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Extremal eigenvalue problems defined on conformal classes of
compact Riemannian manifolds

SHMUEL FRIEDLAND

1. Introduction

The aim of this paper is to extend our recent results on eigenvalue problems
for certain classes of membranes [3] to conformal classes of compact Riemannian
manifolds. We refer to [1] for the definitions and properties of Riemannian
manifolds needed here. Let #{ be a compact smooth (C™) n-dimensional man-
ifold. We shall assume that n=2. Denote by x =(x’, ..., x™) the points of #, by
dV the volume element and by G(x) = (g;;(x))] the metric matrix. Consider a new
metric on # given by the matrix G = (g;(x))]. Assume that this metric is
conformal to the given metric. That is

g;(x)=?’(x)g;(x), Lj=1,...,n (1.1)

Assume first that ¢ is a positive smooth function. Denote by A the corres-
ponding Laplacian tc the matric G. Consider the eigenvalue problem.

Au+pu=0. (1.2)
Denote by
0=po(@)<pi(@)=p (@)= --- (1.3)
the corpesponding eigenvalues of A. The eigenvalues wu, (@), k=0, 1, ..., are
characterized by the min-max principle applied to the Rayleigh ratio
2 Vi Ou du (1.4)
2 —dV / J "u*dVv.
I i ,Zl axt 9x’ e

Here G™'=(g");. Using this characterization one can define {u, (¢)}5 for any
non-negative bounded measurable function ¢. The precise definition of w, (¢) is
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Extremal Eigenvalue problems 495

given in the next section. Denote by C the following set of functions
0=m(H)=e(§)=M(§) (1.5)

J e"dV =W, (1.6)

where m and M are bounded measurable function. The corresponding set of
Riemannian manifolds has an obvious geometric meaning. To see this meaning let
us consider the case where m and M are positive and constant and ¢ is a smooth
function. Then the condition (1.5) states that the metrics G and G are equivalent.
That is

md(x, y)sa(x, y)=Md(x, y), (1.7)

where d(x, y) and d(x, y) are the distances between the points x and y according
to the metrics G and G respectively. The condition (1.6) means that the manifold
M has a fixed volume W,

By C* we denote the set of functions ¢ which belong to C and satisfy the
condition

(M(8) — o())(@(§)—m(£)=0 (1.8)

almost everywhere. A set of corresponding Riemannian manifolds to C* is a set
of non-smooth conformal manifolds to # which have almost everywhere either
the minimal or the maximal distortion and a fixed volume W. The main result of
this paper is

THEOREM 1. Let M be a compact smooth manifold of dimension n=2. Let
C and C* be nonempty sets of functions defined by the conditions (1.5), (1.6) and
(1.8), (1.6) respectively. Let F(&,,...,&) be a continuous function on RY in-
creasing with respect to each of its arguments. Then

in(f:F(nl&P), cees Mo (@) =1C1;f F(p1(¥), . . ., pp (). (1.9)

The proof of this theorem is given in the next section. In the last section we
study in detail the problem min w,(¢), ¢ € C in the case where M is a two
dimensional sphere S? and the functions m(¢) and M(&) are constant. We show
that the minimum in question is achieved for a certain function ¢* € C* which is
characterized almost completely. Finally if m = 0 then this minimum is completely
determined.
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2. Proof of the main result

Let ¢ be a positive smooth function. Then according to the classical Courant
principle p,(¢) is characterized as follows:

My (@)= max minJ. n-2 2 g' aaxu ;u, dv/j (2.1)

for---» fo-r u Ju i,j=1

where u satisfies the orthogonality conditions

J ¢"ffdv=0, j=0,...,p—1. (2.2)
M .

However, to prove Theorem 1 one needs another characterization of wu,(¢). It
was named by Pdlya and Schiffer as the convoy Principle [7] (see also [2] for the
version stated here).

