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each arrow a:i —j of Q. The dimension of V is by definition dim V=
Y.:dim V(i). In practice, we shall have to restrict our representations by some
constraints, which we describe now: A composed arrow from i to j is a sequence
of vertices and arrows (j | a,, . .., a; | i) with n=0, i =domain (a,), range (a,,) =
domain (e, ,) for 1 =m <n and range (a,)=7j; in case n =0 we further require
that i =j. The composed arrows from i to j freely generate a vector space k(i, j),
and the formal composition law given by (m | B,,..., 8| Glan ..., a.]|i)=
(m| Bp--sBi1s Uy .o,y | i) clearly induces bilinear composition maps k(i, j) X
k(j, m) = k(i,m), (o, 8)—> 8a. An ideal I of Q consists in subspaces I(i, j)<
k(i, j) such that BI(i, j)< I(i, m) for any B:j— m and I(i, j)y < I(h,j) for any
v:h—i

The pair (Q, I) is called a bounden quiver. A k-representation of (Q, 1) is a
k-representation V of Q subjected to the supplementary condition V(a)=0,
Va€l(i,j) (where V(a) is defined in the obvious way, when a is a linear
combination of composed arrows!). Of course, it suffices to submit V to the
relations V(a,) =0, where a, runs through a family of generators of I. Therefore,
if (ay)scs is such a family, we simple say that (Q, I) is the bounden quiver defined
by Q and the relations a; =0, s€S. The category of its k-representations is
denoted by Mod, (Q, I).

For instance, we denote by Z" the cycle of height <h+1 with e vertices, i.e.
the bounden quiver defined by Z, and the e possible relations y"*'=0. A
k-representation of Z? is called an h-wreath of e vector spaces. Besides Z" we also
consider the bounden quiver (Q, I) defined by the quiver Q of example 2 and the
following relations:

0= apa;10706a5010001 10706 = Q50 Q011 Q7 Q60O OGO

= a1B10= B1ao = B71B4B2B1= B2B1B10Bs = a30 1000 = @430

= 04Br = Battz = 0706050 Qo0 10 Q6050 = Q5O Q0L 1 07 05O Ol
= Q110706050 Qo010 A60s = Q784 = B70e = B1B10BsB7 = BsB7B4B>
= Qo@ 403 = Q1gQolly = A1oPBg = B1olo = @1 X011 A7 XA Qg1 1OL7

= Qs Qo0 Q706050+ BB = agast+ BsBrB4

= Q0110706050 U010+ B1oBsB7 = azait B2B1B10=0.

1.2. One of our main theorems, stated in the particular case of the bounden
quiver just defined, will be that Mod, (Q, I) is stably equivalent to Mod, Z13
Stable equivalence is defined as follows: first remember that the stable category €
attached to an abelian category € has the same objects as 4, and that the set of
morphisms Hom (M, N) from M to N in € consists in equivalence classes of
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morphisms from M to N in 4. More precisely, two morphisms f, g: M — N in €
are considered as equivalent, if g—f is factorized through a projective object. A
stable equivalence is an equivalence between the stable categories.

If M is an object of %, it will be convenient to write M for M considered as an
object of €. If M is non-projective and has a local ring of endomorphisms, the
quotient Hom (M, M) of Hom (M, M) is also local, hence M is indecomposable in
€. In the cases we consider, the stable category € therefore inherits from € the
property that each object is a finite direct sum of indecomposable summands with
local rings of endomorphisms. In particular, the map M+ M induces a bijection
between the types (=isomorphism classes) of non-projective indecomposable
objects of € and the types of indecomposables of €.

The indecomposable objects of Mod, Z! are easy to describe: Denote by
€0, - - . , &, the natural basis of k"*1, For any natural numbers s, i, m such that
0<s,i=e—1and 1=m=h+1 set V_,(i)= D, ke;, where j is subjected to the
conditions 0=j<m and s +j=i mod e. Connect the spaces V,,,(0),..., V, .(e—
1) by linear maps y = V(y) such that ye; =¢;,, if j=m—2 and ve,, ; =0. Thus
we get an indecomposable wreath of length m, and it is well known that every
h-wreath of e vector spaces is a direct sum of such representations V,,,.
Moreover V,,, is projective (and injective) in Mod, Z" iff m =h+1.

In the example considered above we see, as a consequence of the existence of
a stable equivalence between Mod, Z13 and Mod, (Q, I), that (Q, I) admits 12-18
types of non-projective indecomposable k-representations.

1.3. Let Q denote now a general quiver with finitely many vertices. We define
the quiver-algebra of Q as

k[Q]=© k(, j),
i
the multiplication being defined in such a way, that

(m|By--->B1IM)Glan,...,a;]|i) equals O if h#j

and (m|B,,...,B1 &, ..., i) if h=j. The unit element is Y, (il|i). If V is a
k-representation of Q, @, V(i) bears an obvious (left-) module structure over
k[Q], and the functor V> @, V(i) is a k-linear equivalence between Mod, Q
and Mod k[Q] (we denote by Mod A the category of left modules over a given
k-algebra A). If I is an ideal of Q, the ‘‘restricted” representations of the
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bounden quiver (Q, I) correspond under this equivalence to the modules annihi-
lated by @, I(i, j), i.e. to the modules over the bounden quiver-algebra

k[Q, I1:=k[QY & IG, )).

In case (Q,I)=2Z" we thus get algebras k[Z"], which are known to be
representatives for all selfinjective split basic Nakayama-algebras over k (a finite
dimensional k-algebra A with radical J is called split basic if A/J=> kX --- Xk).

The vector space wreaths furnish a suitable interpretation for the modules over
these algebras.

1.4. Our purpose is to classify the finite-dimensional k-algebras A for which
there exists a k-linear stable equivalence between Mod A and
Mod, Z" = Mod k[Z!] for some e, h. In this classification we need quivers of the
following special kind:

We say that a quiver Q is a Brauer-quiver iff it is finite and connected and has
the following properties:

a) Q is the union of the cycles which are contained in Q);

b) every vertex belongs to exactly two cycles;

¢) any two cycles meet in one vertex at most. For the sake of illustration we
give two examples (Fig. 3 and Fig. 4). Readers wishing to make themselves
familiar with the notion may verify that there are 1 Brauer-quiver-type with 1
vertex, 1 with 2 vertices, 2 with 3, 3 with 4, 6 with 5, 14 with 6, 33 with 7...!
With every Brauer-quiver Q we associate a tree T: its vertices correspond
bijectively to the cycles of Q, and two vertices of T are matched together by a
(non-oriented) edge iff the corresponding cycles of Q meet. Hence the edges of T
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correspond to the vertices of Q. Moreover the edges of T converging at some
common point correspond to the distinct vertices of some cycle of Q. They are
therefore endowed with a cycle order, which we put in concrete form by drawing
T in a plane in such a way that the edges converging at any vertex have the
anticlockwise cyclic order. A tree endowed with such cyclic orderings is a
Brauer-tree. Clearly, Q determines T and reversely. We draw explicitely the trees
T, and T, attached to Q, and Q..

1.5. The cycles of a Brauer-quiver may be divided into two camps, an a- and
a B-camp, in such a way that neighbouring cycles belong to different camps. We
implicitely suppose in the sequel that one among the two possible camps has been
baptized a, the other ; we say that Q is oriented.

For any vertex i we denote by ai and Bi the terminal points of the a- and
B-arrows starting at i. Thus we get two permutations a :i+> ai and B:i — Bi of
the vertices of Q.

LEMMA. y=ap is a cyclic permutation of the vertices of Q.

Proof. If B is the identity, y=a .acts transitively, since Q is connected
(example Q,). Similarly, if « is the identity, -y = B8 is transitive. In the other cases
it is easily seen that there is a vertex s such that as# s # Bs. Take for instance the
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vertex 1 in Q, (1.4). Then s may be considered as the connecting vertex of two
quivers Q" and Q~, which we make more explicit by simply drawing them in case
of Q,.

We may now use induction on the number of vertices and get y by ‘“matching
together” the cyclic permutations y* and ¥y~ of Q% and Q~. OK.

Let h be a natural number =1 and set exp (2iwx/h) =¢,(x) (or simply e(x) if
there is no danger of confusion). In case s =e(x) and t =e(y) with 0 <y —x <h, we
agree that [s, t]=e([x, y]) and similarly [s, t[ =e([x, y[) . .. In the sequel, if Q is an
oriented Brauer-quiver with h vertices, we shall identify the set of vertices with
{e(0),e(1),...,e(h—1)}<S,<C in such a way that ye(i) =e(i +1) for each i. The
inductive method used in the proof of the previous lemma leads us then to the
following capital observation: if s# as for some vertex s, the a-orbit of any
t€]s, as[ is contained in ]s, as[; similarly, the B-orbit of any t €[s, as[ is contained
in [s, as[. An analogous result is obtained by permuting « and B: if s# Bs, the
B-orbit of any te]s, Bs[ is contained in Js, Bs[, whereas the a-orbit of any
t€]s, Bs] is contained in Js, Bs].

In the identification we have chosen, the vertices of Q delimit a regular
polygon. We represent the a-arrows by full lines, the B-arrows by dotted lines.
The observations made above then imply that the a-arrows joining the vertices of
an a-orbit are the edges of the convex hull of this a-orbit. Moreover, the convex
hulls of distinct a-orbits do not intersect. As a matter of fact, the datum of an
oriented Brauer quiver with h vertices is essentially equivalent to the datum of an
equivalence relation on {e(0), . . ., e(h—1)} such that the convex hulls of two distinct
equivalence classes do not intersect (given such a relation, define as as the first
point equivalent to s coming after s in the anticlockwise orientation of the circle;
then set Be(i) =a e(i +1)).

1.6. The universal covering Q of an oriented Brauer-quiver Q is a quiver
having Z as set of vertices. As for Q, the arrows of Q are associated with
permutations of the vertices, which we still call « and B and which are charac-
terized as follows: 1=ai—i=<h, ¢,(ai)=ae,(i), 1=Bi—i=<h and e¢,(Bi) = Be,(i)
for all ieZ. The permutations a and B of Z determine arrows «;:i — ai and
B::i — Bi respectively. We illustrate our definitions by drawing some of the
arrows in the cases of Q, and Q, (1.4):

———m T oEIITI T~ B
- - -~ - ~
’r” ///’ \\\ \\\
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— ) W V e b | e vV " " | "
%4 *3 @) 0 ®q o)



246 P. GABRIEL AND CH. RIEDTMANN

e 2N
/’/’:——&\ 1 \::->-<-~\8\2
A N e = S R
\a.g/ ao @
2 -2
Figure 9

The properties already proved for oriented Brauer quivers infer the following
relations among the permutations a and B of Z:af =vy"*"!, ay" =y"a and
By" =+vy"B, where y(i)=i+1. Moreover, if we denote by ai and bi the car-
dinalities of the a- and B-orbits of (i) in Q, we have a®(i)=i+h = B (i).

