Balanced splittings of Semi-free actions of finite groups on homotopy spheres.

Autor(en): Anderson, Douglas R. / Hambleton, I.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 55 (1980)

PDF erstellt am:
17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-42367

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Balanced splittings of Semi-free actions of finite groups on homotopy spheres

Douglas R. Anderson ${ }^{(1)}$ and Ian Hambleton ${ }^{(2)}$

Throughout this paper we work in the smooth category. In particular, the terms "manifold" and "action" mean "smooth manifold" and "smooth action" respectively.

Let Σ^{n+k} be a homotopy sphere of dimension $n+k$ and let $\rho: G \times \Sigma \rightarrow \Sigma$ be a semi-free action of the finite group G on Σ. The fixed point set of this action is an n-manifold, denoted by either F^{n} or Σ^{G}, and G acts freely on $\Sigma-F$. A splitting of such an action is a decomposition of Σ of the form $\Sigma=D_{1} \cup D_{2}$ where D_{i} ($i=1,2$) is a closed G-invariant $(n+k)$-disk such that $\partial D_{i}=D_{1} \cap D_{2}$ meets F transversally. In this case, the splitting $F=F_{1} \cup F_{2}$ where $F_{i}=F \cap D_{i}(i=1,2)$ is called the induced splitting of F. A splitting of the action is a (strong) balanced splitting if the induced splitting is a (strong) balanced splitting of F in the sense of the following definition.

Let F^{n} be a closed n-manifold. A splitting of F is a decomposition of F of the form $F=F_{i} \cup F_{2}$ where $F_{i}(i=1,2)$ is an n-manifold with $\partial F_{i}=F_{1} \cap F_{2}$. A splitting is balanced if $H_{j}\left(F_{1}\right)$ is isomorphic to $H_{j}\left(F_{2}\right)$ for all j. A strong balanced splitting is a balanced splitting $F=F_{1} \cup F_{2}$ such that A_{1} is equal to A_{2} where $A_{i}=\operatorname{ker}\left(H_{m-1}\left(F_{0}\right) \rightarrow H_{m-1}\left(F_{i}\right)\right)(i=1,2), m=[n / 2]$ and $F_{0}=F_{1} \cap F_{2}$.

In this paper, we investigate the problem(s) of whether a given semi-free action admits a (strong) balanced splitting. We show that if $\operatorname{dim} F=2 m$, then a balanced splitting of the action always exists. When $\operatorname{dim} F=2 m+1$, we introduce a sort of "semi-characteristic" invariant which is the main obstruction to the existence of a balanced splitting. A similar invariant is the obstruction to the existence of a strong balanced splitting of the action without regard for the parity of $\operatorname{dim} F$. Finally, we construct examples of semi-free actions whose semicharacteristic invariants are non-zero. Such actions, then, have no strong balanced splittings.

[^0]One class of actions for which balanced splittings exist is obtained by the "twisted double" construction. Namely, let $\rho: G \times D^{n+k} \rightarrow D^{n+k}$ be a semi-free action of the finite group G on an $(n+k)$ disk. Let $\Sigma=D \cup_{\phi} D$ where $\phi: \partial D \rightarrow$ ∂D is an equivariant diffeomorphism. Our interest in the problem considered here arose from trying to understand the conditions under which a given semi-free action is a twisted double. An action that admits a balanced splitting (respectively, strong balanced splitting) resembles a twisted double (respectively, a double; i.e. ϕ is the identity), at least homologically. In that sense, such an action exhibits a rough sort of symmetry. An action with no (strong) balanced splitting is rather strongly asymmetrical.

We remark finally that the class of finite groups G that can act smoothly and semi-freely on a manifold is rather small - it consists of exactly the finite groups that admit a free linear representation. Although these groups have been classified by Wolf [22], this classification is not used in proving Theorem A and B below and it was used only to guide our search for the examples of Theorem C.

The first named author would like to thank McMaster University for its hospitality during the period when the research contained in this paper was done.

1. Statement of results

In this section, we outline the main flow of our argument and state our main results. We begin by setting the notational convention that for any finite group G, $\mathscr{D}(G)$ denotes the category of finite abelian groups of order prime to $|G|$, the order of G.

Let F^{n} be the fixed point set of a semi-free action of G on the homotopy sphere Σ^{n+k}. It follows from Smith theory that $\tilde{H}_{i}(F) \in \mathscr{D}(G)$ for $i<n$. Similarly, if the splitting $F=F_{1} \cup F_{2}$ is induced from a splitting of the action, then $\tilde{H}_{i}\left(F_{j}\right) \in$ $\mathscr{D}(G)(j=1,2)$ for all i, and $\tilde{H}_{i}\left(F_{0}\right) \in \mathscr{D}(G)$ for $i<n-1$ where $F_{0}=F_{1} \cap F_{2}$. A splitting satisfying these conditions will be called admissible.

We note that if F^{n} is any closed manifold such that $\tilde{H}_{i}\left(F^{n}\right) \in \mathscr{D}(G)$ for $i<n$, then admissible splittings of F are abundant. For example, let $D^{n} \subset F^{n}$ be an embedded n-disk and set $F_{1}=D^{n}$ and $F_{2}=F$-Int D^{n}. Suppose now that $F=\Sigma^{G}$ and that $F=F_{1} \cup F_{2}$ is an admissible splitting of F. We wish to obtain an obstruction to extending this splitting to a splitting of the action. This is done as follows:

Let $\mathscr{C}(G)$ denote the category of finitely generated, cohomologically trivial $Z G$ modules. If we regard the groups in $\mathscr{D}(G)$ as trivial $Z G$ modules, then Rim has shown that they are cohomologically trivial [14; Theorem 4.7]. Hence, there
is an inclusion $k: \mathscr{D}(G) \rightarrow \mathscr{C}(G)$ and an induced homomorphism $k_{*}: G_{0}(\mathscr{D}(G)) \rightarrow$ $\tilde{G}_{0}(\mathscr{C}(G))$ where $G_{0}(\mathscr{D}(G))$ and $G_{0}(\mathscr{C}(G))$ are the Grothendieck groups of the categories $\mathscr{D}(G)$ and $\mathscr{C}(G)$ respectively and $\tilde{G}_{0}(\mathscr{C}(G))=G_{0}(\mathscr{C}(G)) /\{[M] \mid M$ is a finitely generated free $Z G$ module\}. On the other hand, every finitely generated, projective $Z G$ module is cohomologically trivial. Hence, there is also an inclusion $l: \mathscr{P}(G) \rightarrow \mathscr{C}(G)$ where $\mathscr{P}(G)$ is the category of finitely generated projective $Z G$ modules. The induced homomorphism $l_{*}: \tilde{K}_{0}(Z G) \rightarrow \tilde{G}_{0}(\mathscr{C}(G))$ is an isomorphism by another result of Rim [14; Theorem 4.12] (cf. Proposition 2.2 below) and we identify these groups via this isomorphism. Finally, let $A(G)=$ $\operatorname{Im}\left(k_{*}: G_{0}(\mathscr{D}(G)) \rightarrow \tilde{K}_{0}(Z G)\right)$.

Suppose now that X is a finite $C W$ complex such that $\tilde{H}_{i}(X) \in \mathscr{D}(G)$ for all i. Let $\tilde{\chi}(X ; G) \in G_{0}(\mathscr{D}(G))$ and $\chi(X ; G) \in A(G)$ be defined by

$$
\tilde{\chi}(X, G)=\sum_{i \geq 1}(-1)^{i}\left[H_{i}(X)\right]
$$

and

$$
\chi(X, G)=k_{*} \tilde{X}(X, G) .
$$

We are now ready to state our first main result.

THEOREM A. Let (Σ, ρ) be a smooth semi-free action of the finite group G on the homotopy $(n+k)$ sphere Σ with connected fixed point set F^{n}. If $1 \leq n \leq k-2$, then the admissible splitting of F as $F_{1} \cup F_{2}$ is induced by a splitting of the action if and only if $\chi\left(F_{1} ; G\right)=0$.

We remark that $\chi\left(F_{1} ; G\right)=(-1)^{n} \chi\left(F_{2} ; G\right)$ so the above result does not depend on the ordering of F_{1} and F_{2}.

The reader will note that this theorem is similar in spirit to results of Jones [6] and Oliver [9]. Indeed, it was inspired by their work.

An obvious necessary condition for the existence of a (strong) balanced splitting of the action is that there be an admissible (strong) balanced splitting of F. In section 4, we show that if $n=2 m$, then F always has such splittings; but, if $n=2 m+1$ and $H_{1}\left(\pi_{1}(F) ; M\right)=0$ for all $\pi_{1}(F)$ modules M then F has such splittings if and only if $\left|H_{m}(F)\right|$ is a square. Thus $\left|H_{m}(F)\right|$ is a "primary obstruction" to finding a (strong) balanced splitting of the action.

Now let F^{n} be a closed manifold such that $\tilde{H}_{i}\left(F^{n}\right) \in \mathscr{D}(G)$ for $i<n$ and, if $n=2 m+1$, suppose $\left|H_{m}(F)\right|$ is a square. We define a semi-characteristic $\tilde{\chi}_{1 / 2}(F ; G) \in A(G)$ by setting $\tilde{\chi}_{1 / 2}(F ; G)=k_{*} \rho_{1 / 2}(F ; G)$ where $\rho_{1 / 2}(F ; G) \in$
$G_{0}(\mathscr{D}(G))$ is given by

$$
\rho_{1 / 2}\left(F^{n} ; G\right)=\left\{\begin{array}{lll}
\sum_{i=1}^{m-1}(-1)^{i}\left[H_{i}(F)\right] & \text { if } & n=2 m \\
\sum_{i=1}^{m-1}(-1)^{i}\left[H_{i}(F)\right]+(-1)^{m}[Z / q] & \text { if } & n=2 m+1
\end{array}\right.
$$

where $q=\left|H_{m}(F)\right|^{1 / 2}$.
Now let $x \rightarrow \bar{x}$ be the involution on $\tilde{K}_{0}(Z G)$ induced by sending $[P]$ to $-\left[P^{*}\right]$ where $P \in \mathscr{P}(G)$ and $P^{*}=\operatorname{Hom}_{Z G}(P, Z G)$. In Section 2, we show that every element $x \in A(G)$ satisfies $x=\bar{x}$. In particular, $\tilde{\chi}_{1 / 2}(F ; G)=\overline{\tilde{\chi}_{1 / 2}(F ; G)}$ if $n=2 m$. In Section 4, we show that if $F^{n}=\Sigma^{G}, n=2 m+1$, and $\left|H_{m}(F)\right|$ is a square, then $\tilde{\chi}_{1 / 2}(F ; G)=-\tilde{\chi}_{1 / 2}(F ; G)$. In either case, then $\tilde{\chi}_{1 / 2}(F ; G)$ represents a well defined element of $H^{n}(Z / 2 ; A(G))$ which we denote by $\chi_{1 / 2}(F ; G)$.

THEOREM B. Let (Σ, ρ) be a semi-free action of the finite group G on the homotopy $(n+k)$-sphere Σ with connected fixed point set F^{n} where $n \neq 3,4$, $1 \leq n \leq k-2$.
(i) If $n=2 m$, then the action has a balanced splitting. It has a strong balanced splitting if and only if $\chi_{1 / 2}(F ; G)=0$.
(ii) If $n=2 m+1$ and $H_{1}\left(\pi_{1}(F) ; M\right)=0$ for all $\pi_{1}(F)$ modules M, then the action has a balanced splitting if and only if it has a strong balanced splitting. The latter occurs if and only if $\left|H_{m}(F)\right|$ is a square and $\chi_{1 / 2}(F ; G)=0$.

In particular, Part (ii) of Theorem B holds if $\pi_{1}(F)=0$ or if $H_{m}(F)=0$.
If G is cyclic of order n, then a result of Jones [6; Lemma 1.1] shows that $A(G)=0$. Similarly, a result of Ullom [18; Proposition 2.10] shows that the exponent of $A(G)$ divides the Artin exponent of G; which, in turn, divides $|G|$. Hence, if G has odd order, so does $A(G)$ and $H^{n}(Z / 2 ; A(G))=0$ for all n. In these two cases, then, $\chi_{1 / 2}(F ; G)$ always vanishes.

The simplest examples of non-cyclic, even order groups that admit free linear representations are the generalized quaternion groups $\mathrm{Q2}^{1}(l \geq 3)$. These groups have the presentation $\left\langle a, b ; a^{21-1}=1, b^{2}=a^{21-2}, b a b^{-1}=a^{-1}\right\rangle$ and have order 2^{l}.

THEOREM C. Let $G=Q 2^{1}$ and let d be the minimal dimension of a free linear representation of G. Let n and k be integers such that $6 \leq n \leq k-6$ and $k \equiv 0$ $(\bmod d)$. If $n \neq 1(\bmod 4)$ then there exists a semi-free action of G on a homotopy sphere Σ^{n+k} with fixed point set F having dimension n such that $\chi_{1 / 2}(F ; G) \neq 0$.

