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Lower central séries, augmentation quotients and homology of
groups

Luzius Grunenfelder

1. Introduction

For a group G and a subring jR of the rationals Q the following three graded
structures are somehow related refinements of the "R-abelianization"
HX(G, R) R<g) Gah and they partly reflect the structure of G or its K-localiza-
tion GR:
—The homology H*(G, R) of G with coefficients in JR.

—The graded Lie algebra LRG= © JR<g)Gn/Gn+1, where

is the lower central séries of G.

—The graded algebra gr RG © JGn/JGn+\ where JG is the augmentation
ns»0

idéal of the group algebra JRG.

It is the purpose of this paper to study some of the relationships between thèse

structures. There are of course natural surjections

a : SRH!(G, R) -» LRG, (3 : TRHx{Gy R) -» gr jRG, y : ULRG -» gr JRG,

where 2R is the free Lie algebra functor, TR the tensoralgebra functor and U the
universal envelope functor. By results of Witt and Magnus ail thèse maps are

isomorphisms if G is free. The map y has been studied in several papers, so in [9]
for jR Q and in [1] for R Z. In gênerai neither of the three maps in bijective.
In order to be able to use more homological information, the maps a and j3 will
be replaced by two spectral séquences E(JR, G), É(R, G) and a natural map
k : E(R, G) -» É(R, G), which converge, in a sensé to be made précise, to the Lie
algebra LRG, the graded algebra gr RG and the natural map k : LRG -» gr JRG,

respectively. Their initial terms are homology invariants and the relevant difïeren-
tials can in principle be computed in terms of certain Fox derivatives. For a free

group G the spectral séquences collapse and reduce to the isomorphisms of Witt
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160 L GRUNENFELDER

and Magnus. E(R, G) is essentially the lower central séries spectral séquence of a

free simplicial resolution X of G, É(JR, G) is obtained by filtering the simplicial
algebra RX by the powers of the augmentation idéal and k is induced by the map
k : X—» RX, k(x) x -1. The indices are chosen such that the differentials dr are
of degree (r, -1) and Ernm 0 Érn>m unless n > 0 and m > 0 or n ^ 0 and m 0.

Our approach is influenced by Stallings' work [12], where the Cobar construction
is used to relate H*(G) and gr ZG.

In section 2 we recall and slightly generalize some results by A. Dold [3] on
the homotopy and homology of simplicial modules. Thèse will be used in section 3

to prove the following theorem concerning the spectral séquences E(R, G) and
É(R, G).

THEOREM A. For every group G and every principal idéal domain R (char jR

0) there are spectral séquences E(R, G), É(R, G) and a natural map k :E(R, G) —>

E(R, G) with the following properties:

(i) E*m(R, G) and É*m(R, G) are homology invariants of G depending on

Hl+1(G, R) for i ^ m only. In particular, Ejt0 2HX(G, R), ÉJ,0 THx(Gy R)

(ii) Ki0:JEi0—»ÉiîO is injective.
(iii) E~o Elo L*G and É~o É£o grn
(iv) Every séquence of homomorphisms {hx : Hx+l{G, R) —> Hl+1(K, R) \ i ^ m} in¬

duces homomorphisms h^, : EitI(R, G)-> Eit,(R, X) and h*,, : É^R, G) ->
Êjjc ,(JR, X) /or i ^ m. 1/ ht is bijective for i < m and surjective for i m then the

same is true for the induced séquences.
(v) If n is invertible in R then k^:E^(K, G)->É^(JR, G) is a split

monomorphism. In particular, kx:E1(Q, G)-* É(Q, G) is a monomorphism,
E1(Q,G) 2HG(G,Q) and É1(Q,G)^THG(G,Q) where H%(G,Q)
H*+l(G, Q) is the (free group) cotriple homology of G.

Thèse spectral séquences can usefully be applied to get information about the
Lie algebra LRG and the graded ring gr RG or to transform homological
information about G into group theoretic information. Applications of this sort
are the subject of section 4. Relationships between the homological behaviour of

group homomorphisms and its group theoretic properties in the sensé of Stallings
and Stammbach are discussed. Some homological conditions on G under which
the maps a and )8 are isomorphism fall out naturally in this framework. We
also generalize some results of J. B. S. Passi concerning the natural map
X : gr RG®R gr RK -* gr R(G x K).