We endow the universal covering Q with the relations

Baiai = 0 and aBiBi = 0
for every i € Z and with

aai + Bbi — 0,
where a® stands for the composition of ai arrows of type a, the first of which
starts at i €Z; a similar definition holds for B". In this way we get an infinite
bounden quiver (Q, I).

In case Q = Q,, the relations a® +B% =0 in (Q,, I,) reduce to a®+B =0, or
more explicitely to

Q150440 130450 0+ B =0,
In a k-representation V of (Q,, I,) the illaps V(B;): V(i) > V(i +6) are therefore
uniquely determined by the maps V(q;); moreover, the relations V(B,;)V(a;) =0,
V(ag;) V(B;) =0 may be reinterpreted in terms of the V(a;) as follows
0=V(a;+6) V(aiss) V(i a) V(aii3) Viaisr) Vi) Vi), Viel.

This furnishes an isomorphism of Mod, (Q,, I,) with Mod, Z,, where Z, is the
bounden quiver defined by

eSS4 32101

and the relations y’ =0. Replacing 6 by any heN and the relations ¥’ =0 by
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y"*'=0 we get a bounden quiver denoted by Z,, which generalizes Z in a very
obvious way.

1.7. Let Q be an oriented Brauer-quiver with h vertices. We construct a

functor R :Mod, Zh — Mod, (Q, I) as follows. If V is a k-representation of Zh,
we set

RV D)=V@)B VPBHD--- D VE* = & V(BL).

O=si<bt

Moreover, for any vertex teZ of Q, the k-linear map

(RV)(B): RV)()= @ V(B')—> D V(B')=(RV)B)

O=i<bt O<j=bt
is given by the matrix
| 0
0 1
B= 0 0 0 1
___,Yh _,yh—-3t+t ___,Yh—th+t _,Yh—B3:+t e

where we simply write vy instead of V(vy). Similarly, the k-linear map

(RV)(@): (RV)()= & V(B> @D V(Ba)

O=i<bt O=j<bat
is given by the matrix
[yt ymibe e
0 0 0
A= 0 0 0
L. ................................... |

THEOREM. If the maps V(v) satisfy the relations V(y)"*! =0, then (RV)(B)
and (RV)(a) satisfy the relations of the bounden quiver (Q,I). The functor
R :Mod, Z,, = Mod, (Q, ), which is thus defined, maps projectives into projectives
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and induces by passing to the residual categories a stable equivalence
ﬁ:MZhQM(Q D).
This theorem will be proved in §4.
1.8. Let Q be an oriented Brauer-quiver with the h vertices
e, (0), e,(1),...,e,(h—1)eC.

A natural number e=1 is called a period of Q if we have
ae,(i+e)=(ae,(i))e,(e) and PBe,(i+e)=(Be,(i)en(e),V,.

It is equivalent to say that the induced permutations of the universal covering Q
satisfy

a(i+e)=a(i)+e and B(i+e)=p@()+e

for any i € Z. Clearly, h and any multiple of h is a period of Q. But there may be
other periods: in the following example (Fig. 10), where h =18, the periods are
the multiples of 6.

Given a period e of Q, we define an e-periodic k-representation of (Q, Dasa

Figure 10
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k-representation W of (Q, I) such that
W(@i)=W(i+e), W(a,)=W(;,.) and W(B)=W(B,..)

for any ieZ. Similarly, an e-periodic morphism f: W — W' between two e-
periodic representations is a morphism of Mod, (Q, I) such that f(i) = f(i +e) for
all ieZ. The e-periodic k-representations and the e-periodic morphisms form a
subcategory of Mod, (Q, I), which we denote by Mods (Q, I).

In an analogous way we may define e-periodic k-representations of the
bounden quiver Z,. The subcategory ModS Z, of Mod, Z, formed by the e-
periodic representations and morphisms is clearly identified with Mod, Z" (1.1).

Our main purpose in this paper is to prove the two following statements.

THEOREM 1. The functor R:Mod, Z,— Mod, (Q, I) maps Mod;, Z, =
Mod k[Z"] into Mod;, (Q, I) and induces a k-linear stable equivalence

Mod k[Z"]= Mod: (O, D).

THEOREM 2 (Ch. Riedtmann). Let A be a connected finite-dimensional
algebra over k, for which there is a k-linear stable equivalence
Mod A = Mod k[Z"] with h=2. Then Mod A is equivalent to Mod; (Q, I) for
some Brauer-quiver Q with h vertices.

Remember that an algebra A is called connected, if A does not admit any
decomposition A =A; XA, with A, #0# A,. Theorem 2 will be proved in §3,
Theorem 1 in §4.

If h=1, every inc mdecomposable module of length 2 over k[Z}] is projective.
Hence we have Hom (M, N) =0 in Mod k[Z}] whenever M and N are indecom-
posable and not isomorphic. Consequently, if Mod A is stably equivalent to
Mod k[Z!}], A is a Nakayama-algebra of height (=Loewy-length) 2.

1.9. For any h we can interprete Modj, (O, ) as the category of modules over
some finite-dimensional k-algebra. We first define a finite bounden quiver (K, J)
having as vertices the points

e.(0),e.(1),...,e.(e—1).

The permutations « and B of Z induce permutations a« and B of e.(Z), which in
turn determine arrows a; : j =e, (i) > aj =e.(ai) and B;:j =e.(i) = Bj =e.(Bi). The
vertices j =e,(i) and the arrows «;, 8; determine a quiver K which is subjected to
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the following relations: Any composition of an a-arrow and a B-arrow is O;
moreover, a® + 8% equals 0 for any j=e(i); here, as in 1.6, a® stands for the
composition of aj: = ai arrows of type a, the first of which starts at j; a similar
definition holds for B".

The k-representations of the bounden quiver (K, J) obtained by this construc-
tion are clearly identified with the e-periodic representations of (Q, I). Accord-
ingly, Mod{ (Q, I) is equivalent to the category of modules over the bounden
quiver-algebra k[K, J], which is finite-dimensional over k.

For instance, if Q is the oriented Brauer-quiver Q; of 1.8, and if e=12,
k[K, J] is isomorphic to the bounden quiver-algebra associated with example 2 of
1.1. In effect, this example is obtained from (K, J) by deleting the arrows of K
corresponding to loops of Qj;. These deleted arrows arise in a linear way in the
relations generating J. Therefore they may be eliminated.

1.10. LEMMA. The periods f and the associated permutations v’ of a Brauer-
quiver Q are independent of the chosen orientation.

Proof. For a given orientation of Q we have defined vy as af. Now set 8 = Ba.
We have to prove that y' =8 for every period f. As a matter of fact we have

vYB=By =B(aBaB - - - aB)=(BaBa - - - Ba)B = 8B, hence v/ =&’. OK.

Clearly, the periods of Q are multiples of some smallest period, which divides
the number h of vertices of Q. Periods dividing h are therefore of particular
interest. They are examined in the following proposition.

PROPOSITION. Let Q be an oriented Brauer-quiver with h vertices and let
d # h be a period of Q dividing h. Then there is exactly one exceptional orbit in Q,
i.e. either an a-orbit or a B-orbit which is stable under y* =(aB)?. Every non-
exceptional a- or B-orbit has m = h/d transforms under the action of y°.

Proof. Identify the points of Q with the vertices of a regular polygon as
explained in 1.5. Clearly, an orbit is stable iff its convex hull contains the center 0
of D ={zeC:|z|=1}. Accordingly, there is at most one stable orbit. Suppose now
that no B-orbit is stable under the “‘rotation” y®. Call A the union of the disjoint
convex hulls of the different B-orbits. By assumption we have 0 A. Let I" be the
connected component of 0 in D-A. The intersection of I" with the unit circle S; is
the disjoint union of some open arcs

k(il - 1)’ e(il)[ LI ] k(ia - 1)3 e(ia)[
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with i,<i,<---<i,<i;+h. Together with the relation y=ap this implies
ae(i,) =e(i,), ae(i,) =e(is), . .., ae(i,) =e(i,). Since O is fixed under the rotation y?,
the component I of 0 in D-T is stable under y?. Consequently, 'N'S; and the
a-orbit {e(i,), ..., e(i,)} are stable.

Clearly, the stability of the exceptional a-orbit implies for geometrical reasons
that 1 <ai—i=<d whenever e(i) lies on the exceptional orbit. If e(i) does not lie on
the exceptional orbit, we have e(i) € Je(j), ae(j)[ for some e(j) belonging to the
exceptional orbit. By 1.5 we know that the complete a-orbit I' of e(i) is
then contained in Je(j), e(j)[. Therefore, the transforms I, +y*(I),
v24@), ..., y™ P4I) must be disjoint. A similar argument holds for arbitrary
B-orbits. OK.

Remark. Let us keep in mind that 1<ai—i=<d whenever ¢(i) lies as the
exceptional (a-)orbit. If this is not the case, we know that, with the notations
above, both e(i) and ae(i) belong to le(j), ae(j)[; accordingly, we either have
1=ai—i<d or h—d<ai—i=<h for obvious geometrical reasons. Analogously,
for any i, we have either 1=8i—i<d or h—d<Bi—i=h

1.11. In the situation described in Proposition 1.10 it will be convenient to
consider besides Q the quotient Q of Q under the action of y%. As a matter of
fact, the permutations a and B of Q and Q induce permutations of Q: =e,(Z),
which we still call @ and B and which in turn determine arrows «; : j =e, (i) = aj =
eq(ai) and B;:j— Bj =e,(Bi). We denote by p:Q — Q the map e,(i)>e, (i) =
e,.(mi) and call exceptional the image under p of the exceptional orbit of Q.

PROPOSITION. The quiver Q consisting in ¢,(Z) and the arrows a;, Biis a
Brauer-quiver. The exceptional orbit of Q is an m-fold covering of the exceptional
orbit of Q, whereas each non-exceptional orbit of Q is covered by m disjoint orbits of

Q.

Proof. Let us assume for instance that the exceptional orbit is an a-orbit. We
first have to prove that the convex hulls of the a-orbits of e,(Z) are disjoint, or
equivalently that, for any i€Z and any je€ Je; (i), ae,(i)[, the whole a-orbit of j
lies in Je, (i), ae,(i)[. Now we know by 1.10 that we have either 1=ai—i=d or
h—d+1=<ai—i=<h. In the first case, we choose a representative [ of j in ]i, ai[;
since the a-orbit I' of e¢,(l) is contained in Je, (i), ae,(i)[, the a-orbit p(I') of
i =p(en(D) is contained in p(] en(i), ae, (i)[) = Jea(i), aey(i)l- In the second case, let
i, be the greatest number smaller than ai—h such that e,(i,) belongs to the
exceptional orbit. Let further | be the representative of j in [iy, io+d[. Clearly,
en (1) €[ae, (i), e, (i)]. Therefore, if j does not belong to the exceptional orbit, the
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a-orbit I' of e,(l) is contained in [e,(iy), e,(io+ d)[ —[ae, (i), e, (i)]; accordingly
p(I') is contained in p[e, (iy), e, (i + h)[ — p[ae, (i), e, (i)], i.e. in Je (i), ae,(i)[, since
p maps [e,(iy), e, (io+ d)[bijectively onto Q. Finally, if I" is exceptional, we set
I''=TN[e,(ip), e (ip+d)[. Then I'; is contained in [e,(iy), eh(i0+d).[—[aeh(i),
e, (i)]; accordingly, p(I";) = p(I) is contained in Je,(i), ae (i) = ple.(io), en(io+ h) [
)5 € M.
The last statements of our proposition follow directly from 1.10. OK.