We remark that the fixed point sets of these examples are actually doubles.

We also remark that since it is easy to show that $\chi_{1 / 2}(F ; G)$ is a cobordism invariant, these actions are not cobordant to linear actions.

2. Some algebra

In this section, we obtain the basic algebraic results about the groups $G_{0}(\mathscr{D}(G))$ and $A(G)$ that we will need.

PROPOSITION 2.1. The group $G_{0}(\mathscr{D}(G))$ is free abelian on the generators $\{[Z / p] \mid p$ is a prime, $p \nmid|G|\}$.

Proof. Any group $T \in \mathscr{D}(G)$ is isomorphic to a direct sum $C_{1} \oplus \cdots \oplus C_{t}$ where C_{i} is cyclic of order $p_{i}^{r_{i}}$ for some prime p_{i} where $p_{i}+|G|$. Hence, [$\left.T\right]=$ $\left[C_{1}\right]+\cdots+\left[C_{1}\right]$ in $G_{0}(\mathscr{D}(G))$. An easy induction argument using the exact sequence $0 \rightarrow Z / p^{r-1} \rightarrow Z / p^{r} \rightarrow Z / p \rightarrow 0$ shows that $\left[Z / p^{r}\right]=r[Z / p]$ in $G_{0}(\mathscr{D}(G))$. Hence, $\{[Z / p] \mid p$ is a prime, $p+|G|\}$ generates $G_{0}(\mathscr{D}(G))$.

Now let $F(G)$ be the free abelian group with generators $\{[p] \mid p$ is a prime, $p+|G|\}$. If $T \in \mathscr{D}(G)$ has order $p_{1}^{r_{1}} \cdots p_{s}^{r}$, let $\sigma(T)=r_{1}\left[p_{1}\right]+\cdots+r_{s}\left[p_{s}\right] \in F(G)$. It is easy to check that σ induces an isomorphism $\sigma_{*}: G_{0}(\mathscr{D}(G)) \rightarrow F(G)$. This completes the proof.

PROPOSITION 2.2. The inclusion of categories $l: \mathscr{P}(G) \rightarrow \mathscr{C}(G)$ induces an isomorphism $l_{*}: \tilde{K}_{0}(Z G) \rightarrow \tilde{G}_{0}(\mathscr{C}(G))$.

Proof. If $M \in \mathscr{C}(G)$, then by Rim [14; Theorem 4.12] M has a short resolution $0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ where $P_{0}, P_{1} \in \mathscr{P}(G)$. The map $[M] \mapsto\left[P_{0}\right]-\left[P_{1}\right]$ induces a well defined homomorphism inverse to l_{*}.

We wish now to give an alternate description of $A(G)$. We recall that if r is a positive integer such that $(r,|G|)=1$, then Swan [16; Proposition 7.1] has shown that the submodule $\langle r, N\rangle \subset Z G$ is in $\mathscr{P}(G)$ where $N=\sum_{g \in G} g$. Swan also shows [17; Lemma 6.1] that the map $r \rightarrow[\langle r, N\rangle]$ defines a homomorphism $\partial:(Z /|G|)^{\times} \rightarrow$ $\tilde{K}_{0}(Z G)$ where $(Z /|G|)^{\times}$denotes the group of units in $Z /|G|$.

PROPOSITION 2.3. (i) $A(G)=\operatorname{Im}$.
(ii) Every element $x \in A(G)$ is of the form $x=k_{*}[Z / q]$ for some integer q prime to $|G|$. Furthermore, $x=\bar{x}$.

Proof. Define a homomorphism $\tau: G_{0}(\mathscr{D}(G)) \rightarrow(Z| | G \mid)^{\times}$by sending [Z/p] to p where $[Z / p]$ is one of the generators of $G_{0}(\mathscr{D}(G))$ given in 2.1. We note that
$\partial \tau=k_{*}$, for if p is a prime not dividing $|G|$, then

$$
\begin{equation*}
0 \rightarrow Z G \xrightarrow{\times p}\langle p, N\rangle \longrightarrow Z / p \longrightarrow 0 \tag{*}
\end{equation*}
$$

is a projective resolution of Z / p. Since τ is obviously onto, $A(G)=\operatorname{Im} k_{*}=\operatorname{Im} \partial$ and (i) follows.

To prove (ii), note that $x=\partial(q)$ for some $q \in(Z /|G|)^{\times}$. If we take q to be an integer $0<q<|G|$, then $x=\partial(q)=\partial \tau[Z / q]=k_{*}[Z / q]$. To show $x=\bar{x}$ it suffices to show that $k_{*}[Z / p]=\overline{k_{*}[Z / p]}$ whenever p is an integer prime to $|G|$. To see this, take the dual of the sequence $\left(^{*}\right)$ above. This gives an exact sequence

$$
\begin{equation*}
0 \rightarrow\langle p, N\rangle^{*} \rightarrow(Z G)^{*} \rightarrow \operatorname{Ext}_{Z G}(Z / p, Z G) \rightarrow 0 \tag{**}
\end{equation*}
$$

The right hand term is isomorphic to Z / p as abelian groups. It inherits a $Z G$ module structure from the maps "multiplication by g " $(g \in G)$ on $Z G$. However, since the map, "multiplication by $(g-1)$ " on $Z G$ factors through $\times p: Z G \rightarrow$ $\langle p, N\rangle$, the $Z G$ module structure on $\operatorname{Ext}_{Z G}(Z / p, Z G)$ is trivial. Hence $k_{*}[Z / p]=$ $k_{*}\left[\operatorname{Ext}_{Z G}(Z / p, Z G)\right]=-\left[\langle p, N\rangle^{*}\right]=\overline{k_{*}[Z / p]}$ by the definition of , and (ii) follows.

PROPOSITION 2.4. (i) Let $C_{*}=\left\{C_{i}, \partial_{i}\right\}$ be a chain complex such that $C_{i}=0$ for $i<0$ and for $i>n$ where n is some positive integer. If C_{i} and $H_{i}\left(C_{*}\right)$ are in $C(G)$ for all i, then

$$
\sum_{i \geq 0}(-1)^{i}\left[C_{i}\right]=\sum_{i \geq 0}(-1)^{i}\left[H_{i}\left(C_{*}\right)\right]
$$

in $\tilde{G}_{\mathbf{0}}(\mathscr{C}(G))=\tilde{K}_{\mathbf{0}}(Z G)$.
(ii) Let p and q be positive integers with $q<p$. Suppose that $0 \rightarrow H_{p}^{\prime} \rightarrow H_{p} \rightarrow$ $H_{p}^{\prime \prime} \rightarrow H_{p-1}^{\prime} \rightarrow \cdots \rightarrow H_{q} \rightarrow H_{q}^{\prime \prime} \rightarrow 0$ is an exact sequence of modules in $\mathscr{C}(G)$. Then in $\tilde{G}_{0}(\mathscr{C}(G))=\tilde{K}_{0}(Z G)$

$$
\sum_{i=q}^{p}(-1)^{i}\left[H_{i}\right]=\sum_{i=q}^{p}(-1)^{i}\left[H_{i}^{\prime}\right]+\sum_{i=q}^{p}(-1)^{i}\left[H_{i}^{\prime \prime}\right]
$$

Proof. This follows easily by standard arguments.

3. The proof of Theorem \mathbf{A}

In this section we give the proof of Theorem A. The necessity of having $\chi\left(F_{1} ; G\right)=0$ for an induced splitting is contained in the following lemma.

LEMMA 3.1. Let F^{n} be the fixed point set of a semi-free action of G on Σ^{n+k}. Then
(i) $\chi\left(F^{n}-x ; G\right)=0$ for any $x \in F^{n}$.
(ii) If the splitting $F=F_{1} \cup F_{2}$ is induced by a splitting of the action, then $\chi\left(F_{1} ; G\right)=0$.
(iii) For any admissible splitting $F=F_{1} \cup F_{2}$,

$$
\chi\left(F_{1} ; G\right)=(-1)^{n} \chi\left(F_{2} ; G\right)
$$

Proof. We first show (ii). Let $D_{1} \cup D_{2}$ be the splitting of the action that induces the given splitting of F. It has been shown by Illman [5] that the G-space D_{1} has the structure of a finite $G-C W$ complex. It now follows from the exact sequence of the pair $\left(D_{1}, F_{1}\right)$ and 2.4 that

$$
\chi\left(F_{1} ; G\right)=-\sum_{i \geq 0}(-1)^{i}\left[H_{i}\left(D_{1}, F_{1}\right)\right]=-\sum_{i \geq 0}(-1)^{i}\left[C_{i}\left(D_{1}, F_{1}\right)\right]
$$

where $C_{*}\left(D_{1}, F_{1}\right)$ denotes the cellular chains on $\left(D_{1}, F_{1}\right)$. Since G acts freely on $D_{1}-F_{1}, C_{i}\left(D_{1}, F_{1}\right)$ is a free $Z G$ module for all i. Hence $\chi\left(F_{1} ; G\right)=0$.

To prove (i), we note that if $x \in F^{n}$ then there exists a G-invariant disk D_{1}^{n+k} with center x such that $F_{1}=D_{1} \cap F$ is a disk. Let $D_{2}=\Sigma-\operatorname{Int} D_{1}$ and $F_{2}=D_{2} \cap F$. Then by (ii) $0=\chi\left(F_{2} ; G\right)=\chi(F-x ; G)$ and (i) follows.

To prove (iii), we note that a consideration of the exact sequence of the pair $\left(F-x, F_{1}\right)$ yields the exact sequence

$$
\begin{aligned}
0 \rightarrow H_{n-1}\left(F_{1}\right) \rightarrow H_{n-1}(F-x) \rightarrow H_{n-1}\left(F-x, F_{1}\right) \rightarrow \cdots & \\
& \rightarrow H_{1}\left(F_{1}\right) \rightarrow H_{1}(F-x) \\
& \rightarrow H_{1}\left(F-x, F_{1}\right) \rightarrow 0
\end{aligned}
$$

Hence, by 2.4 and (i)

$$
0=\chi(F-x ; G)=\chi\left(F_{1} ; G\right)+\sum_{i=1}^{n-1}(-1)^{i}\left[H_{i}\left(F-x, F_{1}\right)\right]
$$

For $i \leq n-1$, we have the isomorphisms

$$
H_{i}\left(F-x, F_{1}\right) \rightarrow H_{i}\left(F, F_{1}\right) \stackrel{e_{*}}{\leftarrow} H_{i}\left(F_{2}, F_{0}\right) \stackrel{d}{\longleftarrow} H^{n-i}\left(F_{2}\right)
$$

where $F_{0}=F_{1} \cap F_{2}=\partial F_{2}, e_{*}$ is an excision, and d is duality. Since $H_{j}\left(F_{2}\right) \in$
$\mathscr{D}(G)$ for $j \geq 1$, we also have the isomorphism

$$
\operatorname{Ext}\left[H_{n-i-1}\left(F_{2}\right) ; Z\right] \rightarrow H^{n-i}\left(F_{2}\right)
$$

It follows that $H_{i}\left(F-x, F_{1}\right) \approx H_{n-i-1}\left(F_{2}\right)$ for $i \leq n-2$ and that $H_{n-1}\left(F-x, F_{1}\right)=0$. A similar argument shows that $H_{n-1}(F-x)$ vanishes. Hence so do $H_{n-1}\left(F_{i}\right)$ for $j=1,2$. It now follows that

$$
\sum_{i=1}^{n-1}(-1)^{i}\left[H_{i}\left(F-x, F_{1}\right)\right]=(-1)^{n-1} \chi\left(F_{2} ; G\right)
$$

and (iii) follows from the previous equation.
The proof that $\chi\left(F_{1} ; G\right)=0$ implies that the splitting of F is induced by a splitting of the action is contained in the corollary to the following proposition.

PROPOSITION 3.2. Let $m \geq 6$. Let M^{m} be a smooth ($m-1$)-connected m manifold with a semi-free G-action. Let $N^{n}=M^{G}$ be the fixed point set of this action and let $N_{1} \subset N$ be a connected codimension 0 submanifold with boundary such that $\tilde{H}_{i}\left(N_{1}\right) \in \mathscr{D}(G)$ for $i>0$. If $2 n+1 \leq m$, then there exists an [$m / 2$]-1 connected G-invariant submanifold $M_{1}^{m} \subset M^{m}$ such that $M_{1}^{G}=N_{1}$ and $(-1)^{i}\left[H_{i}\left(M_{1}\right)\right]=\chi\left(N_{1} ; G\right)$ for $i=[m / 2]$.

COROLLARY 3.3 If $2 n+2 \leq m$ and $\chi\left(N_{1} ; G\right)=0$, then there exists a G invariant disk $D^{m} \subset M^{m}$ with $D^{G}=N_{1}$.