The Convoy Principle

Let ¢ be a positive smooth function. Let f, . . ., f, be continuous and differenti-
able functions, satisfying the conditions

n L. 2.3
I flﬁ‘p dV:Sija l,]=09 1a'--7p' )
M
Let A(o, fo,-..,f,)=(a;)5 be the matrix
- aﬁ af,) (2.4)
, —LdV.
G = L (,,Z=1 8" ax= 9xP

Denote by “‘0(‘p7 f09 LI fp)’ LS ‘-Lp(‘p’ an ceey fp) the eigenvalues Of A(‘P7 fO,
, f,) arranged in the increasing order. Then

me(e)=inf (o, for.. s f)s k=0,....p 23)

The infimum is achieved for the eigenfunctions us=1, u,, ..., u, of (1.2).

For an arbitrary non-negative measurable function ¢(#0) we let (2.5) be the
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definition of u,(¢). It is easy to show that (2.5) holds for any k <p for this choice
of ¢.

Proof of Theorem 1. First we show that

F(p'l((P’ f(b e ’fp)a st I"'p(‘P’ fOs s >fp))2i(1;lfF(Ml(¢)a cee “'p(d’)) (2-6)

for a function ¢ of the form

M=

B, B.=0,%,eC*,i=1,...,q, ), B:=1. 2.7)

n __
¢ =
i=1 i=1

Let xs be a characteristic function of the set Sc#. Thus e C* can be
represented

Yg=m+xs(M—m) (2.8)
Clearly
Yt=m"+xs(M"—m") 2.9

So S satisfies the condition

L (M"—m™) dV=W—J‘ m"dV (2.10)

M

Let Sy, ..., S, be the sets corresponding to the functions ¢, . . ., ¢,. Thus we can
find a partition T}, ..., Ty of M such that the following condition holds

.LZJI’I}=M,TiﬂT,-=¢ for i#j,i,j=1,..., N, (2.11)
each T; is a measurable set and for a given positive &

L dV<eg, i=1,...,N (2.12)
Furthermore

N
X = Y axr, oy(1—a)=0, i=1,...,qj=1,...,N (2.13)
=1

]
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Let

where ¢; is defined by the equality
c

,-L (M"—m")dV = W—L m“dV) (2.15)

Thus 6" satisfies (1.6) and
N N
"= af=m"+) o;cixr,(M" —m™),
i=1 i=1

N
=0, j=1,...,N, ) =1 (2.16)
=1

o=¢t, j=1,...,N (2.17)

Let fo, ..., f, be smooth functions satisfying the condition (2.3) Consider the
quadratic form

i

Loty ot=[ o | L o5 (L en)in (£ 6s)]av cao

Let

N
A
{é = Z al_[mn-‘2+cixﬂ(n[n—2__mn—2)] (2 9)
i=1

As 0=(n—2)/n<1 from the concavity of £ 2" we deduce

(n—2)/n

N N
[l B ]
i=1 i=1

N N
= (l— Z a,c,-xTi)m"‘zﬂ- (Z aic,.xT,)M"'2= ¢ (2.20)
i=1 j=1
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A < df; df; ..
4@ oo i= | o gL av, ij=o,. (2.21)
L K 1=1 X o0x

Then the inequality (2.20) implies

D

Z aij((p9 an v . ’fp)gigj = Z dii(é’ an LS fp)égj (2'22)

i,j=0 i,j=0

Denote by fi,=...=<f, the eigenvalues of the matrix A(, fo,...,f,)=
(@;(&, fo, - - - » f,))5, Now the inequality (2.22) implies [S, Ch. 10]

wi(@, fo, - - .5 f,) = Iy, i=0,...,p (2.23)

Consider (p + 1)(p +2) equations in unknowns 8, ..., By

Y B[ [m"+eon (M- mIff =5
s=1 M

sgl Bs J:“ [m" 2+ coxq, (M™ 72— m"—Z)](ka‘; 1 g"! aafk :f,)

=a’ii(¢sf0:---7fp)a 0 -5 P (224)

Demand also ) B, =1and B, <c.; ', s=1, ..., N. Note that we have an admissi -
ble solution ey, ..., ay. Suppose that the & in (2.12) is small enough. Then of
course N must be large. Assume that N>(p+1)(p+2)+1. In that case there
exists a solution af, ..., af such that at most (p +1)(p +2)+ 1 coordinates a*, do
not satisfy a*(c;'—a®)=0.