OLeh(io) Eh(‘)

\. en(i)

& (ig+d)-aroeyig+d)

/ \

Figure 11

It is worth noticing that Q can be recovered from Q, provided one knows the
exceptional orbit of Q and the multiplicity m = h/d. Assume for instance that the
exceptional orbit A of Q is an a-orbit. Then, if ae,(i) #e, (i) and if Je, (i), ey (i)
does not contain A, we define ae, (i) as e,(j), where j satisfies e, (j) = ae,(i) and
i+1=<j=i+d. Otherwise, we set ae,(i) =¢,(l), where | is determined by e¢,(l) =
ae (i) and i+h—d+1=<I1=<i+h. This shows that the datum of a Brauer-quiver Q
together with a period d dividing the number h# d of vertices is equivalent to the
datum of a Brauer-quiver Q having d vertices together with some exceptional cycle
and some multiplicity m = hje > 1.

The relation between Q and Q is illustrated by setting Q = Q5 (1.8), d =6,
m =3 and Q = Q, (1.4). The exceptional cycle of Q is {0, 1, 5}.

1.12. The results of 1.11 can be applied in the general case of an arbitrary
period e by setting d = (h, e) = greatest common divisor of h and e. In this case,
the quiver K described in 1.9 is a (e/d)-fold covering of Q.

As a matter of fact, we are mostly interested in the case where e =d. In this
case, K is identified with Q, and the relations generating the binding ideal J of 1.9
may be described directly: Denote by A, :j— j and B;:j — j the formal composi-
tions of the arrows of the a- and B-cycle through a vertex j of K= Q. Assuming
that the exceptional cycle is an a-cycle, we get the following constraints

a) A"+ B,; =0 if the a-cycle through j is exceptional (m = fixed multiplicity),
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b) A, +B; =0 if the a-cycle through j is not exceptional,

¢) agiB;i=0 and PB,a;=0 for any j.

A k-representation of K satisfying these relations is called a Dade-Janusz-
Kupisch-representation of K. The associated bounden quiver-algebra is called a
DJK-algebra. Attaching to every DJK-representation V of K = Q the representa-
tion ‘[JV of Q such that W(j) = V(e, (j)), we clearly get an isomorphism

—plae, (i ‘i,

Mod k[K, J]-> Mod: (Q, I).

1.13. The preceding constructions are justified by the fact that DJK-algebras
do occur in representation theory of finite groups. For instance, for any field k of
characteristic p > 2, the group-algebra k[SL,(F,)] is Morita-equivalent to k X A X
A, where A is the DJK-algebra attached to the Brauer-quiver Q below with
m =2 having the loop «, as exceptional cycle (the right end of the quiver is

—P=5.,-—~.p—3 PS5 ——p—3
R L e
according as p=1 or 3 mod 4).
,.Bl o Bs
Q 02 31l e st
Bo i B2

More generally, let G be a finite group with cyclic p-Sylow-subgroups. Let P
be a minimal p-subgroup of G and N its normalizer in G. By Michler [10], if k is
an algebraically closed field of characteristic p >0, k[N] is a product of algebras
each of which is Morita-equivalent to some k[Z™]. Moreover, the scalar-
extension-functor induces a stable equivalence between mod k[N] and mod k[G]
(Thompson-Feit—Green).

We have to keep this relation to group theory in mind when proving Theorem
1 and 2 (1.8). In effect, by adapting methods of Green [6] and Peacock, it is rather
easy to show that a “block” A (=connected finite dimensional algebra) is
Morita-equivalent to a DJK-algebra, if some exact functor R :mod k[Z:™]—
mod A induces a stable equivalence. The simplifying fact in this case, which is the
group theory «case, is that R necessarily induces isomorphisms
Ext!' (V, V') Extl (RV, RV’) (see [11]). Now Ch. Riedtmann has shown in her
thesis how to get rid of the existence of an exact functor. We reproduce her proof
below.



254 P. GABRIEL AND CH. RIEDTMANN

2. The lattice-strip of irreducible morphisms

In order to prove our main theorem, we first have to scrutinize the morphisms
of the category Mod k[Z!] and to give them a geometric description.

2.1. We represent the indecomposable k[Z.]-module V,,, described in 1.2 by
means of the pair (s +Ze, m)eZ/eZXZ. Since Z/eZ has as elements the subsets
{stre: reZ} of Z, V,,, has infinitely many representatives (s +re,m) in ZXZ,
which we identify with the points of the plane having s +re and m as coordinates

in the skew coordinate system below (e =3 and h = 8 in the particular case of Fig.
12).

Figure 12

Just as we represent an indecomposable module by a series of points, we may
represent a linear map by a series of arrows. In our picture the series of arrows
(s+re,m)— (s+re, m—1), reZ, stands for the projection 7:V,,, — V. _; such
that w(g,) = &,. Similarly, the injection ¢:V_,,— V,_; .. such that «(g,) =¢, is
represented by a series of arrows (s+re, m) — (s—1+re, m+1). Thus we get a
lattice-strip formed by vertices and arrows, where the series of meshes

(s—1+re,m+1)

(s+re,m) (s—1+re,m), reZ

\(s +re,m— 1)/
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represents the commutative diagram

vs,m/ v, 1<m=h
Sy e

(V_;.. stands for V,_, ,,.; notice that 7w o + =0 if m =1).

2.2. Given two indecomposable wreaths V, and V,,, the morphisms be-
tween them are described as follows. Start with any representative vertex (s +
re, m) of V_,. and hatch the convex polygon generated by the vertices (i, j) such
that i=<s+re and s+re+1<i+j<s+re+m. Let (t+xe,q), ¢t+(x—1)e,q),...,
(t+(x—1)e, q) be the representatives of V,, within the hatched polygon. For any
such a representative (t+(x —f)e, q) all possible compositions of 7- and t-arrows
starting at (s +re, m) and ending at (t+(x —f)e, q) represent the same morphism
pi: Vom > Voo Moreover, the morphisms pg,...,p; form a basis of
Hom (V,,,, V.,) over k.

(s+re+m-h-1,h+1) (s-h+re,h+1)

(s+re,m)

Figure 13

In order to describe Hom (V,,,, V,,) we might equally well start with some
representative (t+xe, q) of V,, and hatch the polygon formed by the vertices (i, j)
such that t+xe<i<t+xe+q—1 and t+xe+q=<i+j. The morphisms w,, ..., w
are then represented by the compositions of - and ¢-arrows ending at (¢t + xe, q)
and starting at the vertices (s +re, m), (s+(r+1)e,m), ..., (s+(r+1)e, m), which
lie within the hatched polygon and represent V,, (see Figure 14).

2.3. Our geometric description of the morphisms suits also with the stable
category Mod, Z". In this residual category the projective indecomposables V.,
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(t+g-1+xeh+1 (t+xe h+1)

N

(s+(r+1em)

(t+xe,q)

(t+g-1+xe,1)

Figure 14

of Mod, Z" vanish. Hence we have to delete the vertices (i, h+1) in the
lattice-strip of 2.1. The types (=isomorphism classes) of indecomposables of
Mod, Z" correspond in a one-to-one onto way to the types of non-projective
indecomposables of Mod, Z", hence to the sets (s +Ze, m) with 1<=m=h.

The meshes

xvi,h-—l/

standing at the top of the lattice-strip of 2.1 give rise to the relations 0 =07 =

wouv:V;n— Vi, in Mod, Z? (w and ¢« denote the residue classes of 7 and ).
From these relations we deduce the following description of the spaces
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Hom (V,,,, V,,) of morphisms in Mod, Z". Start with any representative vertex
(s+re, m) of V,,. and hatch the polygon determined by the points (i, j) such
that s+re=i=s+re+m—h and s+ret+tm=i+j=s+re+1. Let (t+xe q),
(t+(x—1)e,q),..., (t+(x—g)e,q) be the representatives of V,, within the
hatched rectangle. Clearly we have g =1 with the notations of 2.2. The residue

classes ft,,1, ..., @ are 0, whereas fiy, ..., i, form a basis of Hom (Vs,m, Vt,q).

(s+re,m)

Figure 16

Similarly, if we start with some representative (t+xe,q) of Vt,q, V... has
representatives of the form (s+re,m),..., (s+(r+g)e,m) in the rectangle
formed by the points (i, j) satisfying the inequalities t+xe+q—1=i=t+xe and
t+xe+h=i+j=t+xe+q. The representatives correspond to the basis elements
Loy - - - » [y Of Hom (Vs \Z,q)(see Figure 17).

2.4. Remarks. a) The lattice obtained from the lattice-strip of 2.1 by deleting
the points (s, h +1) will be called the stable lattice. The rectangle formed by the
points (i, j) satisfying the inequalities s+re=i=s+re+m—h and s+re+m=i+
j=s+re+1 will be called the rectangle starting at (s+re,m) and ending at
(s+re+m—h,h+1—m).

Figure 17
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b) It should be clear how the morphisms @, defined above are composed: Let
(t+(x—n)e, q) be the representative of V,, corresponding to i, in the rectangle
starting at (s +re, m). Let further (u + ye, p), (u+(y—1e,p),...,(u+(y—d)e, p)
be the representatives of some V within the rectangle starting at (t+

(x n)e, q), and let @j,..., 15 be the assoc1ated basis of Hom( ta» Yup)- Then
° @, is #0 iff (u+(y—i)e, p) lies in the rectangle startmg at (s +re, m) If this is
so, fi!o , is one of our basis elements in Hom (Vs m> Vup)-

¢) Two morphisms w:M—P and v:N—Q in a category € are said to be
isomorphic iff there are isomorphisms « : M= N and $ : P-> Q such that va = Bu.
In the case of the category Mod, Z" it is easily seen that every non-zero
morphism u:Vsm — ‘—Qq is isomorphic to one of the morphisms f, ..., f,
described in 2.3.

2.5. In order to apply the stable lattice to categories, which are stably
equivalent to Mod, Z", we need an internal characterization of the isomorphism
classes of 7 and t in terms of the category Mod, Z". For this sake we use the
following notion introduced by Auslander and Reiten [1]. For the convenience of
our readers we prove the needed results on irreducible morphisms directly.