Proof of 3.2. Let $p: E \rightarrow N$ be a closed G-tubular neighborhood of N. Let $\tilde{Q}=M-$ Int $E, Q=(M-\operatorname{Int} E) / G$, and $q: \tilde{Q} \rightarrow Q$ be the obvious quotient map. Using the facts that $H_{i}(\partial E) \rightarrow H_{i}(E)$ is an isomorphism for $i \leq m-n-2$ and that $2 n+1 \leq m$, it is easy to show that \tilde{Q} is $[m / 2]-1$ connected. Let $E_{1}=p^{-1}\left(N_{1}\right)$, $\tilde{Q}_{1}=S\left(E_{1}\right)$ the sphere bundle of E_{1}, and $Q_{1}=S\left(E_{1}\right) / G$. Then $Q_{1} \subset \partial Q$. Note that since $p: \tilde{Q}_{1} \rightarrow N_{1}$ has fiber S^{m-n-1} and $2 n+1 \leq m, p_{*}: H_{i}\left(\tilde{Q}_{1}\right) \rightarrow H_{i}\left(N_{1}\right)$ is an isomorphism for $i \leq n-1$.

We shall construct a sequence of submanifolds $V_{i} \subset Q, 0 \leq i \leq[m / 2]-1$ such that the following conditions hold:
(a) V_{i} is a smooth regular neighborhood of a $C W$ complex $X_{i}=Q_{1} \cup$ cells of dimension $\leq i+1$.
(b) $\left(Q, V_{i}\right)$ is $i+1$ connected.
(c) There exists a short exact sequence

$$
0 \longrightarrow H_{i+1}\left(\tilde{Q}_{1}\right) \xrightarrow{k_{*}} H_{i+1}\left(\tilde{V}_{i}\right) \longrightarrow P \longrightarrow 0
$$

where $\tilde{V}_{i}=q^{-1}\left(V_{i}\right), k: \tilde{Q}_{1} \rightarrow \tilde{V}_{i}$ is the inclusion, and $P \in \mathscr{P}(G)$ satisfies

$$
(-1)^{i+1}[P]=\sum_{i=1}^{i}(-1)^{j}\left[H_{j}\left(N_{1}\right)\right]
$$

(d) For $j>i+1, K_{*}: H_{j}\left(\tilde{Q}_{1}\right) \rightarrow H_{i}\left(\tilde{V}_{i}\right)$ is an isomorphism.

If we let $M_{1}=E_{1} \cup \tilde{V}_{i}$ for $i=[m / 2]-1$, then M_{1} is the desired submanifold of M. To see this, note that by (b), \tilde{V}_{i} is [$\left.\mathrm{m} / 2\right]-1$ connected since \tilde{Q} is. Then Mayer-Victoris and Van Kampen arguments show that M_{1} is [$\mathrm{m} / 2$]-1 connected and that for $i=[m / 2], H_{i}\left(M_{i}\right) \in \mathscr{P}(G)$ and satisfies $(-1)^{i}\left[H_{i}\left(M_{1}\right)\right]=\chi\left(N_{1} ; G\right)$, where we have used (c).

The construction of the manifolds V_{i} starts by letting V_{0} be a smooth collar neighborhood of Q_{1} in Q. Clearly (a) through (d) hold. Suppose V_{i} satisfying (a-d) has been constructed for some $i, 1 \leq i<[m / 2]-1$. (The construction of V_{1} from V_{0} is slightly different from the general case and will be described below.) Let $\partial_{+} V_{i}=\mathrm{Cl}\left[\partial V_{i}-Q_{1}\right]$.

LEMMA 3.4. The inclusion $\pi_{j}\left(\mathrm{Cl}\left(Q-V_{i}\right), \partial_{+} V_{i}\right) \rightarrow \pi_{j}\left(Q, V_{i}\right)$ is an isomorphism for $j \leq[m / 2]$.

Proof. Since V_{i} has the homotopy type of $Q_{i} \cup$ cells of dimension $\leq i+1$, and the image of any map may be pushed off Q_{1} by using a collar, $\left(V_{i}, \partial_{+} V_{i}\right)$ is $m-(i+1)-1$ connected by general position. It follows that the inclusion maps $\pi_{1}\left(\partial_{+} V_{i}\right) \rightarrow \pi_{1}\left(V_{i}\right) \rightarrow \pi_{1}(Q)$ are all isomorphisms. Hence, so is $\pi_{1}\left(\mathrm{Cl}\left(Q-V_{i}\right)\right) \rightarrow$ $\pi_{1}(Q)$. By homotopy excision $\pi_{j}\left(\mathrm{Cl}\left(Q-V_{i}\right), \partial_{+} V_{i}\right) \rightarrow \pi_{j}\left(Q, V_{i}\right)$ is an isomorphism for $j \leq m-i-2$. Since $i<[m / 2]-1,[m / 2] \leq m-i-2$ and the lemma follows.

We note that (b) implies that \tilde{V}_{i} is i-connected since Q is. Hence we have isomorphisms, $H_{i+1}\left(\tilde{V}_{i}\right) \leftarrow \pi_{i+1}\left(\tilde{V}_{i}\right) \rightarrow \pi_{i+1}\left(V_{i}\right)$ since $i \geq 1$. Since $p_{*}: H_{i+1}\left(\tilde{Q}_{1}\right) \rightarrow$ $H_{i+1}\left(N_{1}\right)$ is an isomorphism, $H_{i+1}\left(\tilde{Q}_{1}\right) \in \mathscr{D}(G)$ and we may choose a resolution

$$
0 \longrightarrow P_{1} \longrightarrow P_{0} \xrightarrow{\rho} H_{i+1}\left(\tilde{V}_{i}\right) \longrightarrow 0
$$

with $P_{k} \in \mathscr{P}(G)(k=0,1)$ such that P_{0} is a free $Z G$ module with basis e_{1}, \ldots, e_{s}. Let $\rho^{\prime}: P_{0} \rightarrow \pi_{i+2}\left(\mathrm{Cl}\left(Q-V_{i}\right), \partial_{+} V_{i}\right)$ be a homomorphism such that the diagram below commutes

We note that if $i<[m / 2]-2$, then ∂ is an isomorphism and ρ^{\prime} is unique, while, if $i=[m / 2]-2, \partial$ is onto, but may not be an isomorphism. In this case then ρ^{\prime} may not be unique.

Let $f_{j}:\left(D^{i+2}, S^{i+1}\right) \rightarrow\left(\mathrm{Cl}\left(Q-V_{i}\right), \partial_{+} V_{i}\right) \quad$ be a map representing $\rho^{\prime}\left(e_{j}\right)$ $(1 \leq j \leq s)$. General position, if $i<[m / 2]-2$, or standard piping arguments if $i=[m / 2]-2$, show that we may assume the f_{j} are embeddings with mutually disjoint images. We now let V_{i+1} be a smooth regular neighborhood if $V_{i} \cup$ $\bigcup_{j=1}^{s} f_{i}\left(D^{i+2}\right)$. It is obvious from the construction that V_{i+1} satisfies (a), while an examination of the exact sequence

shows that (b) holds.
To prove (c) and (d), we note that since $\left(V_{i+1}, V_{i}\right)$ is $(i+1)$ connected, $H_{p}\left(\tilde{V}_{i+1}, \tilde{V}_{i}\right)=0$ for $p \neq i+2$ and $H_{i+2}\left(\tilde{V}_{i+1}, \tilde{V}_{i}\right)=P_{0}$. It follows that $k_{*}: H_{j}\left(\tilde{Q}_{1}\right) \rightarrow$ $H_{j}\left(\tilde{V}_{i+1}\right)$ is an isomorphism for $j>i+2$. Furthermore, the diagram below commutes and has an exact row:

Since $\operatorname{ker} \rho=P_{1}$, we obtain the short exact sequence

$$
0 \rightarrow H_{i+2}\left(\tilde{Q}_{1}\right) \rightarrow H_{i+2}\left(\tilde{V}_{i+1}\right) \rightarrow P_{1} \rightarrow 0
$$

Since P_{0} is free, we have

$$
\begin{aligned}
& (-1)^{i+2}\left[P_{1}\right]=(-1)^{i+1}\left[H_{i+1}\left(\tilde{V}_{i}\right)\right]= \\
& \quad(-1)^{i+1}\left[H_{i+1}\left(\tilde{Q}_{1}\right)\right]+(-1)^{i+1}[P]=\sum_{j=1}^{i+1}(-1)^{i}\left[H_{j}\left(N_{1}\right)\right]
\end{aligned}
$$

by the inductive hypothesis and since $p_{*}: H_{i+1}\left(\tilde{Q}_{1}\right) \rightarrow H_{i+1}\left(N_{1}\right)$ is an isomorphism. This completes the proof of (c) and (d) and of the inductive step.

The construction of V_{1} from V_{0} is similar to the above argument. In this case, we note that there is a commutative diagram with exact rows and the indicated isomorphism

since \tilde{Q} is 2 -connected and $q: \tilde{Q}_{1} \rightarrow Q_{1}$ is a covering. Hence, there is an isomorphism $\pi_{2}\left(Q, Q_{1}\right) \rightarrow \pi_{1}\left(\tilde{Q}_{1}\right)$. The argument now proceeds essentially as above to kill $\pi_{2}\left(Q, V_{0}\right)=\pi_{2}\left(Q, Q_{1}\right)$. The details are left to the reader.

Proof of 3.3. If $m \geq 6$, let V_{n-1} be the manifold constructed in the proof above and notice that (c) implies that $H_{n}\left(\tilde{V}_{n-1}\right) \in \mathscr{P}(G)$ and that $(-1)^{n}\left[H_{n}\left(\tilde{V}_{n-1}\right)\right]=$ $\chi\left(N_{1} ; G\right)$ since $p_{*}: H_{n}\left(\tilde{Q}_{1}\right) \rightarrow H_{n}\left(N_{1}\right)=0$ is an isomorphism. Since $\chi\left(N_{1} ; G\right)=0$, we may attach trivial n-handles to V_{n-1} in Q to make $H_{n}\left(\tilde{V}_{n-1}\right)$ free over $Z G$. Since $2 n+2 \leq m$ we may then attach $(n+1)$ handles to \tilde{V}_{n-1} as above to kill $H_{n}\left(\tilde{V}_{n-1}\right)$ without introducing new homology.

If the manifold so obtained is denoted by V_{n}, then $W_{n}=\tilde{V}_{n} \cup E_{1}$ is contractible manifold with simply connected boundary. Hence it is a disk and 3.3 holds for $m \geq 6$.

If $m<6$, then $n=1$. In this case, N_{1} must be an interval and E_{1} is the desired disk.

4. The proof of Theorem B

In this section, we give the proof of Theorem B. It is based on the following lemmas whose proofs are given at the end of this section.

LEMMA 4.1. Let $n \neq 3,4$. Let F^{n} be a closed n-manifold such that $H_{i}(F) \in$ $\mathscr{D}(G)$ for $i<n$. If either $n=2 m$ or $n=2 m+1, H_{1}\left(\pi_{1}(F) ; M\right)=0$ for all $\pi_{1}(F)$ modules M, and $\left|H_{m}(F)\right|$ is a square, then there exists an admissible strong balanced splitting of F.

ADDENDUM 4.2. The splitting above can be chosen so that $H_{i}\left(F_{j}\right) \rightarrow H_{i}(F)$ is an isomorphism for $i \leq[n / 2]-1$ and $j=1,2$.

LEMMA 4.3. Let $F^{n}=\Sigma^{G}$ where G acts semi-freely on the homotopy sphere Σ. Suppose there exists an admissible balanced splitting $F_{1} \cup F_{2}$ of F.
(i) If $n=2 m$, let $A=\operatorname{ker}\left(H_{m-1}\left(F_{1}\right) \rightarrow H_{m-1}(F)\right)$. Then

$$
\tilde{\chi}_{1 / 2}(F ; G)=\chi\left(F_{1} ; G\right)-2 \sum_{i=m}^{2 m-1}(-1)^{i}\left[H_{i}\left(F_{1}\right)\right]+(-1)^{m}[A] .
$$

(ii) If $n=2 m+1$, then $\left|H_{m}(F)\right|$ is a square,

$$
\tilde{\chi}_{1 / 2}(F ; G)=\chi\left(F_{1} ; G\right), \quad \text { and } \quad \tilde{\chi}_{1 / 2}(F, G)=\overline{-\tilde{\chi}_{1 / 2}(F ; G)} .
$$

LEMMA 4.4. Let $n=2 m(m \geq 3)$ and q be any integer prime to $|G|$. Let $F_{1} \cup F_{2}$ be an admissible strong balanced splitting of F.
(i) For any integer $l(1 \leq l<m-1)$ there exists an admissible strong balanced splitting $F_{1}^{\prime} \cup F_{2}^{\prime}$ of F such that

$$
\chi\left(F_{1}^{\prime} ; G\right)=\chi\left(F_{1} ; G\right)+(-1)^{l} 2 k_{*}[Z / q]
$$

(ii) There exists an admissible balanced splitting $F_{1}^{\prime \prime} \cup F_{2}^{\prime \prime}$ of F such that

$$
\chi\left(F_{1}^{\prime \prime} ; G\right)=\chi\left(F_{1} ; G\right)+(-1)^{m-1} k_{*}[Z / q] .
$$

It follows from 2.3 that if $n=2 m$, then $\tilde{\chi}_{1 / 2}(F)$ represents a cohomology class $\chi_{1 / 2}(F) \in H^{n}(Z / 2 ; A(G))$. In this case any other representative of this class differs from $\tilde{\chi}_{1 / 2}(F)$ by an element of the form $2 a$ for some $a \in A(G)$. If $n=2 m+1$, then $\tilde{\chi}_{1 / 2}(F)$ represents an element of $H^{n}(Z / 2 ; A(G))$ by 4.3. In this case, $H^{n}(Z / 2 ; A(G))=\{x \in A(G) \mid x=-\bar{x}\} /\{y-\bar{y} \mid y \in A(G)\}=\{x \in A(G) \mid 2 x=0\}$ since $x=\bar{x}$ for all $x \in A(G)$.