Let

(W*)" = Z a*6* = 2‘, a*[m" + cxr, (M™ —m™)] (2.25)

s=1

Thus (M — ¢*)(*—m) #0 on a set S whose measure is less than [(p+1)(p+2)+
1]e.
Furthermore

N
(dl*)n—2¢ Z aa:(mn—z_’_chTa(Mn—z___mn—Q)]
s=1
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on a set S. Thus, given ¢, fo, ..., f, and £,>0 fixed we can find £ small enough
such that
“'i(‘p’fo’°--afp)zu‘i(d’*aan-'-:fp)_ei’ i=0,---,p- (226)

Furthermore we can find ¢™* in the set C* such that ¢*=¢™* on M —S. This
means that

“‘i(‘paf()a--"fp)zui(w*afo’"'afp)_el’ i'——"O,...,p, (227)
which proves (2.6) for ¢ of the form (2.7). This in return implies (2.6) for any ¢
and fixed fo, . . ., f, satisfying the conditions (2.3). From the characterization (2.5)
we deduce

F(p(o), ..., up(rp))Zig*f F(p,(¥), . .., mp ().

This of course is equivalent to (1.9). The proof of the theorem is completed.

3. Compact surfaces conformally equivalent to the two dimensional sphere

Let us consider two dimensional compact Riemannian manifolds, i.e. n =2. As
in the Rayleigh ratio ¢">=1 we have that u,(¢) are the eigenvalues of the
equation

Au+pe*u=0 _ (3.1)

where A is the original Laplacian. Let # be the unit sphere S>.

S%= {x | x = (x?, x?, x?), Z (x)?= 1}. (3.2)

i=1

Assume that 0=m<M are constants. In that case we demonstrate that
minc (@) is achieved for a certain function ¢™ which is characterized in the
sequel. This is done by using the symmetrization principle. See [8] and [4] for use
of the symmetrization method to establish bounds for the appropriated eigen-
values. Let f be a measurable function on S* with respect to the natural measure
dV on the unit sphere. The point (Schwarz) symmetrization of f with respect to a
given point O is defined as follows. Denote by d(O, P) the spherical distance



Extremal Eigenvalue problems 501

between the points O and P. Then the functions f, and f_ are equimeasurable to
f, f+ and f_ depends only on the distance d(O, P), and f,(f.) is increasing
(decreasing) functions of d(O, P). Recall, that f and g are called equimeasurable
if for any real a the sets f>a and g> a have the same (spherical) measure. We
have the classical inequalities (see for details [4]).

fg-av=| re.av=[ feav=| fe.av=-| feav, @3
J 82 s? s? s2 s?
\Vf. > dV
°s? sj IVf|? av. (3.4)
VfPav| =

S

Here by |Vf| we mean the natural gradient on S?, i.e.

V= Y gttt

L5210 axtaxt
THEOREM 2. Let S? be the unit sphere in R> of the form (3-2). let M>m =0 be
constants. Denote by C a nonempty set of measurable functions on S* satisfying the
conditions (1.5) and (1.6) Consider the problem min w,(¢) on C, where p,(¢) is the
first nontrival eigenvalue of (3.1) on S>. Then this minimum is achieved for a
function @™ = @*(x;) of the form
e*(x3)=M for —1=x,=<h,, h,<x;=<1,

e*(x3)=m for h,<x;3<h,, (3.5)

The eigenvalue w,(¢™) is the first nontrivial eigenvalue of the problem.
d 2 du) ®(g\2
"y — — |4+ = 0 .
(-5 +uerwru=o, (3.6

V122 u'(t)=0 for t==1. (3.7)
The difference h,— h, is determined by the equation (1.6).