This paper was completed at the Forschungsinstitut fur Mathematik at the ETH
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in Zurich. I am very grateful for the hospitality of this institute and to its director
B. Eckmann for his support.

2. Preliminaries on simplifiai modules and algebras

2.1. To fix notation let us recall the définition of a simplicial object. A
simplicial object X in a category S is a family {Xq \ q ^ 0} of objects of S together
with two families of morphisms of © for each q^O, the faces

{el:Xq+l-^>Xq |0^i^q + l} and the degeneracies {at :Xq -* Xq+11 O^i^q},
which satisfy the identities

A simplicial map /. : X. —> Y. is a family {fq : Xq -> Yq | q ^ 0} of morphisms of S

compatible with the faces and degeneracies. For the notion of homotopy of
simplicial maps see for instance [7].

2.2. We shall make use of the équivalence between the category sm of
simplicial modules over a commutative ring R and the category cm of chain
modules [3], [7]. The équivalence is realized by the normal chain complex functor

N:sm—» cm,

where Nq(X) H 1<q ker (e, : Xq —> X^) and where the differential is given by the
last face eq. The reciprocal équivalence

K'.cra—> sm

is given by Kq(C) cm(N(q), C), where N(q) NX(q) and X(q) is the free

simplicial module of the standard q-simplex Aq. We shall not need the explicit
description of K but only that N is an équivalence and that N and K "préserve"
homotopy. N(X) is naturally isomorphic to the normalized chain module XN of
X, which in turn is homotopy équivalent to the chain module X

XN XIDX

where DqX X?=o cr^Xq-i) is the submodule of Xq generated by the degenerate
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éléments of Xq. By a theorem of J. C. Moore [3], [7], the homotopy tt*(X) is the
same as the homology H*(NX). Thus, there are natural isomorphisms

tt(X) H(NX) s H*(X) s H(XN).

We shall usually identify ail thèse groups and just write H(X), if there is no
danger of confusion.

2.3. Define the q-skeleton C(q+1) of a chain module C by

(Cn (n^q)

lO (n>q + l)

with the obvious induced difïerentials Zn is the submodule of n-cycles. The

projection <pq:C-* C(q+1) induces isomorphisms

for n^q, whereas Hn(C(q+1)) 0 for n>q. If C N(X) for some simplicial
R -module X then

is the q-skeleton of X and

0

2.4. PROPOSITION [3]: Le* X and X' be simplicial modules over a heriditary
ring JR.

(i) If X is projective, then any séquence of homomorphisms {hq:Hq(X)->
Hq(Xf) \q^0} is induced by a simplicial map f:X-*X', i.e. hq Hq(f).

(ii) If X and X' are both projective then they are homotopy equivelent if and only if

Proof. (i) It suffices to find a chain map g : NX-* NX' such that Hq(g) hq for
ail q^O. This is done in the standard way. Since JR is heriditary and X is
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projective NX is projective. Furthermore, NqX Zq®Bq, where Zq is the
submodule of q-cycles and Bq Nq/Zq is a complementary submodule. Zq and Bq are

projective for every q^O. It is therefore possible to find maps gq and gg+1 that
make the diagram with exact rows

Bq+1 ~ Zq -*> Hq(X)

k
Hq(X')

commutative. Thèse maps then give the required chain map g.

(ii) Since the functors N and K préserve homotopy X and X' are homotopy
équivalent if and only if NX and NX' are homotopy équivalent, in which case

H(X) H(X'). Conversely, if X is projective and H(X) H(X') then by (i) there
is a simplicial map /:X-»X' such that NC/)* : H*(X)-^ H*(X'). If X' is also

projective then N(/) and thus / itself is a homotopy équivalence.

The next proposition is a simple generalization of Theorem 5.11 in [3].

2.5. PROPOSITION: Let F:mR^ms be any functor from R-modules
to S-modules, where R is a heriditary ring, and let X and X' be projective
simplicial R-modules. Then

(i) Any séquence of homomorphisms {ht : H,(X)-» H,(X') | i^q} induces

homomorphisms fiFl:H,(FX)—>Ht(FX') for i^q.
(ii) If ht is bijective for i<q and surjective for i q the same is true for the séquence

Proof. (i) By 2.2 and 2.3 we can assume that {hjï^q} is induced by a

simplicial map h :X(q+1)~* X'(q+l\ i.e.