Proof of Theorem B. Suppose first that $n=2 m$. By 4.1, there exists an admissible strong balanced splitting $F_{1} \cup F_{2}$ of $F=\Sigma^{G}$. By $2.2,(-1)^{m} \chi\left(F_{1}, G\right)=$ $k_{*}[Z / q]$ for some integer q. By 4.4, there exists an admissible balanced splitting $F_{1}^{\prime \prime} \cup F_{2}^{\prime \prime}$ such that $\chi\left(F_{1}^{\prime \prime} ; G\right)=\chi\left(F_{1} ; G\right)+(-1)^{m-1} k_{*}[Z / q]=0$. By Theorem A, the splitting $F_{1}^{\prime \prime} \cup F_{2}^{\prime \prime}$ extends to a balanced splitting of the action. This establishes the first sentence of Part (i) of Theorem B.

To establish the second sentence of Part (i), we use 4.1 and 4.2 and let $F_{1} \cup F_{2}$ be an admissible strong balanced splitting of F such that $H_{m-1}\left(F_{1}\right) \rightarrow H_{m-1}(F)$ is an isomorphism. From 4.3 , we then see that $\tilde{\chi}_{1 / 2}(F ; G)=\chi\left(F_{1} ; G\right)+2 a$ for some
$a \in A(G)$. But also if $\chi_{1 / 2}(F ; G)=0$, then $\tilde{\chi}_{1 / 2}(F, G)=2 b$ for some $b \in A(G)$. Hence $\chi\left(F_{1} ; G\right)=2(b-a)$. We now use 4.4(i) and proceed as above to obtain a strong balanced splitting of the action.

Suppose now that the action has a strong balanced splitting inducing the strong balanced splitting $F_{1} \cup F_{2}$ of F with $F_{0}=F_{1} \cap F_{2}$. In this case, since $\operatorname{ker}\left(H_{m-1}\left(F_{0}\right) \rightarrow H_{m-1}\left(F_{1}\right)\right)=\operatorname{ker}\left(H_{m-1}\left(F_{0}\right) \rightarrow H_{m-1}\left(F_{2}\right)\right)$ by definition, a simple chase of the diagram

shows that $A=\operatorname{ker}\left(H_{m-1}\left(F_{1}\right) \rightarrow H_{m-1}(F)\right)=0$. But also $\chi\left(F_{1} ; G\right)=0$ by 3.1. Hence by 4.3, $\tilde{\chi}_{1 / 2}(F ; G)=2 c$ from which it follows that $\chi_{1 / 2}(F ; G)=0$.

To prove (ii) of Theorem B, suppose the action admits a balanced splitting $D_{1} \cup D_{2}$. Then $\left|H_{m}(F)\right|$ is a square and $0=\chi\left(F_{1} ; G\right)=\tilde{\chi}_{1 / 2}(F ; G)=\chi_{1 / 2}(F ; G)$ by Theorem A, 4.3, and the remarks preceeding this proof. The first of these conditions, however, implies that F has an admissible strong balanced splitting $F_{1}^{\prime} \cup F_{2}^{\prime}$ by 4.1 ; while the latter condition implies that the splitting $F_{1}^{\prime} \cup F_{2}^{\prime}$ extends to a strong balanced splitting of the action by 4.3 and Theorem A. Since a strong balanced splitting of the action is balanced the proof of Theorem B is completed.

We turn to the proofs of 4.1-4.4.
Proofs of 4.1 and 4.2. If $n=2$, then $F^{n}=S^{2}$ obviously has an admissible strong balanced splitting. Suppose now that $n \geq 5$. We consider first the case when $n=2 m$. Fix a handlebody decomposition of F and consider K^{m-1} where K^{j} denotes the union of all handles of index $\leq j$. For $i<m-1, H_{i}\left(K^{m-1}\right) \rightarrow H_{i}(F)$ is an isomorphism while, for $i=m-1$, there is an exact sequence

$$
0 \longrightarrow H_{m}\left(K^{m}\right) \longrightarrow H_{m}\left(K^{m}, K^{m-1}\right) \xrightarrow{\partial} H_{m-1}\left(K^{m-1}\right) \xrightarrow{i_{*}} H_{m-1}\left(K^{m}\right) \longrightarrow 0
$$

where $H_{m-1}\left(K^{m}\right) \rightarrow H_{m-1}(F)$ is an isomorphism, $H_{m}\left(K^{m}, K^{m-1}\right)$ is free abelian on the handles of index m, and $H_{m-1}\left(K^{m-1}\right)$ is free abelian since K^{m-1} has the homotopy type of an $m-1$ complex. Let $T=\operatorname{ker} i_{*}$. Then T is free abelian and $\partial: H_{m}\left(K^{m}, K^{m-1}\right) \rightarrow T$ is a split epimorphism. Hence, if x_{1}, \ldots, x_{s} are free generators for T, we may regard these classes as lying in $H_{m}\left(K^{m}, K^{m-1}\right)$. Since (K^{m}, K^{m-1}) is ($m-1$)-connected, these classes may be represented by maps $f_{i}:\left(D_{i}^{m}, S^{m-1}\right) \rightarrow\left(K^{m}, K^{m-1}\right), i=1, \ldots, s$. Since $n \geq 5$, by general position and standard embedding theorems we may factor $f=\cup f_{i}$ through an embedding
$f^{\prime}: \bigcup_{i=1}^{s}\left(D_{i}^{m}, S^{m-1}\right) \rightarrow\left(K^{m}-\right.$ Int $\left.K_{0}, \partial K_{0}\right)$, where $K_{0}=K^{m-1}$ - an open boundary collar, and the inclusion $\left(K^{m}-\right.$ Int $\left.K_{0}, \partial K_{0}\right) \rightarrow\left(K^{m}, K^{m-1}\right)$. Let F_{1} be a thickening of $K_{0} \cup \bigcup_{i=1}^{s} D_{i}^{m}$ where f^{\prime} is the attaching map.

A straightforward argument shows that $H_{i}\left(F_{1}\right) \rightarrow H_{i}(F)$ is an isomorphism for $i \leq m-1$ and that $H_{i}\left(F_{1}\right)=0$ for $i \geq m$. An analysis of the exact sequence of the pair $\left(F, F_{1}\right)$, using techniques similar to those in the proof of 3.1 , then shows that $H_{i}\left(F_{2}\right) \rightarrow H_{i}(F)$ is an isomorphism for $i \leq m-1$ and that $H_{i}\left(F_{2}\right)=0$ for $i \geq m$ where $F_{2}=F$ - Int F_{1}. This establishes 4.1 and 4.2 when $n=2 m$.

The proof of 4.1 in the case when $n=2 m+1$ requires the following lemma.

LEMMA 4.5. Let B be a finite abelian group such that $|B|$ is a square. Then there exists a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow \bar{A} \rightarrow 0$ where \bar{A} is isomorphic to A.

Proof. We divide the proof into several cases. For the first case, suppose $B=Z / p^{2 s}$. Then $0 \rightarrow Z / p^{s} \rightarrow Z / p^{2 s} \rightarrow Z / p^{s} \rightarrow 0$ where the first map is multiplication by p^{s}, is the desired short exact sequence. For the second case, suppose $B=Z / p^{r} \oplus Z / p^{s}$ where r and s are odd and $r \leq s$. In this case, set $t=(r+s) / 2$, let $\rho_{1}: Z / p^{t} \rightarrow Z / p^{r}$ be the obvious epimorphism, and let $\rho_{2}: Z / p^{s}$ be multiplication by p^{s-t}. Then

$$
0 \longrightarrow Z / p^{t} \xrightarrow{\left(\rho_{1}, \rho_{2}\right)} Z / p^{r} \oplus Z / p^{2} \longrightarrow \operatorname{coker}\left(\rho_{1}, \rho_{2}\right) \longrightarrow 0
$$

is the desired short exact sequence.
In the general case, write B as the direct sum of its p-primary components where p is a prime. Each such summand can be written as a direct sum of groups of the forms $Z / p^{2 s}$ and $Z / p^{r} \oplus Z / p^{s}$ where r and s are odd and $r \leq s$. The desired conclusion now follows obviously from the first two cases.

The proof of 4.1 when $n=2 m+1$ and $m \geq 2$ now proceeds as follows. Fix a handle decomposition of F. Let K^{j} be the union of all handles of index $\leq j$ and consider K^{m-1}. As before, we have an exact sequence

$$
0 \longrightarrow H_{m}\left(K^{m}\right) \xrightarrow{i_{*}} H_{m}\left(K^{m}, K^{m-1}\right) \xrightarrow{\partial} H_{m-1}\left(K^{m-1}\right) \longrightarrow H_{m-1}\left(K^{m}\right) \longrightarrow 0
$$

and an epimorphism $H_{m}\left(K^{m}\right) \rightarrow H_{m}(F)$. Since $\left|H_{m}(F)\right|$ is a square, there exists a subgroup $A \subset H_{m}(F)$ and a short exact sequence $0 \rightarrow A \rightarrow H_{m}(F) \rightarrow \bar{A} \rightarrow 0$ with \bar{A} isomorphic to A. Pick elements $x_{1}, \ldots, x_{s} \in H_{m}\left(K^{m}\right)$ projecting to generators of A and a basis y_{1}, \ldots, y_{t} for a direct summand of $H_{m}\left(K^{m}, K^{m-1}\right)$ that maps
isomorphically onto ker ∂. We may proceed as in the case when $n=2 m$ to add handles of index m to K^{m-1} to kill the classes $j_{*} x_{1}, \ldots, j_{*} x_{s} ; y_{1}, \ldots, y_{t}$. The resulting submanifold $F_{0} \subset K^{m}$ has the following properties
(i) F_{0} is a smooth regular neighborhood of an m-complex;
(ii) $\left(F, F_{0}\right)$ is $(m-1)$ connected;
(iii) $i_{*}: H_{m-1}\left(F_{0}\right) \rightarrow H_{m-1}(F)$ is an isomorphism; and
(iv) $i_{*}: H_{m}\left(F_{0}\right) \rightarrow H_{m}(F)$ maps onto A.

It follows from these properties that all the groups $\pi_{1}\left(\partial F_{0}\right), \pi_{1}\left(F-\operatorname{Int} F_{0}\right)$ and $\pi_{1}(F)$ are isomorphic and that the pair $\left(F-\operatorname{Int} F_{0}, \partial F_{0}\right)$ is $(m-1)$ connected.

LEMMA 4.6. If $H_{1}\left(\pi_{1}(F), M\right)=0$ for all $\pi_{1}(F)$ modules, then the Hurewicz map $h: \pi_{m+1}\left(F-\operatorname{Int} F_{0}, \partial F_{0}\right) \rightarrow H_{m+1}\left(F-\operatorname{Int} F_{0}, \partial F_{0}\right)$ is onto.

Proof. Since $\pi_{1}(F)=\pi_{1}\left(\partial F_{0}\right)=\pi_{1}\left(F-\right.$ Int $\left.F_{0}\right)$, the spectral sequence of the universal covering $p:\left(\overline{F-\operatorname{Int} F_{0}}, \widetilde{F}_{0}\right) \rightarrow\left(F-\operatorname{Int} F_{0}, \partial F_{0}\right)$ shows that $p_{*}: H_{k+1}\left(\overline{F-\operatorname{Int} F_{0}}, \partial \widetilde{F}_{0}\right) \rightarrow H_{k+1}\left(F-\operatorname{Int} F_{0}, \partial F_{0}\right)$ is onto. But so is $h: \pi_{k+1}$ $\left(\widetilde{F-\operatorname{Int} F_{0}}, \partial \widetilde{\partial F}_{0}\right) \rightarrow H_{k+1}\left(\widetilde{F-\operatorname{Int} F_{0}}, \partial \widetilde{F}_{0}\right)$. The lemma now follows easily.