2II{m*(h,— h)) + M*[2—(h,— h)T} = W. (3.8)

Furthermore, the corresponding solution u of (3.6) (n = p,(¢™)) has to satisfy either
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the condition

u(hy) = —u(hy) (3.9)

-1<h,=h,<1, (3.10)
or the condition

O<u(—1)=—u(h, (3.11)
if .
h,=-1 (3.12)

(Note that ¢*(—x,) is also extremal thus if (3.10) does not hold we may assume
(3.12)).

Proof. We decompose the proof into 2 steps. (i) Let ¢ € C. Let v be the
eigenfunction of (3.1) corresponding to w,(¢). As fs2 v¢>dV =0 the function v
changes its sign. Let I, and I, be the sets where v =0 and v <0 respectively.
Denote by v,, ¢, and v,, ¢, the restrictions of », ¢ to the sets I, and I, respectively.
We extend v,, ¢, and v,, ¢, to S* by assuming v, = ¢, = v, = ¢, =0 outside the
domains I, and I, respectively. Let v¥, ¢, v%, ¢% denote the decreasing symmet-
rization of vy, ¢4, U,, —¢, With respect to the point x;=1. Let & be the unique
number such that the measure of the x;=&; is equal to the measure of I,. So
v1(x3) = @T(x3) =0 for —1=x3=¢;, v3(x3) = @3(x3) =0 for & =x;=1.

According to (3.3) and (3.4) we have

[ verav=[  wirerrav,
I, Ei=x3=1
(3.13)
[ veravs| (W(e2) dV,
0 —1=x3<<¢;3 '
|Vo]? dV = |Vo¥|? dV,
‘I, JEi=x,y=1
(3.14)
|Vv]? dV = |Vo%]? dV

"12 “"1SX3<€3
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Let ¢(x5, hy, hy) = @(h,, h,) be defined by (3.5). The numbers —1=h,<§=<h,<
1 are uniquely determined by the conditions

(@*)2dV = j o(hy, By dV,
JEy=x,3=1 Ey=x,=<1
(@%?dV = j oy, by V. (3.15)
J-1=x3<E; —1=x3<&;

From the classical lemma of Neyman and Pearson we deduce

j (P22 dV = j oy, ho)? (v%) AV,
~—§3SX3<1 E3=x3=1
(3.16)
[ evevravs| et mrwrav.
—1<x3<&,y —1=x3<&;

Combining the inequalities (3.13), (3.14) and (3.16) we obtain

. o

wm@)=| wopav/[ vierav=| wirav/| @hret, hyav,
T, T, JGg2 o

S2

r

pale)= | voPav/ f ve?dvz| VosFav/| @hetn, hyav
1, 1, S2 J

o S2

(3.17)

Now the convoy principle implies that w,(¢)= w,(¢(h,, h,)).

(ii) Introducing the parameter t= x; we easily deduce that u,(¢(h,, hy)) is the
first nontrivial eigenvalue of (3.6) with the free boundary conditions (3.7).
Furthermore in terms of the variable ¢t the condition (1.6) for ¢(h,, h,) is
equivalent to (3.8). Thus minc w,(¢)=min u,(¢(h,, h,)). In view of (3.8) w,(¢(h,,
h,)) depends only on one parameter, for example h,. Using the classical Sturm-
Liouville theory, one can show that min w,(¢(h,, h,)) is achieved for some

¢*=@(hT, h3).
Suppose first that —1<h¥<h*<1 (the case h* = h% is trivial). Let

¢. =@(hT—¢ hi—¢) (3.18)
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for an arbitrary small enough e. Choose a constant 8 such that

J @2 (u+d)dt=0 (3.19)
Thus
211
8 =—v—V— e(M?>—mA)[uh) —uh®)]+o(e)e (3.20)