DEFINITION. A morphism f: M — N between indecomposables of an addi-
tive category € is called irreducible iff it is not invertible and, given any

factorization M —%> P —> N of f in €, either g is a section (i.e. 3r such that

rog=1,,), or h is a retraction (i.e. ds such that h o s =1y). Notice that we do not
require P to be indecomposable (cf. Remark 2.6).

LEMMA. A morphism between indecomposables of Mod, Z" is irreducible iff it
is isomorphic to some w:V,,, —> V. _, orsome +:V,, =V, ;...

Proof. w is irreducible: Indeed, suppose that = admits the factorization
Vim —> @ W, =5V,
i

where each W, is indecomposable, and where no f,, g; is invertible. Then, for each
i, g&f; factorizes through the radical (= V., ,, ,if m=3,>0if m=2)of V. _:
Otherwise we would have Coker gf, =0 and 1=A (Ker gf;): =length of Ker gf.
In the canonical exact sequence

0 — Ker f, — Ker (gf,) = Ker g, — Coker f, — Coker (gf,) — Coker g, — 0
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the last two terms would be zero. Moreover, as W, as uniserial (the subobjects are
totally ordered by inclusion) and as gf; # 0, we would have Im f; o Ker g;; hence 3
and Coker f; would be zero. The equality 1 =X (Ker gf,)=A (Ker f;)+A (Ker g,)
would imply A (Kerf;)=0 or A (Ker g)=0. Hence f; or g would be invertible.
Therefore gf; and ) gf; factorize through the radical of V,,,_,, a contradiction to
the surjectivity of .

The dual proof holds for «.

Reversely, suppose that w:V,,, — V,, is irreducible. In the canonical factori-
zation V,,, —> Im u —> V,, of u, either p or o have to be isomorphisms. In
the second case for instance, u is surjective and admits a factorization
Vem — Vo1 — V... By the irreducibility of u,  must be a reaction, hence
an isomorphism, and p is isomorphic to . Similarly, if p was invertible, u would
be isomorphic to ¢:V,,, = V,_; ...,. OK.

2.6. LEMMA. Let M,N be non-projective objects of an abelian category € and
have local rings of endomorphisms. A morphism f € Hom (M, N) is irreducible in €
iff its residue class f e Hom (M, N) is irreducible in the stable category €.

Proof. Suppose that f is irreducible, and let M —50 LN N be a factoriza-

-— hl
tion of f. Then f-hg admits some factorization M —> P ——> N through a
(2.8,)

projective P, and f has the factorization M —> Q®P &3 N. The irreducibility
of f then implies that either (g, g,) or (h, h,) must split. In the first case we know
by Krull-Remak-Schmidt-Azumaya that either g or g, is a section. Hence g is a
section, as M is non-projective. Similarly, if (h, h,) splits, h is a retraction. In both
cases, we see that either g or h splits.

Conversely, if f is irreducible, let f=h o g be a factorization of f. Then either g
or h splits. In the first case, there is some r such that g =15 Then rg is an
automorphism of M and g is a section. In the second case, the dual argument
shows that h is a retraction.

Remark. From 2.5 and 2.6 it follows that the irreducible morphisms of
Mod, Z" coincide with the morphisms which are isomorphic either to some 7 or
to some i. From this simple description of the irreducible morphisms we may
deduce that we would get the same notion of irreducibility both for Mod, Z! and
for Mod, Z", if we restricted the definition 2.5 to factorizations M —%> P —> N
in which P is indecomposable. In the general case, however, such a restriction
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would furnish too many irreducible morphisms. Consider for instance the follow-
ing morphism f between DJK-representations:

0k 0k
<30 SNd
T~ AN
=, 0 ~=,
0 1
1 0
0'\’;" Y L. O’\Jk

Figure 18

We suppose here that h=d =e =3, so that there is no need for distinguishing
some exceptional orbit. Clearly, Im f is semi-simple of length 2, so that f is not
irreducible. If A =y, f is factorized through the indecomposable projective DJK-
representation

0
Cra

\\\\ r

NS
.inz NN
X
kak
PN
ing

o ¥

Figure 19

In case A # u, A# 0 and p# 0, however, f would be irreducible if we restricted the

definition 2.5 to factorizations M —>> P —> N, where P would have to run
through the existing 12 types of indecomposable DJK-representations.

2.7. LEMMA. Let A be a selfinjective (= quasifrobenius) artinian ring and P
an indecomposable projective A-module of length =2.

a) An A-linear map with range P is irreducible iff it is isomorphic to the
inclusion of rad P (=radical of P) into P.

b) An A-linear map with domain rad P is irreducible iff it is isomorphic either to
the inclusion rad P — P or to the projection of rad P onto an indecomposable direct
factor of rad P/soc P (soc P =socle .of P).
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Proof. Clearly, an irreducible map is either surjective or injective. If the
irreducible map f: M — P was surjective, it would admit a section (P is projec-
tive) and should therefore be invertible (M is indecomposable!). Hence f has to
be a proper injection and is factorized through rad P. By the irreducibility of f,
the factorization M—rad P is a section; it is invertible, since rad P is
indecomposable.

Conversely, let rad P—— Q —2>P be a factorization of the inclusion
i:rad P—P. If h is not a retraction, it cannot be surjective. Hence we get
h(Q)=rad P, and g is a section. This proves that i is irreducible.

b) Let f:rad P — N be irreducible. If f is injective, the inclusion i :rad P — P
admits some factorization rad P ——> N —*> P (P is injective!). By the irreducibil-
ity of i, we see that g is a retraction, hence an isomorphism. On the other hand, if
f is surjective, f admits a factorization rad P —— rad P/soc P——> N, where p is
the canonical projection. By the irreducibility of f, g has to be a retraction.

Conversely, let 7 :rad P/soc P — Q be the projection onto an indecomposable
direct factor. Let us prove that wp is irreducible: consider any factorization

rad P> M %> Q of wp. Decompose M=IDN in such a way, that I is a
direct sum of copies of P, whereas N does not contain any further copy of P.
Suppose that f is not a section and denote by f,, f, and g,, g, the components of f
and g relative to the decomposition M =I@®N. Then f, cannot be injective.
Otherwise, there would be some m : N — P such that mf, =inclusion. As f, is not
a section, Im m would be distinct from rad P and hence equal to P. But then N
would contain some copy of P.

Therefore f, equals some composition rad P —" > rad P/soc P—— N, and we

get (g5 —m)p =g f>—7p =gf>—(8:1f1 + &)= —gifi. On the other hand
f1:rad P — I clearly factorizes through rad I, hence g,f, and h = g,s — « factorize

through rad Q. This implies for the inclusion o : Q — rad P/soc P that
8,50 = wo + ho =1 + hao,
where ho maps Q into rad Q. Therefore 1, +ho is invertible, and g, is a
retraction. OK.
3. The structure of wreath-like algebras

We call an algebra A over a field k wreath-like if A is finite-dimensional,
connected, and if there is a k-linear stable equivalence between Mod A and
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Mod, Z" for some e and h=2. For the sequel of §3 we fix once for all a
k-linear equivalence L :Mod, Z"->Mod A. Clearly, Mod A inherits from
Mod, Z! the property that every object is a (possibly infinite) direct sum of
objects of type LV,,. This implies in particular that A has only finitely many
types of indecomposables. These indecomposables are finitely generated, and
every A-module is a direct sum of indecomposables [14].

Denote by mod A the category of finitely generated A-modules, by mod, Z"
the category of finite-dimensional representations of Z". Then mod A is a
subcategory of Mod A, whose objects may be characterized up to isomorphisms
within Mod A as the finite direct sums of indecomposables. Consequently, we
may assume without loss of generality that L maps mod, Z" into mod A and
induces an equivalence between these categories. As I. Reiten has shown, [12],
this implies that A is self-injective.

The equivalence L induces a bijection between the types of non-projective
indecomposables of mod, Z! and of mod A. We shall say that an indecomposable
A-module M is of L-type (s, m) if M-=> LV,,.; equivalently, we then say that
each vertex (s +re, m) is a L-representative of M. The number m is the L-height
of M.

3.1. L-representatives of simple modules: A splits over k and admits e types of
simple modules. Furthermore there is one L-representative of a simple A-module
in each going down diagonal and one in each going up diagonal of the stable lattice.
The L-height | of a simple A-module has to satisfy at least one of the two following
conditions

l1<l=<e and h—-e+1=<l=<h.
Proof. Consider a going down diagonal
(s h)=>(s,h—1)—>---—>(s1)

in the stable lattice. If M is any indecomposable non-projective A-module, we
know by 2.3 that Hom (LV,,, M)#0 iff M has some L-representative on the
given diagonal. In particular, if M is a simple A-module occurring in the top
(= N/rad N) of some indecomposable A-module N of i-type (s, h), we infer that
M is of L-type (s,l) for some I. On the other hand, as we have
Hom (V.o V.,)#0 for q=r, there cannot be more than one L-representive of a
simple A-module in the given diagonal. A similar argument applies to going up
diagonals.

Suppose now that (s,1) L-represents some indecomposable A-module S.
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With notations from 2.3 we get Hom, (S, S)=Hom (V,,, V,;) =kii,® - - ® ki,
where i;1; = {1;4; or 0 according as i +j=g or not. If S is simple, Hom, (S, S)=
Homy, (S, S) is a field, and this implies g =0. On the other hand, we know that
g+1 equals the number of L-representatives (s+re, 1) within the rectangle
starting at (s, [). This number is 1 iff (s —e, l) does not belong to that rectangle, i.e.
iff h—l<eorl—1<e.

Finally, A splits, since we have k-->Hom, (S,S) for any simple
module S. OK.

Remarks a) We get more precise information on the L-representatives of
simple A-modules S, T by writing that Hom (S, T )=0=Hom (T, S). This means
that, if (s, [) is a L-representative of a simple module, no other vertex within the
two rectangles of Figure 20 below can be a L-representative of a simple module.
We shall make capital out of this information later on.

b) If a simple A-module S is of f-type (s, 1), the breadth of the rectangle
starting at (s, l) is <e. Therefore, no indecomposable A-module can have two
L-representatives in this rectangle. By 2.3 this implies that the multiplicity of S in
the socle of any indecomposable A -module is <1. The dual argument shows that

the multiplicity of S in the top of any indecomposable A-module is <1.

Projective meshes

3.2. PROPOSITION. Let T be a simple A-module of L-type (t,1) with
projective cover P. Then rad P is of L-type (t+1, h+1—1) and P/soc P of L-type
(t+1-1,h+1-1).

a) If =1, rad P/soc P is indecomposable of L-type (t+1, h—1).

b) If | = h,rad P/soc P is indecomposable of L-type (t+h—1,2).

c) If 1<l<h,rad P/soc P=P,@DP; is the direct sum of two indecomposables
P, and Py of L-types respectively (t+1, h—1) and (t+1—1, h+2-1).