We remark that the proof really requires only that $H_{1}\left(\pi_{1}(F), M\right)=0$ when $M=H_{m}\left(\widetilde{F-\operatorname{Int} F_{0}}, \widetilde{F}_{0}\right)$. In particular the lemma holds if $\pi_{1}(F)=0$ or if $H_{m}(F)=$ 0.

It follows from 4.6 that the Hurewicz map h below is onto.

In particular, if we let z_{1}, \ldots, z_{r} generate a free abelian direct summand S of $H_{m+1}\left(F, F_{0}\right)$ such that $\partial: S \rightarrow \operatorname{Im} \partial$ is an isomorphism, then there exist maps $f_{i}:\left(D^{m+1}, S^{m}\right) \rightarrow\left(F-\operatorname{Int} F_{0}, \partial F_{0}\right)$ such that f_{i} represents z_{i}. By standard embedding theorems, the maps f_{i} may be taken to be embeddings. We may now proceed essentially as before to construct a submanifold $F_{1} \subset F$ such that $\left(F, F_{1}\right)$ is ($m-1$) connected, $i_{*}: H_{m-1}\left(F_{1}\right) \rightarrow H_{m-1}(F)$ is an isomorphism, and $i_{*}: H_{m}\left(F_{1}\right) \rightarrow H_{m}(F)$ is an isomorphism onto A. But then $F_{1}, F-\operatorname{Int} F_{1}$ is the desired strong balanced splitting of F.

Proof of 4.3. Suppose first that $n=2 m+1$. Let $A=\operatorname{ker}\left(H_{m-1}\left(F_{1}\right) \rightarrow\right.$
$\left.H_{m-1}(F)\right)$ and $B=\operatorname{ker}\left(H_{m}\left(F_{1}\right) \rightarrow H_{m}(F)\right)$. Then the exact sequence of $\left(F, F_{1}\right)$ may be factored into the exact sequences

$$
\begin{aligned}
& 0 \rightarrow A \rightarrow H_{m-1}\left(F_{1}\right) \rightarrow H_{m-1}(F) \rightarrow \cdots \rightarrow H_{1}(F) \rightarrow H_{1}\left(F, F_{1}\right) \rightarrow 0 \\
& 0 \rightarrow B \rightarrow H_{m}\left(F_{1}\right) \rightarrow H_{m}(F) \rightarrow H_{m}\left(F, F_{1}\right) \rightarrow A \rightarrow 0 \\
& 0 \rightarrow H_{2 m-1}\left(F_{1}\right) \rightarrow H_{2 m-1}(F) \rightarrow \cdots \rightarrow H_{m+1}(F) \rightarrow H_{m+1}\left(F, F_{1}\right) \rightarrow B \rightarrow 0
\end{aligned}
$$

where the expected terms of degree $2 m$ have dropped out of the third sequence by duality (cf. the proof of 3.1). By applying the second part of 2.4 to the third sequence, we obtain the equation

$$
(-1)^{m}[B]=\sum_{i=m+1}^{2 m-1}(-1)^{i}\left[H_{i}(F)\right]-\sum_{i=m+1}^{2 m-1}(-1)^{i}\left[H_{i}\left(F_{1}\right)\right]-\sum_{i=m+1}^{2 m-1}(-1)^{i}\left[H_{i}\left(F, F_{1}\right)\right] .
$$

The proof of 3.1 shows that $H_{i}(F) \approx H_{2 m-i}(F)$ and that $H_{i}\left(F, F_{1}\right) \approx H_{2 m-i}\left(F_{2}\right) \approx$ $H_{2 m-i}\left(F_{1}\right)$ where the last isomorphism follows from the fact that $F_{1} \cup F_{2}$ is a balanced splitting of F. Hence

$$
(-1)^{m}[B]=\sum_{i=1}^{m-1}(-1)^{i}\left[H_{i}(F)\right]-\sum_{i=1}^{m-1}(-1)^{i}\left[H_{i}\left(F_{1}\right)\right]-\sum_{i=m+1}^{2 m-1}(-1)^{i}\left[H_{i}\left(F_{1}\right)\right]
$$

A similar computation starting with the first sequence gives

$$
\begin{equation*}
(-1)^{m}[A]=\sum_{i=1}^{m-1}(-1)^{i}\left[H_{i}(F)\right]-\sum_{i=1}^{m-1}(-1)^{i}\left[H_{i}\left(F_{1}\right)\right]-\sum_{i=m+1}^{2 m-1}(-1)^{i}\left[H_{i}\left(F_{1}\right)\right] . \tag{1}
\end{equation*}
$$

Hence $[A]=[B]$ in $G_{0}(\mathscr{D}(G))$.
Similar reasoning applied to the second sequence shows that

$$
\begin{aligned}
(-1)^{m}\left[H_{m}(F)\right]= & (-1)^{m}\left[H_{m}\left(F_{1}\right)\right]+(-1)^{m}\left[H_{m}\left(F, F_{1}\right)\right] \\
& +(-1)^{m+1}[B]+(-1)^{m-1}[A] \\
= & (-1)^{m} 2\left[H_{m}\left(F_{1}\right)\right]+(-1)^{m+1} 2[A]
\end{aligned}
$$

Hence $\left[H_{m}(F)\right]=2\left\{\left[H_{m}\left(F_{1}\right)-[A]\right\}\right.$ in $G_{0}(\mathscr{D}(G))$. It now follows from 2.1 that $\left|H_{m}(F)\right|$ is a square and that

$$
[Z / q]=\left[H_{m}\left(F_{1}\right)\right]-[A]
$$

where $\left|H_{m}(F)\right|=q^{2}$. By combining this with equation (1), we seee that $\tilde{\chi}_{1 / 2}(F ; G)=\chi\left(F_{1} ; G\right)$.

Since $F_{1} \cup F_{2}$ is a balanced splitting of F, and $n=2 m+1, \chi\left(F_{1} ; G\right)=$ $-\chi\left(F_{1} ; G\right)$ by 3.1. Hence, from above, $\tilde{\chi}_{1 / 2}(F ; G)=-\tilde{\chi}_{1 / 2}(F ; G)$. The conclusion that $\tilde{\chi}_{1 / 2}(F ; G)=-\tilde{\chi}_{1 / 2}(F ; G)$ now follows from 2.3.

The argument above establishes 4.3 in the case when $n=2 m+1$. If $n=2 m$, the formula for $\tilde{\chi}_{1 / 2}(F ; G)$ is obtained by similar arguements starting with the first of the exact sequences above.

Before proving 4.4, we introduce some notation and prove a sublemma. Let n, l, and q be positive integers with $l<n$. Then $M_{n}(l, q)$ will denote any n manifold with boundary such that

$$
\tilde{H}_{i}\left(M_{n}(l, q)\right)=\left\{\begin{array}{ccc}
0 & \text { if } & i \neq l \\
Z / q & \text { if } & i=l
\end{array}\right.
$$

SUBLEMMA 4.7. Let $n \geq 5$ and $1 \leq l \leq n-4$. Then S^{n} has a splitting of the form $M_{n}(l, q) \cup M_{n}(n-l-2, q)$.

Proof. Let $X=S^{1} \bigcup_{q} e^{2}$ where q denotes a map of degree q. Then X embeds in S^{5} and by suspending, we obtain embeddings $S^{l} \bigcup_{q} e^{l+1}=\Sigma^{l-1} X \rightarrow \Sigma^{l-1} S^{5}=$ $S^{l+4} \subset S^{n}$. Let F_{1} be a regular neighborhood of $S^{l} \cup_{q} e^{l+1}$ and $F_{2}=S^{n}-\operatorname{Int} F_{1}$. Then F_{1} is an $M_{n}(l, q)$; while F_{2} is an $M_{n}(n-l-2, q)$ by Alexander duality.

We shall denote S^{n} together with the splitting of 4.7 by $S^{n}(l, q)$. If $F=F_{1} \cup F_{2}$ is a splitting of F^{n}, we may take the connected sum of this splitting with $S^{n}(l, q)$ along $F_{0}=F_{1} \cap F_{2}$ and $M_{n}(l, q) \cap M_{n}(n-l-2, q)=M_{0}$ to obtain the new splitting $F_{1} \# M_{n}(l, q) \cup F_{2} \# M_{n}(n-l-2, q)$ of F. We denote this splitting by $F \# S^{n}(l, q)$.

Proof of 4.4. Let $F_{1} \cup F_{2}$ be an admissible strong balanced splitting of F. To prove (i), consider the splitting $F \# S^{n}(l, q) \# S^{n}(n-l-2, q)=F_{1}^{\prime} \cup F_{2}^{\prime}$. A simple computation shows that the homomorphism $H_{i}\left(F_{j}\right) \rightarrow H_{i}\left(F_{j}^{\prime}\right)(j=1,2)$ is an isomorphism for $i \neq l, n-l-2$ and that the sequence

$$
0 \rightarrow H_{i}\left(F_{j}\right) \rightarrow H_{i}\left(F_{j}^{\prime}\right) \rightarrow H_{i}\left(F_{i}^{\prime}, F_{j}\right) \rightarrow 0
$$

is split exact for $i=l, n-l-2$. In this case, $H_{i}\left(F_{i}^{\prime}, F_{j}\right)=Z / q$ and it follows easily that $\chi\left(F_{1}^{\prime} ; G\right)=\chi\left(F_{1} ; G\right)+(-1)^{l} 2[Z / q]$ when $n=2 m$. It is also easy to see that $F_{1}^{\prime} \cup F_{2}^{\prime}$ is an admissible strong balanced splitting of F; hence, (i) follows.

The proof of part (ii) is similar. One takes $F \# S^{n}(m-1, q)$.

5. The proof of Theorem \mathbf{C}

In this section, we prove Theorem C by constructing the appropriate examples. We first set some notation.

Let X be a finite $C W$ complex. Then $F^{n}(X)$ will denote the double, $N^{n}(X) \cup$ $N^{n}(X)$, where $N^{n}(X)$ is a smooth regular neighborhood of X in R^{n} where $n \geq 2 \operatorname{dim} X+2$.

We will let $j_{*}: H^{n}\left(Z / 2 ; A(G) \rightarrow H^{n}\left(Z / 2 ; \tilde{K}_{0}(G)\right)\right.$ be the map induced by the inclusion $j: A(G) \rightarrow \tilde{K}_{0}(G)$ and $H: H^{n}\left(Z / 2 ; \tilde{K}_{0}(G)\right) \rightarrow L_{n}^{h}(G)$ be the hyperbolic map of Ranicki [12; Theorem 4.3]. We recall that there exists an exact sequence

$$
\cdots \longrightarrow L_{n+1}^{p}(G) \longrightarrow H^{n}\left(Z / 2 ; \tilde{K}_{0}(G)\right) \xrightarrow{H} L_{n}^{h}(G) \longrightarrow L_{n}^{p}(G) \longrightarrow \cdots
$$

due to Shaneson [15], and Ranicki [12; Theorem 4.3]. (The reader will note that the usual dimension, $n+1$, for the cohomology group has been replaced by n since we are using the involution $[P] \rightarrow-\left[P^{*}\right]$ instead of the usual involution.)

Theorem C will be deduced from the following propositions whose proofs are temporarily deferred.

PROPOSITION 5.1. Let G be a finite group admitting a free linear representation of dimension d. Let X be a finite $C W$ complex such that $\tilde{H}_{i}(X) \in \mathscr{D}(G)$ for all $i>0$. Let $n \geq 2 \operatorname{dim} X+2$ and $k \geq n+6$ be such that $k \equiv 0(\bmod d)$. Suppose that either
(i) $n+k$ is even and $H j_{*}[\chi(X ; G)]=0$; or
(ii) $n+k$ is odd, $|G|$ is even, $2 \chi(X ; G)=0$ in $A(G)$, and $H_{*}[\chi(X ; G)]=0$.

Then there exists a semi-free action of G on a homotopy sphere Σ^{n+k} with $\Sigma^{G}=F^{n}(X)$.

In this proposition $[\chi(X ; G)]$ denotes the class of $\chi(X ; G)$ in $H^{n}(Z / 2 ; A(G))$. The condition that $2 \chi(X ; G)=0$ in (ii) above is needed to insure that $[\chi(X ; G)]$ is defined.

PROPOSITION 5.2. Let $G=Q 2^{1}$ be the generalized quaternion group of order $2^{\text {l }}$ and let $H: H^{n}\left(Z / 2 ; \tilde{K}_{0}(G)\right) \rightarrow L_{n}^{h}(G)$ be the hyperbolic map.
(i) If $n \neq 1(\bmod 4)$, then $H=0$.
(ii) If $n \equiv 1(\bmod 4)$, then H is injective.