Note as M >0 u is strictly monotonic in (—1, 1) and therefore u(h¥)—u(h%)#0.
From the minimal characterization of w,(¢.) we have

1

A=-t)[(u+8)F dt

ma(@) =—— (3.21)
J. e2(u+6)* dt
-1
Assume the normalization
1
J (e®*u?dt=1, u(—1)>0. (3.22)
—1
Then
pi(e.) = pi(@™ {1+ e(M?—m*)[u*(h}) — u?(h3) ]} +o(e)e (3.23)

From the inequality u,(¢.)= u,(¢™) and the inequality above we conclude

0= e{(M?>—m?[u*(h})—u?*(h%)]+o(e)}. (3.24)
As & has arbirtary sign we qonclude

u*(h*) = u?h%). (3.25)

Since in that case u is strictly monotonic, we deduce that u(h*)= —u(h?) which
proves (3.9).

Suppose now that —1=hT<h¥*<1. According to the part (i) of the proof for
the extremal ¢, the function u must vanish in the interval [h¥*, h%]. so u(h%)=<0.
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We can use the function ¢, for e‘<0. The formula (3.20) is valid as
u(h®)—u(h*)>0, so for a small negative £ (3.24) holds. Thus
u’(—1)=u?h3).

As u(—1)>0 and u(h?) =0 we deduce that u(—1)=< —u(h?). The proof of the
theorem is completed.
We conjecture

Conjecture. Let the assumptions of Theorem 2 hold. Then the extremal function
©* given by (3.5) is an even function of x, i.e. h,= —h,. Note that if ¢* is even
then the corresponding eigenfunction u is odd and the condition (3.9) trivially
holds. We prove the above conjecture in case that m =0.

THEOREM 3. Let the assumptions of Theorem 2 hold. Assume furthermore
that m =0. Then minc (@)= p,(@*) where ¢* is an even function of the form
(3.5).

Proof. We claim that — 1< h, < h,<1. Otherwise we may assume that ¢*(t) =
0 for —1=h;<t=<h,. As u satisfies (3.6) and (3.7) we deduce that u(t)=
u(—=1)>0 for —1=<t=<h,. This contradicts the condition (3.11). Thus (3.10)
holds. To avoid the trivial case assume that h, <h,. Suppose that ¢*(t) is not
symmetric. As ¢™*(—t) is also extremal we may assume

h,< —h,. (3.26)
Let £ be the unique zero of u. According to the proof of Theorem 2

h,<é<h, (3.27)
We claim that

£>0. (3.28)
Let

_(A=u'®)
u(t)

(-1

V(t)= (=)

U(t)

(3.29)
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Then V and U satisfy the differential equations

Vi=pe*P+1—5  U=we™(-0°+ 1[_];, p=uy(e®), (3.30)
with the initial conditions

V(-1)=U(-1)=0. (3.31)
Furthermore

V)<, —1=t<g U(t) <o, —1=t< - V(§)=U(—§) =, (3.32)
and

e*(t)=o*(—t), —1=t=h,, ¢*(— t)i o*(), hy<t<h,. (3.33)

Combining (3.27), (3.32) and the inequality above, we get —& <& which proves
(3.28). Consider the equation (3.6) for h,<t=<h,. Thus (1—-t*)u’=a for h;<t=<
h,. So

1

1+t
a[l B

_a 1+¢
“O=3 1" 1= ]

n1—§
as hy=<¢=<h,. Now (3.9) implies that

(1+h2)(1+h1)—21n 1+¢

I Ty a-hy "1-¢

From (3.26) and the equality above we deduce that &£ <0. This contradicts (3.28).
The contradiction above establishes the theorem.
In conclusion, let us recall the result due to Hersch [6].

Ai(@)=8II/W (3.34)

for any non-negative bounded ¢ which satisfies the condition (1.6) with n=2.

This means maxc A,(¢) = A,(¢**), where ¢™** is a constant function equal to
(W/4IDY>.
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