(s,h)

Figure 20
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Proof. Let M be an indecomposable A-module of L-type (t+1—1, h+1—1).
By 2.3 and 2.4 we know that the k-vector space Hom (M, T) is generated by
some single f and that any morphism g: N — M, such that N is indecomposable
and fg# 0, must be invertible. On the other hand, if P—2> M LT is a
factorization of the canonical projection P — T, p cannot be injective; hence it is
factorized through some g: P/soc P — M, which is invertible since fg# 0.

Let us now examine rad P/soc P. By 3.1b) the top of rad P cannot contain two
copies of the same simple module. Distinct summands in a direct sum decomposi-
tion of rad P/soc P are therefore not isomorphic. On the other hand we clearly
have (t+1—1,h+1—-0#(t, 1) modulo eZ x0. Therefore we have P/soc P->T
and A(P)=2, so that the dual of Lemma 2.7 applies: since there are two arrows
terminating at (t+1—1, h+1—1) in case 1 <I<h, there are two types of inclusion
maps of direct summands of rad P/soc P into P/soc P. Assertion c) follows
immediately, and similar arguments hold in case | =1, where P, ‘‘vanishes,” and
in case | = h, where P, ‘‘vanishes.”

Finally we know by 2.7 that there are irreducible morphisms rad P — P, and
rad P — Pg. Hence rad P must be of I:-type (t+1L h+1-1). (See Fig. 21-23.) OK.

Remark. Our proposition shows that, although a projective indecomposable
A-module P has no L-representative, the stable lattice bears some trace of P,
namely the set of L-representatives of rad P, P,, Pg and P/soc P. This set is called
a projective mesh of P. Of course, the position of the projective meshes within the
stable lattice depend on A and L.

3.3. Proposition 3.2 admits a dual statement: Let S be a simple A-module of
L-type (s, i) with injective hull Q. Then Q is projective and indecomposable. A
projective mesh of Q is formed by the vertices (s+i—h, h+1—i), (s+i—h, h—i),
(s+i—h—1,h+2—-i) and (s+i—h—-1,h+1-i) E-representing respectively
rad Q, Q,, Qg and Q/soc Q. Here again Q, or Qg may vanish (if i=h or 1).

In the particular case where S is the socle of the projective cover of T, Q
coincides with P. Writing that the projective meshes of Q and P coincide, we get
(s,i)=(t+h,1) or s=t+h and i=1 for a convenient choice of the L-
representative (s, i) of S. This means that the Nakayama permutation T — S of
the types of simple A-modules is associated with the translation m of the stable
lattice defined by m(t,I)=(t+h, I). The set of L-representatives of simple A-
modaules is stable under , and projectives meshes are mapped into projective
meshes.

On the other hand, if (r, g) L-represents some indecomposable A-module M,
we know that (r+e, g) also f-represents M. Therefore f-representatives of
simple A-modules and projective meshes are also stable under the translation e
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(t+1,h) (t,h)

Case a) -1 Projective mesh

(t+h1) (t1)
S T
Figure 21
(t+h,h) (t.,h)

Case b) L=h Projective mesh

(t+h-11)
rad P P/soc P

Figure 22

(t+1-1,h+2-1)
Ps

Casec) 1<l<h

t+1-1 h+1-1)
P/socP

(t+Lh+1-1)
rad P

(t+h 1)
S

Projective mesh

Figure 23
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given by £(t,1)=(t+e,1l). In other words, both h and e are ‘“‘periods” of the
configuration formed by the stable lattice and the L-representatives of simple
modules. Clearly, the greatest common divisor d = (h, e) is a period too.

The structure of uniserial A-modules

3.4. For each teZ we denote by (t, at —t) the vertex lying in the going down
diagonal of (t,1) and L-representing a simple A-module, say T. The vertex
(at, h+1—at+t) then L-represents rad P, if P is the projective cover of T. In
other words, a is the map induced on the first coordinates by the correspondence
T —rad P. Notice that « satisfies by construction the relations t+1=<at<t+h
and a(t+h)=a(t)+h (confer 3.3).

LEMMA. If at#t+h, the top of P, is simple of L-type (at, a®t—at), and we
have a’t<t+h.

Proof. By 3.2 P, is of L-type (at, h—at+t). By Remark (a) of 3.1 we know
that besides (t, at—1t) no vertex of the rectangle ending at (t,at—t) can L-
represent a simple A-module. By 2.3 every simple constituent of the top of P,
must therefore admit a L-representative of the form (at, ) with |=a’t—at=<
h —at+t. The simplicity of the top of P, follows from the fact that the going
down diagonal of (at, h—at+t) contains only one L-representative of a simple
module. (See Figure 24.)

3.5. LEMMA. a is a permutation of Z.

Proof. Suppose that at, = at, with t;>t,, and let T,, T, be simple A-modules
of L-types (t,, at,—t,) and (t,, at,—t,). As (t;, at,—t,) and (t,, at,—t,) lic on the
same going up diagonal of the stable lattice, we have Hom (T;, T,)#0 and
T, # T,, a contradiction!

rad P

(oct,h-oct+t)
P, \(t,at—t)

{oct.l) A N

Figure 24
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Now we claim that the injectivity of a together with the formula a(t+h)=
a(t)+h imply the surjectivity of «. Indeed, denote by & :Z/hZ — Z/hZ the map
induced by a. It is easily verified, that the injectivity of a and our formula imply
the injectivity of @, hence also the surjectivity of a, since Z/hZ is finite. The
surjectivity of @ and our formula in turn imply the surjectivity of a. OK.

3.6. DEFINITION. Let M be a non-simple non-projective indecomposable
A-module of L-type (m,l) which has a simple top and a simple socle. If
[ > am —m, we say that M is of class a; if | <am —m, M is said to be of class B.

PROPOSITION. Let M be an indecomposable A-module of L-type (m, 1) and
class a. Let am, a’m,...,a" 'm be the integers x lying in the a-orbit of m and
such that m<x<m+1 Then M has a unique Jordan-Holder series

0=M,cM,_,c---cMcM,=M,

and the uniserial subquotient M;/M,  , is of L-type (a'm, a’*'m —a'm). In particular,
ifi=0and j=A—1, we have | =a*m—m.

Proof. We use induction on A(M)=Ilength of M. By hypothesis the unique
L-representative of a simple A-module on the going down diagonal through
(m, 1) lies below (m,l). As M has simple top T, (m,am—m) is the only
f-representative of a simple module within the rectangle starting at (m,[). In
particular, the unique L-representative (m +1—g, g) of a simple module on the
going up diagonal through (m, I) cannot lie higher than (m, I). On the other hand,

as M has a simple socle S, (m+1—g, g) necessarily L-represents S.

) (@) @m))  (am) (m1)

Figure 25
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The lower “going down” edge of the rectangle ending at (m, am —m) cuts the
going up diagonal through (m,[l) at (am—1,l—am+m+1). As the projection
S — Mjrad M is zero, we have g <I—am +m. We want to show that rad M is of
L-type (am, l —am +m): For this sake we first consider any submodule N# 0 of
M. The socle S of N being simple, N is indecomposable and has some L-
representative in the rectangle starting at (m+1—g, g). On the other hand, the
composed inclusion S — N — M is not zero in the stable category. The unique
L-representative of N in the rectangle starting at (m +1— g, g) must therefore lie
on the going up diagonal between (m +1— g, g) and (m, l). This holds in particular
for rad M. Moreover, as the projection rad M — M/rad M is zero, rad M must be
of L-type (m+1—f,f) with g=f<l—am+m.

It remains to show that f=I—am-+m: Indeed, let R be of L-type
(am, | —am +m) and denote by u: R — M a map associated with the composed
arrow (am, l —am +m) — (m, ). Since the composition R — M — T is zero, p
factorizes through rad M. On the other hand, the inclusion rad M > M is
isomorphic to some composition rad M — R —— M. Hence u is a retraction of R
onto rad M; this implies R rad M, since R is indecomposable.

This proves our proposition when A (M) = 2. In the general case, the rectangle
starting at (am, | —am +m) is contained in the union of the rectangle ending at
(m, am —m) with the rectangle starting at (m, ) and the going down diagonal
through (am, l—am+m). As both rectangles contain no L-representative of a
simple module besides (m, am —m), we infer that the top of rad M is simple of
L-type (am, i) with i =l —am +m. By our induction hypothesis, rad M is uniser-
ial; hence M/soc M is uniserial and our proposition follows by applying the
induction hypothesis both to rad M and M/soc M. OK.

Remark. Our proposition applies in particular if M is of L-type (m, h). If T is
the top of M and P its projective cover, M is then isomorphic to (P/soc P)/Pg,
which is an extension of T by P, (set Ps,=0 if am=m+1 and P,=0 if
am =m+ h). Clearly, M is a maximal A-module of class a. This gives an intrinsic
characterization of the A-modules which are L-represented by vertices on the
upper border of the stable lattice.

If M is a maximal of class «, a simple glance at Figure 26 below shows that
a*m=m+h (A =4 in the particular case of the picture). Therefore M has as
length the number of points in the intersection of [m, m + h[ with the a-orbit of
m.

Moreover, we see that the top of P, is of L-type (am, a®>m —am), whereas its
socle is of L-type (s, as —s) with s=a* 'm=a 'm+h.

3.7. In the sequel we shall also need the dual statements of the preceding



Group representations without groups 269

(m,h)

(am h+m-am)

(a3m,a*m-adm) (m,am-m)

(am,a2m-am)
(a?m1)

Figure 26

propositions. We produce them here without proofs:

a) Let I be the injective hull of a simple A-module S of L-type (s, as —s). If
as#s+1, the socle of I; is simple of L-type (as—h—1,a(as—1)—as+1).
Moreover a(as—h—1)=s+1.

b) The map Z — Z, s+— as—h —1 is bijective. If we denote the inverse map
by B, we get B(as—h—1)=s, hence aB(as—h—1)=as. In other words, we get

aBx=x+h+1=w(x)+1

for any xeZ.

c) Let N be an indecomposable A-module of L-type (n, g) and class B. Let
B~'n, B7%n,...,B " 'n be the integers x lying in the B-orbit of n and such that
n>x>n+g—h—1. Then N has a unique Jordan—-Hoélder series

0=N,eN, ;= ---cN;cN;=N,

and the uniserial subquotient Ny/N,,, is of L-type (B™*"*'n,af™**"*'n-—
B~***1n). In particular, g =aB " *'n—n. (See Figure 27).

d) The statement (c) applies in particular if N is of L-type (n,1). If S is the
socle of N and I its injective hull, N is then isomorphic to the inverse image of
Iz<1I/S in I The vertices lying on the lower border of the stable lattice
L-represent the maximal A-modules of class B.

e) If the module N of (c) is maximal of class B, we have B~™"n =n—h. The
maximal A-module of class 8 and L-type (n, 1) has as length the number of
points in the intersection of Jn — h, n] with the B-orbit of n.

f) Let I be the injective hull of a simple A-module of L-type (s, as —s). The
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M NS AN,

\ W/N2
N/N,
N3 ‘ )

N/N3z

(n) Bl (B2n1) (B3nd) (nrg-h-11)
Figure 27

socle of I is of L-type (B™'s, B 's— B 's); the top of I, is of L-type (t, at —t)
with t=Bs—h=B(s—h).