Proof of Theorem C. Let X be the Moore space $S^{1} \bigcup_{f} e^{2}$ where $f: S^{1} \rightarrow S^{1}$ has degree 3. Then $\chi\left(X ; Q 2^{l}\right)=[\langle 3, N\rangle] \neq 0$ in $A\left(Q 2^{l}\right)=Z / 2$ by [18; Proposition 3.5]. Theorem C now follows directly from 5.1 and 5.2.

Proof of 5.1. Since $k \equiv 0(\bmod d)$, there exists a free orthogonal representation
W^{k} of G of dimension k. Furthermore, k is even since d is. Let G act trivially on R^{n} and diagonally on $R^{n} \times W^{k}$. Then $R^{n} \times 0$ is the fixed point set. Embed X in $R^{n} \times 0$ with smooth regular neighborhood $N^{n}(X)$. Let the pair ($R^{n} \times W^{k}, N(X)$) play the role of the pair (M, N_{1}) in Proposition 3.2.

Following the notation of 3.2 , we let $\tilde{Q}=R^{n} \times(W-\operatorname{Int} D(W)), \quad \tilde{Q}_{1}=$ $N(X) \times S(W), Q=\tilde{Q} / G$, and $Q_{1}=\tilde{Q} / G$ where $D(W)$ and $S(W)$ are the unit disk and sphere of W respectively. We also let $V_{0} \subset Q$ be the submanifold, constructed in 3.2, that was denoted there by V_{i} for $i=[n+k / 2]-1$. The proof now breaks up into two cases:

Case I. n is even. In this case, we set $n=2 p, k=2 q$, and $n+k=2 r$. The restrictions on n and k imply that $p+2 \leq q$ and that $n+3 \leq r \leq k-3$. By 3.2 and its proof, $\left(Q, V_{0}\right)$ is r-connected and $H_{r}\left(\tilde{V}_{0}\right)=P_{0} \in \mathscr{P}(G)$ and satisfies $(-1)^{r}\left[P_{0}\right]=$ $\chi(X ; G)$. Furthermore, since Q is $k-2$ connected and $r \leq k-3$, there are isomorphisms

$$
H_{r}\left(\tilde{V}_{0}\right) \approx \pi_{r}\left(\tilde{V}_{0}\right) \stackrel{\approx}{\rightleftarrows} \pi_{r}\left(V_{0}\right) \approx \pi_{r+1}\left(Q, V_{0}\right)
$$

Let $\sigma: H_{r}\left(\tilde{V}_{0}\right) \rightarrow \pi_{r+1}\left(Q, V_{0}\right)$ be the composite isomorphism. By the methods of [20; Chap. 1] each class $x \in H_{r}\left(\tilde{V}_{0}\right)$ determines a preferred class of immersions $f_{x}: S^{r} \times D^{r} \rightarrow V_{0}$ which may be used to define mutual and self intersections, λ and μ respectively, as in [20; Chap. 5].

LEMMA 5.3. For all $x, y \in H_{r}\left(\tilde{V}_{0}\right), \lambda(x, y)=0$.
Proof. Let S_{x}^{r} and S_{y}^{r} be immersed spheres in V_{0} representing $\sigma(x)$ and $\sigma(y)$ respectively. Then by [20; Chap. 5], $\lambda(x, y) \in Z G$ is given by

$$
\lambda(x, y)=\sum_{\mathbf{g} \in G}\left\langle\tilde{S}_{x}^{r}, \tilde{S}_{y}^{r} g^{-1}\right\rangle g
$$

where \tilde{S}_{x} and \tilde{S}_{y} are immersed spheres in \tilde{V}_{0} covering S_{x} and S_{y} and \langle,$\rangle denotes$ the usual intersection pairing on $H_{r}\left(\tilde{V}_{0}\right)$.

Let $j: \tilde{V}_{0} \rightarrow\left(\tilde{V}_{0}, \widetilde{\partial} \widetilde{V}_{0}\right)$ be the inclusion. Then for all $u, v \in H_{r}\left(\tilde{V}_{0}\right),\langle u, v\rangle=$ $\left\langle u, j_{*} v\right\rangle=0$ since the following commutative shows that j_{*} is the zero map:

The lemma now follows.

It follows from 5.3 and formal properties of self-intersections that $\mu: H_{r}\left(\tilde{V}_{0}\right) \rightarrow Z G /\left\{v+(-1)^{r+1} \bar{v} \mid v \in Z G\right\}$ is a homomorphism of groups where "bar" is the anti-involution of ZG that sends $\Sigma_{\mathrm{g} \in \mathrm{G}} n_{\mathrm{g}} \mathrm{g}$ to $\Sigma_{\mathrm{g} \in \mathrm{G}} n_{\mathrm{g}} \mathrm{g}^{-1}$. But also 5.3 shows that $\mu(x)=(-1)^{r+1} \overline{\mu(x)}$ for all x. Hence, $\mu: H_{r}\left(\tilde{V}_{0}\right) \rightarrow$ $H^{r+1}(Z / 2 ; Z G)=\left\{u \in Z G \mid u=(-1)^{r+1} \bar{u}\right\} /\left\{v+(-1)^{r+1} \bar{v} \mid v \in Z G\right\}$; and, in fact, μ is a $Z G$ homomorphism.

In general, μ is not the zero homomorphism. The next step in the proof of 5.1 is to replace V_{0} by a new manifold V_{1} of the same homotopy type such that all mutual and self-intersections of the classes in $H_{r}\left(\tilde{V}_{1}\right)$ vanish. In order to do this, we let $V \subset Q$ be the manifold corresponding to $i=[n+k / 2]-2=r-2$ in the proof of 3.2. Then (Q, V) is $(r-1)$ connected and there is a short exact sequence

$$
0 \rightarrow H_{r-1}\left(\tilde{Q}_{1}\right) \rightarrow H_{r-1}(\tilde{V}) \rightarrow P \rightarrow 0
$$

where $P \in \mathscr{P}(G)$ satisfies $(-1)^{r-1}[P]=\sum_{j=1}^{r-2}(-1)^{i}\left[H_{j}(X)\right]$. In fact, our numerical restrictions imply that $H_{r-1}\left(\tilde{Q}_{1}\right)=0$, that $H_{r-1}(\tilde{V})=P$, and that $(-1)^{r-1}[P]=$ $\chi(X ; G)$.

We can regard V_{0} as having been obtained from V by choosing a resolution

$$
0 \longrightarrow P_{0} \longrightarrow F \xrightarrow{\rho} P \longrightarrow 0
$$

where F is a finitely generated free $Z G$ module with base x_{1}, \ldots, x_{s}; by letting ρ^{\prime} be the unique homomorphism that makes the diagram

commute; by representing each class $\rho^{\prime}\left(x_{j}\right)$ by an embedding $f_{j}^{\prime}:\left(D_{j}^{r} \times D^{r}, S_{j}^{r-1} \times\right.$ $\left.D^{r}\right) \rightarrow\left(\mathrm{Cl}(Q-V), \partial_{+} V\right)$; and by then attaching the handles $f_{j}\left(D_{j}^{r} \times D^{r}\right)$ to V via the embeddings $f_{j}=f_{j}^{\prime} \mid: S_{j}^{r-1} \times D^{r} \rightarrow \partial_{+} V$ where $\partial_{+} V=\mathrm{Cl}\left(\partial V-Q_{1}\right)$.

Let $\mu^{\prime}: F \rightarrow H^{r+1}(Z / 2 ; Z G)$ be a homomorphism such that $\mu^{\prime} \mid P_{0}=\mu$. Since P_{0} is a direct summand of F, such a homomorphism exists. Following [20; Chap. 5], we let $h_{j}: S_{j}^{r-1} \times D^{r} \times I \rightarrow \partial_{+} V \times I$ be a regular homotopy from f_{j} to a new embedding g_{j} such that the mutual intersection of the h_{j} vanish, while the self intersections of h_{j} are given by $-\mu^{\prime}\left(x_{j}\right)$. Let $V_{1}=V \cup \bigcup_{j=1}^{s} D_{j}^{r} \times D^{r}$ where the attaching map for $D_{i}^{r} \times D^{r}$ is g_{j}.

In effect, V_{1} is obtained from V by doing surgery on classes $\rho^{\prime}\left(x_{1}\right), \ldots, \rho^{\prime}\left(x_{j}\right) \in$
$\pi_{r}(Q, V)=\pi_{r}(i)$ to make the inclusion map $i: V \rightarrow Q r$-connected. Thus, there exists a map $\psi_{1}: V_{1} \rightarrow Q$ and a stable framing F_{1} of $\tau_{V_{1}} \oplus \psi_{1}^{*} \nu_{\mathrm{O}}$ where τ_{M} and ν_{M} respectively denote the stable tangent and normal bundles of the manifold M. In fact, there exists an immersion $\psi: V_{0} \rightarrow V_{1}$ such that $\psi_{1} \psi$ is homotopic to i; for we may map $V \subset V_{0}$ into $V \subset V_{1}$ by the identity on the complement of a collar $\partial V \times I$ of ∂V and by shrinking $\partial V \times I$ onto $\partial V \times\left[\frac{1}{2}, 1\right]$ leaving $\partial V \times 1$ fixed (where $\partial V \subset V$ corresponds to $\partial V \times 0$). This immersion may then be extended over the j th handle $D_{j}^{r} \times D^{r}=S_{j}^{r-1} \times D^{r} \times I \cup \bar{D}_{j}^{r} \times D^{r}$ of V_{0} by mapping the collar $S_{j}^{r-1} \times$ $D^{r} \times I$ into $\partial V \times\left[0, \frac{1}{2}\right]$ via h_{j} (with the parameter changed) and by mapping $\bar{D}_{j} \times D^{r}$ onto the corresponding handle of V_{1} via the identity.

It is easy to see that ψ is a homotopy equivalence that makes the following diagram commute

In particular, if $\phi_{x}: S^{r} \times D^{r} \rightarrow V_{0}$ is an immersion in the preferred class of immersions corresponding to $x \in H_{r}\left(\tilde{V}_{0}\right)$, then the composite immersion $\psi \phi_{x}$ is in the preferred class of immersions determined by $\tilde{\psi}_{*}(x) \in H_{r}\left(\tilde{V}_{1}\right)$. We may combine this observation with the following lemma to compute the mutual and self intersections of classes in $H_{r}\left(\tilde{V}_{1}\right)$.

Let $V_{0}=V^{\prime} \cup H$ where $V^{\prime}=V$ minus an open collar of ∂V and $H=$ $V_{0}-$ Int V^{\prime}.

LEMMA 5.4. Let $x \in H_{r}\left(\tilde{V}_{0}\right)$. Then there exists an embedding $\phi_{x}^{+}:\left(D_{+}^{r} \times\right.$ $\left.D^{r}, S^{r-1} \times D^{r}\right) \rightarrow\left(H, \partial V^{\prime}\right)$ and an immersion $\phi_{x}^{-}:\left(D_{-}^{r} \times D^{r}, S^{r-1} \times D^{r}\right) \rightarrow\left(V^{\prime}, \partial V^{\prime}\right)$ such that $\phi_{x}^{+}\left|S^{r-1} \times D^{r}=\phi_{x}^{-}\right| S^{r-1} \times D^{r}$ and such that $\phi_{x}=\phi_{x}^{+} \cup \phi_{x}^{-}$is an immersion representing x.

Proof. Consider the following commutative diagram

It follows from the previous discussion and homotopy excision that the row is exact and that the indicated maps are isomorphisms. Hence $\partial(x)$ can be represented by a map $f_{+}:\left(D_{+}^{r}, S^{r-1}\right) \rightarrow\left(H, \partial V^{\prime}\right)$ such that $f_{+} \mid S^{r-1}$ extends to a map $f_{-}:\left(D_{-}^{r}, S^{r-1}\right) \rightarrow\left(V^{\prime}, \partial V^{\prime}\right)$. But then x itself can be represented by a map $\mathrm{g}:\left(D^{r+1} ; S^{r}, D_{+}^{r} D_{-}^{r}\right) \rightarrow\left(Q ; V_{0}, H, V^{\prime}\right)$ such that $\mathrm{g} \mid D_{ \pm}^{r}=f_{ \pm}$. In particular, the stable bundle representation $\tau_{S^{\prime} \times D^{\prime}} \rightarrow \tau_{\mathrm{V}_{0}}$ that defines the regular homotopy class of immersions representing x restricts to stable bundle representations $\tau\left(D_{+}^{r} \times\right.$ $\left.D^{r}\right) \rightarrow \tau(H)$ and $\tau\left(D_{-}^{r} \times D^{r}\right) \rightarrow \tau\left(V^{\prime}\right)$ that yield the same representation of $\tau\left(S^{r-1} \times D^{r}\right) \rightarrow \tau\left(\partial V^{\prime}\right)$.

Let $\quad \psi_{+}:\left(D_{+}^{r} \times D^{r}, S^{r-1} \times D^{r}\right) \rightarrow\left(H, \partial V^{\prime}\right) \quad$ and $\quad \psi_{-}:\left(D_{-}^{r} \times D^{r}, S^{r-1} \times D^{r}\right) \rightarrow$ $\left(V^{\prime}, \partial V^{\prime}\right)$ be immersions corresponding to these representations. Since $\pi_{1}\left(\partial V^{\prime}\right) \rightarrow$ $\pi_{1}(H)$ is an isomorphism, we may regularly homotope ψ_{+}to an embedding $\phi_{x}^{+}:\left(D_{+}^{r} \times D^{r}, S^{r-1} \times D^{r}\right) \rightarrow\left(H, \partial V^{\prime}\right)$. Since $\phi_{x}^{+} \mid S^{r-1} \times D^{r}$ and $\psi_{-} \mid S^{r-1} \times D^{r}$ correspond to the same representation of stable tangent bundles, they are regularly homotopic. By splicing the regular homotopy onto ψ_{-}, we may replace ψ_{-}with a new immersion $\phi_{x}^{-}:\left(D_{-}^{r} \times D^{r}, S^{r-1} \times D^{r}\right) \rightarrow\left(V^{\prime}, \partial V^{\prime}\right)$ such that $\phi_{x}^{+} \mid S^{r-1} \times D^{r}=$ $\phi_{x}^{-} \mid S^{r-1} \times D^{r}$. It follows immediately from the construction that $\phi_{x}^{+} \cup \phi_{-}^{x}$ is an immersion representing x.

LEMMA 5.5. All mutual and self-intersections of classes in $H_{r}\left(\tilde{V}_{1}\right)$ vanish.
Proof. Let $x^{\prime} \in H_{r}\left(\tilde{V}_{1}\right)$ and suppose $x^{\prime}=\psi_{*}(x)$. Let $\phi_{x}: S^{r} \times D^{r} \rightarrow V_{0}$ be the immersion representing x constructed in 5.4. Then $\psi \phi_{x}$ represents x^{\prime} and the self-intersections of $\psi \phi_{x}\left(S^{r} \times 0\right)$ determine $\mu\left(x^{\prime}\right)$. The descriptions of ψ and ϕ_{x}, however, show that the self-intersections of $\psi \phi_{x}\left(S^{r} \times 0\right)$ are just the sum of those of $\psi \phi_{x}\left(D_{-}^{r} \times 0\right)$ and $\psi \phi_{x}\left(D_{+}^{r} \times 0\right)$. The self-intersections of $\psi \phi_{x}\left(D_{-}^{r} \times 0\right)$ are just those of $\phi_{x}\left(D_{-}^{r} \times 0\right)$ which are the same as those of $\phi_{x}\left(S^{r} \times 0\right)$ since ϕ_{x}^{+}is an embedding. Hence, the self-intersections of $\psi \phi_{x}\left(D_{-}^{r} \times 0\right)$ equal $\mu(x)$. On the other hand, since $\phi_{x}\left(D_{+}^{r} \times 0\right)$ is embedded, the self-intersections of $\psi \phi_{x}\left(D_{+}^{r} \times 0\right)$ all arise from the behavior of ψ. The description of ψ given above, however, shows that the self-intersections of $\psi \phi_{x}\left(D_{+}^{r} \times 0\right)$ are $-\mu^{\prime}(x)=-\mu(x)$. Hence, $\mu\left(x^{\prime}\right)=0$.

A similar argument shows that $\lambda(x, y)=0$ for all $x, y \in H_{r}\left(\tilde{V}_{1}\right)$.
The proof of 5.1 in the case when n is even is now completed as follows: Let $M_{1}=\tilde{V}_{1} \cup(N(X) \times D(W))$ with corners equivariantly rounded and let $M^{2 r}$ be the double of M_{1}. Then $M^{2 r}$ is $(r-1)$ connected and supports a semi-free G-action with $M^{G}=F^{n}(X)$. If we delete a G-tubular neighborhood of M^{G} and pass to the orbit space, we obtain $V_{1} \cup V_{1}$ where the union is along $\partial_{+} V_{1}=\mathrm{Cl}\left(\partial V_{1}-Q_{1}\right)$. We note that $H=\pi_{r+1}(f)=H_{r}\left(D\left(\tilde{V}_{1}\right)\right)$ and λ and μ are the mutual and selfintersection forms on H. But now, the inclusion $V_{1} \rightarrow D\left(V_{1}\right)$ induces a monomorphism $H_{r}\left(V_{1}\right) \rightarrow H$ whose image is totally isotropic by 5.5 . It follows
that (H, λ, μ) is the hyperbolic form on $H_{r}\left(V_{1}\right)$. Since $(-1)^{r}\left[H_{r}\left(V_{1}\right)\right]=\chi(X ; G)$, it now follows that if $H j_{*}[\chi(X ; G)]=0, f$ may be made $(r+1)$ connected via surgery relative to $\partial D\left(V_{1}\right)$. Let $g: V_{2} \rightarrow Q$ be the resulting map.

Since $\partial V_{2}=\partial D\left(V_{1}\right)$ is the double of $Q_{1}, \partial \tilde{V}_{2}$ is the double of $\tilde{Q}_{1}=$ $N(X) \times S(W)$ where \tilde{V}_{2} is the universal cover of V_{2}. We now let $\Sigma^{n+k}=$ $\tilde{V}_{2} \cup\left(F^{n}(X) \times D(W)\right)$. Then Σ^{n+k} supports a smooth semi-free G-action with $\Sigma^{G}=F^{n}(X)$. On the other hand standard arguments show that Σ^{n+k} is a homotopy sphere. This completes the proof of 5.1 in the case when n is even.

Case II. n is odd. In this case, we let $n=2 p+1, k=2 q$, and $n+k=2 r+1$. Here, the manifold V_{0} constructed at the beginning of this proof has the following properties which may be derived easily from 3.2 and properties of \tilde{Q}_{1} :
(a) V_{0} is a smooth regular neighborhood of a $C W$ complex $X=Q_{1} \cup$ cells of dimensions $\leq r$.
(b) $\left(Q, V_{0}\right)$ is r-connected.
(c) $H_{i}\left(\tilde{V}_{0}\right)=0$ for $0<i<r$ and $H_{r}\left(\tilde{V}_{0}\right)=P_{0}$ is in $\mathscr{P}(G)$ and satisfies $(-1)^{r}\left[P_{0}\right]=\chi(X ; G)$.
(d) For $i>r, k_{*}: H_{i}\left(\tilde{Q}_{1}\right) \rightarrow H_{i}\left(\tilde{V}_{0}\right)$ is an isomorphism.

It follows immediately from (c) that $\left[P_{0}\right]=k_{*}[Z / p]=[\langle p, N\rangle]$ for some integer p prime to $|G|$ (cf. section 2 for notation). By stabilizing, if necessary, we may assume that $P_{0}=\langle p, N\rangle \oplus F_{0}$ where F_{0} is a free $Z G$ module. Combining this with the exact sequence $\left(^{*}\right)$ of 2.3 , we obtain an exact sequence

$$
0 \rightarrow F_{1} \rightarrow P_{0} \rightarrow Z / p \rightarrow 0
$$

where $F_{1}=F_{0} \oplus Z G$ is a free $Z G$ module and Z / p is trivial $Z G$ module.
We now proceed as in the proof of 3.2. We identify P_{0} with $\pi_{r+1}(\mathrm{Cl}(Q-$ $\left.\left.V_{0}\right), \partial_{+} V_{0}\right)$ where $\partial_{+} V_{0}=\mathrm{Cl}\left(\partial V_{0}-Q_{1}\right)$. We pick free generators x_{1}, \ldots, x_{s} of F_{1} and represent them by piecewise linear embeddings $f_{j}:\left(D^{r+1}, S^{r}\right) \rightarrow$ $\left(\mathrm{Cl}\left(Q-V_{0}\right), \partial_{+} V_{0}\right)$ with mutually disjoint images. We then attach the cells $f_{i}\left(D^{r+1}\right)(j=1, \ldots, s)$ to V_{0} and let V_{1} be a smooth regular neighborhood of $V_{0} \cup \bigcup_{i=1}^{s} f_{j}\left(D^{r+1}\right)$ in Q. It is easy to see that V_{1} has the following properties:
(a') $\left(Q, V_{1}\right)$ is r-connected.
(b') $H_{i}\left(\tilde{V}_{1}\right)=0$ for $0<i<r$ and $H_{r}\left(\tilde{V}_{1}\right)=Z / p$ where $(-1)^{r} k_{*}[Z / p]=\chi(X ; G)$.
(c') For $i>r, k_{*}: H_{i}\left(\tilde{Q}_{1}\right) \rightarrow H_{i}\left(\tilde{V}_{1}\right)$ is an isomorphism.
Let $b: H_{r}\left(\tilde{V}_{1}\right) \times H_{r}\left(\tilde{V}_{1}\right) \rightarrow Q G / Z G$ denote the linking form as defined in [19; Section 5]. Similarly let $q: H_{r}\left(\tilde{V}_{1}\right) \rightarrow Q G /\left\{v+(-1)^{r+1} \bar{v} \mid v \in Z G\right\}$ be the quadratic map defined by self-linking.

LEMMA 5.6. (i) For all $x, y \in H_{r}\left(\tilde{V}_{1}\right), b(x, y)=0$.
(ii) If $|G|$ is even, then $q(x)=0$ for all $x \in H_{r}\left(\tilde{V}_{1}\right)$.

Proof. Since $H_{r}\left(\tilde{V}_{1}\right)=Z / p$ is cyclic, it suffices to show that $b(x, x)=0$ for x a generator of Z / p. It follows immediately from the construction of V_{1} from V_{0} that there exist embeddings $f: S^{r} \rightarrow$ Int V_{0} and $g:\left(D^{r+1}, S^{r}\right) \rightarrow\left(\mathrm{Cl}\left(V_{1}-V_{0}\right), \partial_{+} V_{0}\right)$ whose lifts to \tilde{V}_{1} represent the class x and a chain whose boundary is $p x$. Since $b(x, x)$ is just the intersection of $f\left(S^{r}\right)$ with $g\left(D^{r+1}\right)$ and these sets are disjoint, $b(x, x)=0$ and (i) is established.

To prove (ii), we note first that (i) and [19; p.252] imply that q is a homomorphism. On the other hand, $q(x)=b(x, x)=0$ modulo $Z G$ by [19; p. 252]. Hence $q: H_{r}\left(\tilde{V}_{1}\right) \rightarrow Z G /\left\{v+(-1)^{r+1} \bar{v} \mid v \in Z G\right\}$. If $|G|$ is even, then $H_{r}(\tilde{V})=Z / p$ has odd order. Furthermore, it is well known that the only torsion in $Z G /\left\{v+(-1)^{r+1} \bar{v} \mid v \in Z G\right\}$ has order two. Hence $q(x)=0$.

The proof now proceeds as in the even dimensional case. We let $M_{1}=$ $\tilde{V}_{1} \cup(N(X) \times D(W))$ and $M^{2 r+1}$ be the double of M_{1}. Then $M^{2 r+1}$ is $(r-1)$ connected, has $H_{r}(M)=Z / p \oplus Z / p$, and supports a semi-free G-action with $M^{G}=$ $F^{n}(X)$. As before, the complement of a G-tubular neighborhood of M^{G} covers $V_{1} \cup V_{1}$ where the union is along $\partial_{+} V_{1}$ and there is an r-connected map $f: V_{1} \cup V_{1} \rightarrow Q$, representing a surgery problem, with $H=\pi_{r+1}(f)=H_{r}(M)$. Furthermore, since $i_{*}: H_{r}\left(\tilde{V}_{1}\right) \rightarrow H_{r}(M)$ is monomorphic with totally isotropic image by 5.6 , the form (H, b, q) is the hyperbolic form on Z / p where b (respectively, q) is the linking (respectively, self-linking) form on $\pi_{r+1}(f)$. (cf. [19; Section 5]). It now follows that the class of (H, b, q) in $L_{2 r+2}^{f r}(Z G, Z-\{0\})$ is $H^{\prime}(\langle p, N\rangle)$ where $L_{2 r+2}^{f r}(Z G, Z-\{0\})$ is the group $L_{2 r+2}(A, S, \varepsilon)$ of Ranicki [13; Proposition 2.4 and Section 7] for $A=Z \pi, S=Z-\{0\}, \varepsilon=1$, and $X=\{0\}$ arising from (split) ε-quadratic linking forms and $H^{\prime}: H^{2 r+1}\left(Z / 2 ; \tilde{K}_{0}(G)\right) \rightarrow L_{2 r+2}^{f r}(Z G, Z-\{0\})$ is the hyperbolic map.