3.8. The Brauer-quiver of a wreath-like algebra

We know by 3.4 and 3.7(b) that the permutations « and 8 of Z commute with
the translation 7 :x+> x +h. Therefore they induce permutations @ and B of
en(Z)={exp (im(x/h):x € Z} such that ae,(x)=e,(ax) and Be,(x) = e, (Bx), Vx €
Z. We define a quiver Q by taking e,(Z) as set of vertices and by endowing this
set with arrows a,:p — ap and Ep :p — Bp.

‘ PROPOSITION. Q is an oriented Brauer quiver with cyclic permutation ¥ : p —
exp (2im/h)p. It has as universal covering Q the set Z endowed with arrows
a, :x — ax and B, : x — Bx.

Proof. The relation apx =x+h+1=ax+1 clearly implies ¥ = ap. It is there-
fore enough to prove that the convex hulls of distinct &-orbits do not intersect.
This follows from the following property of the permutation « :if x <y <ax, we
have either y<ay<ax or x+h<ay=<y-+h. We illustrate the proof of this
property simply by pictures representing the two possible cases:

(eex,1) (exy,) (v.1) (x1)

Figure 28a
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(y.h) (x,h)

(y+h1) (o))  (x+h1) (ecx,1) (y1) (x1)

Figure 28b

The quiver representation attached to an A-module

3.9. Let J stand for the radical of A. We may assume that A is basic, i.e. that
A/J is a product of fields. As we have k= Hom, (S, S) for any simple module S
(3.1), all the simple factors of A/J are in fact isomorphic to k.

Let 1, =m;+ - +mn, be a partition of unity into orthogonal primitive idem-
potents: n;m; = §;m;. The primitivity means that, in the direct decomposition

A=An®D:---BAn,

the non-isomorphic projective summands An; are indecomposable. It is conve-
nient to define n, for every ne€Z by setting 1,,: =7, where ne{l,2,...,e} is
congruent to n modulo e.

The associated decomposition of the top A:=A/J is

A=ki,®-- - Dk,
with 7, =n; +J. Clearly, the summands k#; furnish a complete list of simple
A-modules. We choose the numeration in such a way that k#; is L-represented

by the vertex (i, ai —i).
We know by 3.4 and 3.7(f) that the top of the radical Jn; of An; has the form

J"Iilfzﬂi = (J/P)ni = ﬁai(J/-Iz)ﬁi®ﬁai(]/]2)ﬁi

with
_ _ kn, if ai#i+h
oziJJ2 l_:){ *
WA= i aizith
and
_ _ . [kiie if ai#i+l
(J1J? i-“->{ b
W= i =i,
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If ai#i+h we choose an a; € n,Jn, —J?; its residue class &, = a; +J? is then a
basis of 7,;(J/J?)7;. Similarly, if ai# i+ 1, we choose an element B; € ng.J,; —J?; its
residue class B; = B; +J? is a basis of 7jg;(J/J?);. (As we shall see so, the elements
a; and B; of A are related to the arrows i—ai and i— Bi, which we already

denoted by «; and B;. We hope, that this coincidence of notations will not lead to
misunderstandings.)

THEOREM. A is identified with the k-algebra with unity defined by the
generators m;, «;, 3; subjected to the relations a)—e) below, where 1<i,j<e:

a) 1, =n;+ - +mn, and nym; = §m.

b) a; =nuam; and B; =ngBm;, if ai#i+h and aj#j+1.

C) Bu; =0=agB; if ai#i+h, a’iZai+1, aj#j+1 and aBj# Bj+h.

d) ageiy; * Qi@ + ABgriy; * - - BaiB; =0 for some scalar A;#0 if ai#i+1 and
ai#i+h.

€) ayely ey - age; =0ifai=i+1, and Bg¥iBgri-1j * BB;‘B;‘ =0 ifai=i+h.

In the statement of the theorem ai and bj are such that a®i=i+h and
B%j=j+h (confer 1.6 and 3.8). Furthermore, we agree that a,,: = a; if an#n+h,
and that B,:=B; if an#n+1, where ne{l,...,e} is again assumed to be
congruent to n modulo e.

3.10. Proof of a), b) and c). The relations a) and b) follow directly from our
choices. Let us assume that for some i we have ai#i+h, a?iZai+1 and
B.ia; # 0. Consider a submodule N of An; not containing B,«; and maximal for
this condition, and set M:= An,/N. Clearly, M is generated by m:=mn,+ N and
has simple top and simple socle. Moreover, the series

0c ABamcJomgc AamecIJmg Am=M

shows that M has at least the following three Jordan—Holder factors:
top (M) = Am/Jm > k7, Aaym/Jam—=> kn,; and

soc(M) = ABa;m = kg,

By Definition 3.6 M is either projective, of class a or of class 8. Let us show that
each of these possibilities leads to a contradiction.

First suppose that M is projective. Then kg, =>soc M5k, (3.3),
hence Bai=i+h mode and e,(Bai)=e,(i), where d =(h, e) =greatest common
divisor of h and e. Accordingly, the B-orbit of e;(ai) meets the a-orbit of e;(ai) in
es(ai) and in e;(i). Since Q =e¢,4(Z) is a Brauer-quiver (1.11), we infer that
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eq(Bai)=e;(i) =e; (ai). But the assumptions ai#i+h and a?i# ai+1 mean that
e, (i) # e, (ai) # e, (Bai). Since the projection p:e,(Z)=Q —¢,(Z) = Q acts bijec-
tively on non-exceptional orbits (1.11), we infer that both the a-orbit and the
B-orbit of e;(ai) are exceptional: contradiction.

Now suppose that M is uniserial of class a. Then the Jordan—Holder factors of
M are ki, ki, . .., ki, With 2=<a<ai (3.6). This implies Bai=a® mod e,
hence ¢, (Bai) =e¢;(a’i) and e, (ai) =e¢,(Bai) =¢,;(ai) as in the first case. Accord-
ingly, the a-orbit and the B-orbit of e;(ai) are exceptional: contradiction.

Finally we assume that M is uniserial of class 8. Then the Jordan—-Holder
factors of M are k#;, kfg,...,BNe: With 2=<b<bi (3.7). This implies ai=
B°imod e for some c, 1=c<b, hence e¢;(ai)=e,;(Bi) and further e,(ai)=
eq(B°i) =e4(i). Here again we get the contradiction that both the a-orbit and the
B-orbit of e,;(i) are exceptional.

The relation ag;B3; =0 is proved in a similar way.

3.11. Proof of d) and e). Set P= Anm;, and denote by P, and P} the coun-
terimages of P, and Pz < P/soc P in P. We have P/ = Aa; by construction of «;
and the length of P/ satisfies the relation A(P,)= A((P/soc P)/Pg)=A(P/Pj)=ai
(3.6, Remark). On the other hand, the radical of P’ is given by the equations

JP, = Ja; = In,a; = (Aa,; + AB,i)a; = Aaga,
which implies by induction

]2P(,! = Aaa2iaaiai, ..., 80C P = Jai~1P; = Aaaai—li MR ¢ SNF14 £

Replacing a by B we get in a similar way

soc P = ABgv—1; * * * BaiBi

and hence ka,a—; * * * a0 = kBgu—; * + + BgiB;, which is equivalent to relation d).
Let us now prove e): Again set P= Am,. The relation ai =i+1 then implies
P; =0, hence rad P= Aq; and soc P=J*"'a; = Aa =1 * * * a,a; as in the former

case. The first relation of e) follows from the fact that «,«; soc P< Jsoc P=0.
Similar arguments hold for the last relation.

3.12. End of the proof of Theorem 1.9. Let B be the algebra generated by the
elements m;, a;, B; and the relations a)-¢e). Let ¢ : B— A be the homomorphism
which is the identity on the generators. Since the n; form a basis of A modulo J,
and since the a;, B; form a basis of J modulo J?, it is easily seen that n;, a;, B;
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generate the algebra A. Hence ¢ is surjective. Now it follows immediately from
the relations a)—e) that the elements n;, a,«; * * * a,;; and Bgs; - - * Ba;B; wWith a <ai
and b < bi generate B as a vector space. Therefore we have dim, B <}, (ai + bi).
On the other hand, the knowledge of the length of the maximal uniserial modules
(3.6 and 3.7) implies immediately that dim, An; = a; +b;. This implies dim, A =
Y (ai+bi)=dim, B. Hence ¢ is injective. OK.

3.13. LEMMA. The elements «; and B; may be chosen in such a way that we
have

Qgai-y; *° ° i@+ Bgoi-1; * - BgiB; =0

whenever aiZi+1 and ai#i+h.

Proof. It is clear that, for a fixed i, the scalar A; appearing in relation d) of 1.9
may be replaced by 1 if we replace either «; or B; by some scalar multiple. The
point is that an improvement at i might produce a deterioriation at some j. In
order to proceed to our modifications in a coherent way, we first consider the
Brauer-quiver Q =e,(Z) introduced in 1.11, where d = (e, h). If d # h, Q contains
an exceptional orbit; if d = h, we choose an arbitrary orbit and call it exceptional.
Since Q is associated with some Brauer tree (1.4), it is clearly possible to provide
the cycles of Q with a total order satisfying the following conditions: a) The
exceptional cycle is the smallest cycle. b) For any non-exceptional cycle I' of Q
there is exactly one cycle A <I" having with I one common vertex.

The choice of such a total order determines our modification process. We
proceed by induction: Assume that for some a-cycle I' all the A, such that e, (i)
belongs to a cycle E <T, have already been replaced by 1 in our procedure. Let U
be the set of elements ue{l,...,e} such that A,#1 and e;(u)e I Since the
B-orbit of any such e;(u) is non-exceptional, we know by 1.11 that the vertices
eqa(B"u), where ue U and 0<n <bu, are all distinct, and they do not belong to
any cycle E <T'. In particular, all the elements B, € A are distinct. Replacing then
by scalar multiples, we can convert A, into 1 at once for all the elements u e U.
Moreover, our modification does not affect the coefficients A, =1, such that
eq(i)e E<T.

We proceed in a similar way when the first cycle I', which is not yet “clean,” is
a B-cycle. OK.

3.14. We can now simplify the description of A by generators and relations
with the following convention: if ai =i+ h we define an element o; € A by means
of the equality a;:=—Bgu—; - - BaB;; similarly, if ai=i+1 we set B;:=
—Qga-1; * * * Q0. The relations e) are then reduced to agB; =0 if @i =i+1, and to
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B.i; =0 if aj = j+ h. Therefore, theorem 3.9 can be restated by saying that A is
identified with the k-algebra defined by generators n;, o, B; (i =1, ..., e) submit-
ted to the relations:

a) la=m+-:-+n. and nm;=§m;

b) @, =nuam; and B;=mngBm;

©) Bua; =0= ag;B;

d) age-1t @+ Bgryt c B =0
for any i,je{l,...,e}

Let Q be the universal covering of the oriented Brauer-quiver associated with
A (3.8). It is now easy to establish an equivalence between Mod A and the
category of e-periodic representations of Q: we may attach to any A-module M
an e-periodic representation V of 0, by setting V(i)=nM, V{a;)(x)=a;x and
V(B;)(x) = B;x (Notice that on the left hand side «; and B; denote arrows, whereas
on the right hand side they stand for elements of A!).