On the other hand, there is a commutative diagram [13; Proposition 7.1]

and it follows from the geometric interpretation of σ given by Pardon [10] that $\sigma(H, b, q)=H(\langle p, N\rangle)$ is the obstruction to doing surgery relative to $\partial\left(V_{1}, \cup V_{1}\right)$ to make $f(r+1)$-connected. Hence, if $H\left(\langle p, N\rangle=H j_{*}[\chi(X ; G)]=0\right.$, there exists an $(r+1)$-connected map $g: V_{2} \rightarrow Q$ where $\partial V_{2}=\partial\left(V_{1} \cup V_{1}\right)$ and $g \mid \partial V_{2}=$ $f \mid \partial\left(V_{1} \cup V_{2}\right)$. The remainder of the proof for the odd dimensional case now follows exactly the proof of the even dimensional case.

Proof of 5.2. By the results of [8] and [3] the 2-primary component of $\tilde{K}_{0}\left(Q 2^{l}\right)$ is $Z / 2$ (cf. also $[1 ;$ Section 4]) and the restriction map $r^{*}: H^{n}\left(Z / 2 ; \tilde{K}_{0}\left(Q 2^{l}\right)\right) \rightarrow H^{n}\left(Z / 2 ; \tilde{K}_{0}(Q 8)\right)$ is an isomorphism. Hence, $H^{n}\left(Z / 2 ; \tilde{K}_{0}\left(Q 2^{l}\right)\right)=Z_{2}$ for all n.

If $n \equiv 3(\bmod 4), H$ is the zero map by [4]. Assuming that $H=0$ for $n \equiv 0$ $(\bmod 4)$ the result for $n \equiv 1(\bmod 4)$ and $l=3$ follows easily from the exact sequence

$$
H^{1}\left(Z / 2 ; \tilde{K}_{0}(Q 8)\right) \xrightarrow{H} L_{1}^{h}(Q 8) \longrightarrow L_{1}^{p}(Q 8) \xrightarrow{j} H^{0}\left(Z / 2 ; \tilde{K}_{0}(Q 8)\right)
$$

using the facts that j is onto, $L_{1}^{p}(Q 8)$ has order 4 by [11; Theorem 9.24b], and $L_{1}^{h}(Q 8)$ has order 4 by [21; Theorem 5.2.4]. The general case follows from this case by applying the restriction map.

The proofs for the cases when $n=2 m$ use the commutative diagram [13; Proposition 7.1]

where the upper left hand term is the torsion L-theory of [13; Section 7] for $Y=\tilde{K}_{0}\left(Q 2^{l}\right)$. We shall show that j is onto by constructing an appropriate ε-quadratic linking form. This construction is facilitated by the following result.

LEMMA 5.7. Let $\varepsilon= \pm 1$ and (M, λ) be an ε-symmetric linking form over ($Z G, Z-\{0\}$). If M has odd order, then there exists a unique function $\mu: M \rightarrow$ $Q G /\{x+\varepsilon \bar{x} \mid x \in Z G\}$ such that (M, λ, μ) is an ε-quadratic linking form.

Proof. Since this result is well known, we only sketch its proof. Let $A_{\varepsilon}=$ $\{y \in Q G /\{x+\epsilon \bar{x} \mid x \in Z G\} \mid y=\epsilon \bar{y}\} \quad$ and $\quad B_{\varepsilon}=\{z \in Q \pi / Z \pi \mid z=\epsilon \bar{z}\}$. Then $\lambda(x, x) \in B_{\varepsilon}$ for all $x \in M$. Furthermore, since M has odd order, $\lambda(x, x) \in\left(B_{\varepsilon}\right)_{\text {odd }}$, the odd torsion subgroup of B_{ε}. The natural map $Q G /\{x+\varepsilon \bar{x} \mid x \in Z G\} \rightarrow Q G / Z G$ induces an isomorphism $\rho:\left(A_{\varepsilon}\right)_{\text {odd }} \rightarrow\left(B_{\varepsilon}\right)_{\text {odd }}$. Set $\mu(x)=\rho^{-1} \lambda(x, x)$.

The proof of 5.2 in the case when $n \equiv 2(\bmod 4)$ is now completed as follows: Let Z / r be endowed with the trivial $Z Q 2^{l}$ module structure and define $\lambda: Z / r \times$ $Z / r \rightarrow Q Q 2^{l} / Z Q 2^{l}$ by $\lambda(s, t)=(s t / r) N$ where $N \in Z Q 2^{l}$ is the norm element. Then λ is a symmetric linking form on Z / r. Hence, $(Z / r, \lambda)$ determines an element $[Z / r, \lambda, \mu] \quad$ of $\quad L_{2 m+2}^{p}\left(Z Q 2^{l} ; Z-\{0\}\right) \quad$ such that $j[Z / r, \lambda, \mu]=[\langle r, N\rangle] \in$ $H^{0}\left(Z / 2 ; \tilde{K}_{0} Q 2^{l}\right)$. Since [$\left.\langle 3, N\rangle\right]$ generates the latter group the result follows.

Suppose now that $n \equiv 0(\bmod 4)$. We consider first the case when $l=3$. In this case we make use of a construction shown to us by R. Oliver. Note first that there is a pull-back diagram.

where $D 4=Z / 2 \oplus Z / 2$ is the dihedral group of order 4 with elements $1, S, T, S T$ and F_{p} is the field with p elements. By [7], the map $\partial: K_{1}\left(F_{2} D 4\right) \rightarrow \tilde{K}_{0}(Q 8)$ in the corresponding Mayer-Victoris sequence is onto and carries any unit $a+b S+c T+$ $d S T$ of $F_{2} D 4$ with exactly three of a, b, c, d odd onto the generator $\langle 3, N\rangle$ of $\tilde{K}_{0}(Q 8)$.

Let p be a prime, $p \equiv 3(\bmod 4)$ and choose a, b, c, d such that $p=$ $a^{2}+b^{2}+c^{2}+d^{2}$. Let $u=a+b i+c j+d k \in Z[i, j, k]$. Then right multiplication by $u, \cdot u: Z[i, j, k] \rightarrow Z[i, j, k]$ is injective. A tedious computation shows that this map has cokernel $Z / p \oplus Z / p$ (additively); hence,
$0 \longrightarrow Z[i, j, k] \xrightarrow{\cdot u} Z[i, j, k] \longrightarrow Z / p \oplus Z / p \longrightarrow 0$
is exact. Furthermore, $Z / p \oplus Z / p$ inherits a $Z Q 8$ module structure via the epimorphisms $Z Q 8 \rightarrow Z[i, j, k] \rightarrow Z / p \oplus Z / p$. Let P be kernel of this composite and M denote $Z / p \oplus Z / p$ with this $Z Q 8$ module structure.

LEMMA 5.8. (due to R . Oliver). The ZQ8 module P is a projective module representing the non-trivial element of $\tilde{K}_{0}(Q 8)$.

Proof. Let $\bar{u} \in F_{2} D 4$ be given by $\bar{u}=\bar{a}+\bar{b} S+\bar{c} T+\bar{d} S T$ where $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ are the $\bmod 2$ reductions of a, b, c, d respectively. Since $p \equiv 3(\bmod 4)$, exactly three of \bar{a}, $\bar{b}, \bar{c}, \bar{d}$ are odd and \bar{u} is a unit of $F_{2} D 4$. Consider now the following commutative diagram

where the unlabelled maps are inclusions and τ makes the triangle on the top commute. A diagram chase shows that

is a pull-back diagram. Hence P is a projective module representing $\partial(\bar{u})$. The lemma now follows from the remarks above.

LEMMA 5.9. The module M supports a ZQ8 invariant skew-symmetric linking form $\phi: M \times M \rightarrow Q / Z$.

Proof. Define ϕ by setting $\phi\left((r, s),\left(r^{\prime}, s^{\prime}\right)\right)=\left(r s^{\prime}-r^{\prime} s\right) / p$ where $r, s, r^{\prime}, s^{\prime}$ are integers representing classes in $M \times M=(Z / p \oplus Z / p) \times(Z / p \oplus Z / p)$. Clearly ϕ is skew-symmetric; in fact, ϕ is the form with matrix

$$
\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

On the other hand, M is an indecomposable $Z Q 8$ module. Since $F_{p} Q 8=$ $\left(F_{p}\right)^{4} \oplus M_{2}\left(F_{p}\right)$, it follows that the $Q 8$ representation on M is given via the inclusion $Q 8 \rightarrow S L_{2}(p)=S p_{2}(p)$ [2]. Since $S p_{2}(p)$ is the group of isometrics of the form with matrix

$$
\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

the lemma now follows.
The proof of 5.2 in the case when $n=0(\bmod 4)$ and $l=3$, is now concluded as follows: We define $\lambda: M \times M \rightarrow$ QQ8/ZQ8 by

$$
\lambda(x, y)=\sum_{g \in Q 8} \phi\left(x, y g^{-1}\right) g .
$$

Then λ is a -1 ($=$ skew)-symmetric linking form in the terminology of [13]. Since M has odd order, 5.8 shows that (M, λ) determines an element $x=[M, \lambda, \mu] \in$ $L_{1}^{p}\left(Z Q 2^{l}, Z-\{0\}\right)$ such that $j(x)=[\langle 3, N\rangle] \neq 0$.

The proof of 5.2 in the case when $n \equiv 0(\bmod 4)$ is completed by observing that the 2 -Sylow subgroup of $S L_{2}(p)$ is Q2 l [2] when $p \equiv-1\left(\bmod 2^{l}\right)$. Hence, the
action of $Q 8$ on M given above extends to an action of $Q 2^{l}$ and the form ϕ of 5.8 remains invariant under this extended action. Hence, we can construct a (-1)quadratic linking form representing an element $y \in L_{1}^{p}\left(Z Q 2^{l}, Z-\{0\}\right)$ whose restriction to $Z Q 8$ is x. The commutative diagram

coming from restriction now shows that j is onto in general. This concludes the proof of 5.2.

BIBLIOGRAPHY

[1] Carlsson, G. and Milgram, R. J., The Structure of Odd L-Groups, preprint.
[2] Carter, R. and Fong, P. The Sylow 2-Subgroups of the Finite Classical Groups. J. Algebra 1 (1964), 139-151.
[3] Fröhlich, A. Keating, M. E. and Wilson, S. M. J., The Class Groups of Quaternion and Dihedral 2-Groups, Mathematika 21 (1974), 64-71.
[4] Hambleton, I. and Milgram, R. J., Surgery Obstruction Groups for Finite 2-Groups, preprint.
[5] Illman, S., Equivariant Singular Homology and Cohomology I, Mem. A.M.S. 156 (1975).
[6] Jones, L., The Converse to the Fixed Point Theorem of P. A. Smith: I, Ann. of Math. 94 (1971), 52-68.
[7] Keating, M. E., On the K-Theory of the Quaternion Group, Mathematika 20 (1973), 59-62.
[8] Martinet, J., Modules sur l'Algèbre du Groupe Quaternionien, Ann. Scient. Éc. Norm. Sup. 4^{e} Série 4 (1971), 339-408.
[9] Oliver, R. Fixed Point Sets of Group Actions on Finite Acyclic Complexes, Comment Math. Helv. 50 (1975), 155-177.
[10] Pardon, W., Local Surgery and the Exact Sequence of a Localization for Wall Groups, Mem. A.M.S. 196 (1977).
[11] -, The Exact Sequence of a Localization for Witt Groups II: Numerical Invariants of Odd-Dimensional Surgery Obstructions, preprint.
[12] Ranicki, A. A., Algebraic L-Theory, I: Foundations, Proc. London Math. Soc. (3) 27 (1973), 101-125.
[13] -, Localization in Quadratic L-Theory, preprint, Princeton University.
[14] Rim, D. S., Modules over Finite Groups, Ann. of Math. 69 (1959), 700-712.
[15] Shaneson, J. L., Wall's Surgery Obstruction Groups for $Z \times G$, Ann. of Math. 90 (1969), 296-334.
[16] Swan, R. G., Induced Representations and Projective Modules, Ann. of Math. 71 (1960), 552-578.
[17] -, Periodic Resolutions for Finite Groups, Ann. of Math. 72 (1960), 267-291.
[18] Ullom, S. V., Nontrivial Lower Bounds for Class Groups of Integral Group Rings, III. J. Math. 20 (1976), 361-371.
[19] Wall, C. T. C., Surgery of Non-Simply-Connected Manifolds, Ann. of Math. 84 (1966), 217-276.
[20] -, Surgery on Compact Manifolds, Academic Press, London and New York, 1970.
[21] -, Classification of Hermitian Forms VI: Group Rings, Ann. of Math. 103 (1978), 1-80.
[22] Wolf, J. A., Spaces of Constant Curvature, McGraw-Hill, New York, 1967.

Syracuse University
Syracuse, N.Y. 13210
McMaster University, Hamilton, Ontario
The Institute for Advanced Study, Princeton, N.J. 08540

Received February 14/September 11, 1979

[^0]: ${ }^{(1)}$ Partially supported by the N.S.F. under grant number MCS76-05997.
 ${ }^{(2)}$ Partially supported by an N.S.F. grant at the Institute for Advanced Study, Princeton, N.J.