Reversely, if V is an e-periodic representation of Q, we set M=
V(1)@ - - - @ V(e) and define the A-module structure on M as follows:

nx=x,ax = V(a;)(x)e V(ai) =« M

and
Bx=V(B)x)e V(Bi)=e M

if xe V(i) M. If xe V(j), j#i, we set
0=mx=a;x = B;x.
This finishes the proof of Theorem 2 of § 1.8.

4. Bounden Brauer-quiver algebras are wreath-like

Our purpose in §4 is to prove Theorem 1 of §1.8. By Q we denote a fixed
oriented Brauer-quiver with h vertices.

4.1. With any representation W of the universal covering Q of Q (1.6) we
associate vector spaces (LW)(s), s€Z, and transition maps (LW)(y):
(LW)(s —1) = (LW)(s) which are described as follows:

LW)s)= © W(Q).

t=s<at



276 P. GABRIEL AND CH. RIEDTMANN

Moreover y:=(LW)(y) maps a family (w,) onto the family (w/) such that

wi=a(Wer)— ) Bl(way),

1=i<bs
where a and B° simply stand for W(a,-,) and W(Bg-1,) W(Bg-2) - - - W(Bg-)-

LEMMA. If W is a representation of the bounden quiver (Q,I) (1.6), the
transition maps y = (LW)(y) satisfy the relations y"** =0, which means that LW is
a representation of the bounden quiver Z,.

Proof. Denote by (t, w) the canonical image of we W(t) in

(LW)(s)= D WwW().

tss<at

We have to prove that y"*'(t, w)=0. With this aim in mind, we first consider the
case s# at—1 and have a look at the following figure where B 't=s<g't,i=1
(confer 1.5 and 1.6). The following relations hold (notice that at—1=p8"""¢,
t+h=a*t and aB't=B""t+h+1):

Vs —‘;‘\ /:::\\‘ N o7 —;N\\\ ,’—\\ ,";\\\

ait gt /m\ BG%W

yY* (L w) = (1, w)— (B't, B'w)

YET @ w)=[(, w)— (BT, B W)]-[(B'L, B'w)— (BT, B w)]
=(t, w)—(B't, B'w)

Y, w) = (1, w)—(B't, B'w)

Yo (t, w) = (at, aw)—(B't, B'w) in case at#t+h

v~ (t, w) =[(at, aw) — (Bat, Baw)]—(B't, B'W) = (at, aw) — (B't, B'W)
Y w) = (t+h, a®w)—[(B', B'w)— (t+h, B*W)]

=(t+h, a®w+B"w)—(B't, B'w)= —(B't, B'w) even in case at=t+h
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YRR (L, w) = — (B't, B'w)

YT, w) = — (aB't, aBiw) =0.

Therefore we have y"*'(t, w)=y*# "ty*®*=5(t w)=0.
In case s =at—1, we get in a similar way:

v(t, w) = (at, aw)

Y5 (8, w) = (at, aw) — (Bat, Baw) = (at, aw)
YRS, w)=(t+h, a®w)

YUt w)=(at+h, aa®w)=0. OK.

out+h t+h ot st t

~—_ = \ Bt~ \_/‘

4.2. Define a representation V,,, of Z, by setting V,,.(n=ky ¢ if s=<r<
s+m and Vs,m(r) =0 otherwise, where € Vs,m (s) denotes some symbol playing
the part of a generator of Vs,m(l =m=h+1). Clearly, Vs,m is indecomposable,
and every representation of Z, is a direct sum of indecomposables of this type
(compare with 1.2). Moreover, V,,,. is projective in Mod, Z, iff m =h+1. If this
is so, the map f+> f({,) furnishes a bijection Hom (\Z,hﬂ, V)= V(s) for any
V eMod, Z,.

On the other hand, consider the representation P, of (@, I) which is defined as
follows: start with some ‘“‘free generator” m, € P,(t), t€Z, and set

ka'm, if t+h=dt=r=t
P(r)=<kB'm, if t+h>Bt=r>t
0 otherwise
Clearly, P, is indecomposable and projective (the map Hom (P, W) — W(t),
f+> f(a,) is bijective for each WeMod, (Q, ). Using classical Nakayama-type

arguments we see furthermore that any projective representation of (Q i) is a
direct sum of copies of P, for various t.

LEMMA. For any t, LP, is freely generated by the elements

(B't, B'w,)e(LP)(B't), i=0,1,...,bt—1.
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In other words, the morphism

@ VB‘t,h«l-l _ML') LPt

O=i<bt
sending g, onto (B't, B'm,) is an isomorphism.

Proof. The constituents (LP,)(s) of LP, are as follows:

2) (LP)(s)= k(B't, B'm) if B't=s<inf (B, ),
i=0
where i=0,1,2,...,bt—1.
bt—1 ) )
b) (LP)(s) =k(a't a'm)® (B k(B B'm)
j=1

if a't<=s<inf(a'*'t,t+h+1), where [=1,2, ..., at.

j=bt

©) (LP)(s)= @ k(p't,B'm) if Bt+h<s=p"'t+h,

j=i+2

where i=0,1,...,bt—2.
d) (LP,)(s)=0 in any other case.

it i . -1 W, g
ect+h 3':“.-!{""" toh =™ Tl gt BTt _Bt

-

For i=0,1,...,bt—1, we have

j=i—1

v(LP)(B't—1)= @ k((B't, B'm)—(B't, B'nt)),

i=0

hence (LP,)(B't) = y(LP,)(B't—1)® k(B't, B'm,). For any others it is easily verified
that (LP,)(s)=vy(LP,)(s—1). By Nakayama’s lemma this implies that w, is an
epimorphism. In order to prove that p, is invertible, it remains to verify
the equality ), dim (LP)(s)=(h+1)(bt)=);, dim VBa,,,,H(s). This is pure
routine. OK.

4.3. Since the functor L commutes with direct limits, it admits a right adjoint
functor R :Mod, Z, — Mod, (Q, I), which homological algebra tells us to be the
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following: denote by @ : P,, — P, and B : Pg, — P, the morphisms sending m,, onto
am, and s, onto B, respectively. For any V e Mod, Z, and any t€Z we then
have:

(RV)(t)=Hom (LP, V), (RV)(a)=Hom (L&, V),

(RV)(B)=Hom (LB, V).
Moreover, the adjunction-bijection
u :Hom (LW, V)5 Hom (W, RV)
associates with a morphism f:LW — V the morphisms u(f): W— RV, which

maps w € W(t) onto the composition LP, 2, LW -5 V. Here w' denotes the

morphism P, — W such that w'(m,) =w.
General rules need specification. In fact, the isomorphism u, of 4.2 allows the
following identifications:

i=bt—1

(RV)(t)=Hom (LP,, V)= Hom (& Vg s, V)> D V(BY).

i=0

A morphism f:LP,—V is identified with the sequence u,(f)=(f(B't, B'm))e
D, V(B).

LEMMA. (RV)(B): (RV)(t) — (RV)(Bt) is identified with the map
S vien—> D V(e

O=i<bt

given by the matrix

0 1 0
0 0 1
B=|] O 0 0 1
_._,.Yh _,Yh‘H—.Bt _,;’h+t~B2t _,Yh+t—B3t g = =

Proof. Consider the square (where B* =Hom(Lf,V))

feHom (LP, V)—F&

“Js

f|us:

D V(B't)

Hom (LPyg,, V)

> @ V(Bi+1t)

By definition we have

ug(B*f) = (B*f)(B'Bt, B'ma,)) = (F(LB(B™t, B'mg,))
=(f(B"""t, B m)).
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The last component of this sequence is f(B°t, B*mt), where B*t=t+h and
(B%t, Bm)e (LP)(t+h). Let us express (B%t B"m,) in terms of the ‘“basis”
((B't, B'm,))o=i<p: Of LP,. The following relations hold in (LP.)(t+h) (they are
reduced to the first equation in case bt =1):

Y (t, w) = —(Bt, Bm,)
BB, Bm,) = (Bt, Bm,) — (B>, B*m,)
yhR* (B2, B2m,) = (B, BPm) — (B, Bm,)

...................................................................

,yh+t-—Bb'-1t(Bbt—lt’ Bbt\-lﬂ_t) o (Bbt*lt’ Bbt—lwt)_(Bbtt, Bbtﬂ't)-

Hence we get by addition

(Bbtta Bbt'n't) = _'Yh(t> '"'t)— 'Yh-H_Bt(Bt, B"Tt)— Tt

and the last component of ug (B*f) equals

f(t, m)
f(B™t, B"m) =[—y"—y"™7P - —y" TR L f(Bt, B)

In this product the left factor is the last row of B, whereas the right factor is u,(f).
Therefore f(B"t, B"m,) is also the last component of Bu,(f). Since the first
components of Bu/(f) and ug(B*f) coincide trivially, we see that Bu, =
ugB*. OK. :

4.4. LEMMA. (RV)(a): (RV)(t) = (RV)(at) is identified with the map
b vEein—-> D V(Ea)

O=i<bt O=<j<bat

given by the matrix

....................
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Proof. Consider the square

a*=Hom (L&, V)

feHom (LP, V) »Hom (LP,,, V)

U {2 U Ut

@ V(Bit) = »@ V(Bat)

By definition we have

Uoe(@*f) = ((*f)(B'at, B'm,,)) = (HL&(B'at, B'm,,)))
= (f(B'at, B'am,))
=(f(at, am,),0,0,...),

where (at, am,) € (LP,)(at). We express (at, am,) in terms of the basis ((B't, B'm,))
of LP, by using the following relations, which hold in (LP,)(at) if bt#1#at:

'Yat_t(t’ 'Trt) = (at, aﬂ't) - (Bt, BTrt) (1)
y*~#(Bt, Bm,) = (Bt, Bm,) — (B*t, B>m,)
,Yat—ebt‘%(Bbt-—zt’ Bbt—z'"'t) - (Bbt—zt, Bbt—zﬂ_‘) _ (Bbt*lt, Bbt-lﬂ_r)

Y BB, BT ) = (BT, B ) (2)
By addition we get:

(at, am) =y (t, m) +y* 7% (B, )+ - - +y= (BT, BT m). (3)
If bt =1 this equation is reduced to (at, am,)=y(t, w,) and it is true by the very

definition of +y. Finally, if at =1, we have to replace equation (1) by y*~'(t, w,) =
—(Bt, Bm,) and equation (2) by

YR (B B ) = (B B m) — (B4, B ).

Addition again furnishes equation (3).
In all the cases we get

f@t, m)
f(ata a'n't) = [‘Yat__t’yw_at' ) '] f(Bt,' Bﬂ't)
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and therefore u,(a*f)=Au(f). OK.

4.4. We come back now to the adjunction-bijection
Hom (LW, V)= Hom (W, RV)

of 4.3. In case V=LW we denote by YW : W — RLW the morphism associated
with 1, . Similarly, if W= RV, we write ®V: LRV — V for the inverse image of

1RV-

LEMMA. Let S, be the siniple representation of (Q, I) such that S,(1)=0 if t#s
and S;(s)=k. Then ¥S,:S, — RLS, is a section and

Coker ¥S,= @D P,
t

where t is subjected to the relations as > at>s>t.

Proof. Set V:=LS, and denote by { a non-zero element in V(s). We get
V(t)=ky' ¢ if as>t=s and V(t) =0 otherwise (in fact V> \78,,,3_8). Let us set
further W:=RV =RLS, and W'(t) :=aW(a"'t)+BW(B't)= W(t) for any teZ.
By construction we have W(t) = @, ky®"**{, where i is subjected to the conditions
0<i<bt and s <B't<as. We want to examine W'(t) for various t:

a) Suppose that as—h>t>B 't=s—h. By the geometric properties of
Brauer-quivers examined in 1.5 this condition is equivalent to as>at>s>1t. If
a >0 is the first integer such that B%t=s, we get W(t) = @, ky?*~*¢ with bt >i=q,
W(a™'t)=0 and W'(t)=BW(B ')=Bk(y*"L—v*"""*() with bt—1>j=a.
Hence we have W(t)= W'(t)® kyP“ ¢

Notice that as > at = B~'t+h+1>s. This implies that a(y?*°¢)=y*~°(#0,
and further that 0%y ¢ = a®(y?"* ) € W(t +h). In other words, the morph-
ism ¢, :P,— RV, &, — vy ™°¢ maps the generator a*m, of the socle of P, onto
vt #0. Accordingly, ¢, is a monomorphism. (See Figure below.)

b) Suppose that t =s. As in case a) we have W(s) = @®,ky?* ¢ with bt>i=0,
W(a™'t)=0, W'(s)=BW(B 's) = Bk (y***{ —vy*" () with bs —1>j=0, and
finally W(s) = W'(s)®D k¢.
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The important point now is that af{=0=B{. Therefore { determines a
monomorphism ¢,:S,— W, which maps 1€k =S,(s) onto {.

¢) Suppose that as>t>s. If b=0 is the largest integer such that as > B°t, we
have W({)=®,ky** ¢ with 0=<i=<b. Furthermore we have t—1=
B " Y(a 't)=s and therefore y' *'¢ € W(a"'t) and aW(a"'t) = ky'*{. On the
other hand, we have BW(B™'t)=®,k(v?* ¢ —v®" " *¢) with 0=<j<bt—1 or
BW(B't)=®;k(y***¢) with 0<j=<b according as b=bt—1 or b<bt—1. In
both cases we get W'(t) = W(t).

d) When t does not satisfy the conditions a), b) or c¢), we have W'(t) = W(t) =
0.

Our results concerning W’'(t) may now be exploited as follows: Look at the
map

cp:SsGB(Q? P,)-> W =RLS,

with components ¢, and ¢,, where t is subjected to as > at>s >t. For each n we
have W(n)= W’'(n)+Im ¢(n). Therefore ¢ is an epimorphism (Nakayama). On
the other hand, the socle of S, (,P,) is generated by the elements 1€ k = S;(s)
and a®(m,) € P.(t+ h). These elements all have distinct degrees, and we know by
a) and b) that they are mapped onto non-zero elements. Therefore ¢ is a
monomorphism, hence an isomorphism.

It remains to show that ¥S, maps S, isomorphically onto ¢,(S,). In fact, we
know that ¥S; # 0, because L¥S, admits the retraction @LS, (general nonsense!)
and LS, # 0. On the other hand, the only copy of S, contained in RLS; is ¢,(S,),
so that there is no alternative. OK.

4.6. LEMMA. If V= \73,1 the morphism @V :LRV — V is a retraction, and
Ker @V @ Ve sh+1

where 0<i<bs.

Proof. By 4.3 and 4.4 RV admits the following description:

ke, if t=B7's with 0=<i<bs
0 otherwise,

RV)© =

where Be, =0, Be; =¢;_, for i>0 and ag; =0 for any i. Therefore, if U:=LRYV,
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we get by the construction of L that
U()=(LRV)(1) = ® k(B's, &),

where i is subjected to the conditions 0<i<bs and af 's—1=B""'s+h=t=
B~'s. The transition operator y acts according to the formulae

(B7's,&)—(B7’s,g) if t+1=B7's=<s
v(B7's, &) =40 if t=aB”'s—1=B"""+h
(B7's, &) otherwise

-bs+

- - G

The element (B7's, g;) € U(B's) satisfies the relation
Yr(B7's, &)=— (B s, g_)eU(B's+h) if i>0.

On the other hand, the element n:=(B>*"s, &,,_,) € U(s) satisfies yn =0. Ac-
cordingly, the morphism

¢ ‘73169( D VB—'s,hﬂ) — U=LRYV,

0<i<bs

which maps the canonical generator ¢ e ‘7;,1(8) onto neU(s) and {3 €
Ve-isne1(B7's) onto (B7's, &) € U(B™'s), is injective on the socles. Therefore, ¢ is a
monomorphism. It is also an epimorphism by a Nakayama-type argument, since
@, U(t)/yU(t—1) has the residue classes of the elements n and (B7’s, &) as a
basis.

Finally, ®V has (Do V3~as,h+l) as kernel, because this is true for any
non-zero morphism from V, ;® (@ Vg-i44,) to V.. (notice again that ®V#0,
since RPV admits the section ¥RV, and since RV#0). OK.

4.7. Proof of Theorem 1.7. We already know that R is a functor from
Mod, Z, to Mod, (Q, I). Accordingly, the maps (RV)(a) and (RV)(B) satisfy the
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relations of the bounden quiver (Q, I). Furthermore, as L maps projectives onto
projectives by 4.2, L induces a functor L:Mod, (Q, I) - Mod, Z,. Since R is
right adjoint to the exact functor L, R maps injectives onto injectives. But
injectives coincide obviously with projectives in both categories. Therefore R
induces also a functor R :Mod, Z, — Mod, (Q, I).

By Lemma 4.5 we know that YW: W — RLW is mono and has a projective
cokernel if W is simple. Clearly, this is also true if W is semi-simple. Since RL is
an exact functor, our assertion remains valid, if W is a extension of two
semi-simple modules, and even more generally if W admits a finite increasing
sequence of subrepresentations with semi-simple factors. As Mod, (Q, I) has
height (= Loewy-length)<h +1, we infer that YW is mono and has projective
cokernel for every W. Accordingly, ¥:1-> RL is an isomorphism. Using 4.6
instead of 4.5 we prove similarly that @:LR->1 is an isomorphism. OK.

4.8. Proof of Theorem 1 of 1.8. Let us use for R :Mod, Z, — Mod, (Q, ) the
explicit description given by the formulae

(RV)(s)= @ V(B's).

O=<i<bs

Clearly, the functor defined by these formulae maps e-periodic representations
onto e-periodic representations and induces therefore a functor R :Modj Z, -
Mod¢ (O, I). Moreover, if VeMod, Z, is projective and e-periodic, RV is
projective by 4.7 and e-periodic. By the lemma below, R® therefore maps
projectives of Mod;, Z, onto projectives of Mods (Q, I) and induces a functor

R® :Mod; Z, — Mod; (Q, I)
between the stable categories. Similarly, L : Mod, (Q, I) > Mod, Z, induces func-

tors L :Mod¢ (O, ) » Mod;, Z,, and L :Modg (Q, ) - Mod;. Z,.
Now consider again the adjunction-bijection

u :Hom (LW, V) = Hom (W, RV)
of 4.3. A morphism f:LW — V consists in maps

fs): @ W(t)— V(s),

t=s<<at

the components of which will be denoted by f;,. Similarly, a morphism g: W —
RV consists in maps g(s): W(s) = @ V(B's) with components g ;, 0=<i<bs. In
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case g = u(f) the description of u given in 4.3 furnishes the relation

(Uf)si = foisps © W(B).

This formula shows in particular that u(Tf)=Su(f) if W and V are both
e-periodic. Here T(f) and S(g) are defined by T(f)(s)=f(s—e) and S(g)=
g(s —e) for any fe Hom (LW, V) and any g€ Hom (W, RV). Consequently, u(f)
is e-periodic (i.e. we have Su(f) = u(f)) iff f is e-periodic (i.e. Tf = f). This shows
that L® and R° are adjoint functors, and that the morphisms

YW:W—-RILW and ®V:LRV->V

are e-periodic if V and W are so. If this is the case, Coker ¥W and Ker ®V are
projective and e-periodic. Therefore they are projective in Mod: (Q, ) and
Mod; Z, respectively. Accordingly we have 1=>R°L® and L°R°>>1 as in
47. OK.

LEMMA. An e-periodic representation W of (Q, I) (resp. V of Z,)) is projective
in Mod; (Q, ) (resp. in Mod{ Z,) iff it is projective in Mod, (Q, I) (resp. in
Mod, Z,).

Proof. We use the following characterization of the projective representations
of (Q, I): Start with any representation W and set W'=rad W< W. For every
teZ, W'(¢t) is defined by W'(t) =aW(a 't)+BW(B 't)= W(t). Now choose for
each t a k-subspace W,(t) of W(t) such that W(t)= W'(t)® W,(t). Then W is
projective in Mod, (O, ) iff, for any U e Mod, Q, D), every family of k-linear
maps h(t): Wy(t) = U(t), t € Z, can be extended uniquely to a morphism W — U.

When W is projective in Mod, (Q, I) and e-periodic, we choose the sup-
plementary subspaces W, (t) in such a way that W,(t —e) = W,(t) for every teZ.
For any e-periodic representation U, every sequence of k-linear maps
h(t): W,(t) > U(@),t=1,2,..., e, can then be extended uniquely to an e-periodic
family h(t): W, (t) — U(t), teZ, hence to an e-periodic morphism W — U. In
other words, the map

Hom*® (W, U) -> tE:Bz Homk‘ (W1(t), U(t)), f"’ (f(t) I Wl(t))lstse

is bijective (here Hom® (W, U) stands for the space of e-periodic morphisms).
Accordingly, the functor Hom® (W, ?) is exact, and W is projective in
Mod; (Q, D).

On the other hand, the inclusion-functor Mods (Q, I) > Mod, (Q, I) is left
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adjoint to the exact functor II defined by

IIw)(t)= I1 W(t+ne).

neZ

Therefore it maps projectives onto projectives.
The case Z, is proved in a similar way. OK.
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