K : Ht(X) Ht(X(q+1))
H<(H)

>Ht(X'(q+1)) sHt(X')

for i^q. In addition X(q+1) is a direct summand of X such that X[q+1) Xl for

i^q. It follows that F(X(q+1)) is a direct summand of F(X) with F(XÎq+1)) FXl
for i^q and thus

Hl(FX(q+1))
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for i^q. The séquence {hFl \ i^q} is now given by

hFtl :

(ii) To prove the second assertion let us décompose the chain map Nh :N(q+1)-
N'(q+1) as follows:

C :P

Nq(X)

Nq(X)

Nq(X')

Nq_,(X)

where the lower left hand square is a pullback. Now HI(j3):Hl(C)-^Hl(N/(q+1)) is

an isomorphism for ail i^O. Since C is also projective j3 is a homotopy
équivalence. Thus, Kfi :KC—»X'(q+1) is a homotopy équivalence and since F
obviously préserves homotopy FKJ3 :FKC—> FX'(q+1) is a homotopy équivalence.
Hl(a):Hl(N(q+1))-^Hl(C) is the identity for i<q and surjective for i q.

Moreover, X(q+1) KC and thus FXiq+1) FKC in dimension ^q. We conclude
that Hl(FKa):Hl(FX(q+1))-+Hl(FKD) is the identity for i<q and surjective for
i q. The composition

hFtl : Ht(FX)sHt Ht(FX/(q+1)) H

is therefore bijective for i < q and surjective for i q.

2.6. By the Eilenberg-Zilber theorem the shuffle map g and the Alexander-
Whitney map / define natural homotopy-inverse homotopy équivalences of chain
modules

N(X)<g)N(Y)*± N(X<g) Y)

with /g id [6]. The Kûnneth-Formula can therefore be used to compute the
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homotopy groups of a tensorproduct of simplicial modules over a principal idéal
domain. The homotopy groups of a simplicial algebra or Lie algebra form a

graded algebra or a graded Lie algebra, respectively. Thèse facts will be used in
the sequel without spécial mention.

3. The spectral séquences associated with a simplicial group

3.1. Henceforth, if not mentioned otherwise, R shall always be a sub-ring of
Q containing Z. The notion of R-localization can of course be extended dimen-
sionwise to nilpotent simplicial groups. If X is a simplicial group then RX is a

simplicial augmented R -algebra. The homotopy exact couple associated with the
extensions

L*X ~r*+1X-^F«X

gives rise to a spectral séquence E(R, X) of graded Lie algebras. The superscript
R means R-localization and rnG G/Gn. On the other hand the augmentation
filtration of RX leads to a spectral séquence É(R, X) of graded R -algebras. The
initial terms are given by

Elm(R, X) 7rm(LÎX) Hm(LÎX\ ÉIJR, X) 7rm(grn RX) Hm(grn RX)

and the differentials dr are of degree (r, -1). Thèse spectral séquences hâve some
nice and useful properties although, except for weak convergence on the n-axis,
there is no convergence in gênerai.

3.2. PROPOSITION. Let X be a simplicial group. Then:

(i) There are natural isomorphisms of spectral séquences jR<8)E(Z, X) -^ E(R, X),

(ii) The canonical injection k:X~^RX, k(x) x-1, induces a natural

homomorphism k : E(R, X) -> É(R, X).
(iii) E"0(R, X) Elo(R, X) L^tto(X), É^O?, X) É£0(R, X) grn Riro(X)

Proof. (i) If X is a simplicial group then tt(X) H(NX) [7], where NX
is the (non-abelian) group complex defined as in 2.2, i.e. NqX
ni<qker (e, :Xq -* Xq_x) and the differential is given by the last face operator eq.

The computation of the homotopy groups of X therefore only involves taking
kernels, fînite intersections and quotients. Since K-localization of nilpotent groups
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préserves subgroups, extensions and intersections [13], [4] there is a natural
isomorphism K®7r(Y)—» tt(R<8 Y) for simplicial nilpotent groups Y It now
follows easily from the appropriate exact couples in the définition of E(Z, X) and
of E(R, X) that R®E{Z, X) and E(R, X) are naturally isomorphic. Since R is a

principal idéal domain of characteristic zéro the natural isomorphism jR<8>

ZG^RG induces isomorphisms R®JhG^JrG, where JRG is the augmentation

idéal of RG. This together with the universal coefficient theorem gives the
second isomorphism. In view of (i) it suffices to prove (ii) for jR Z. The canonical

map k : X —> ZX induces natural maps

>Fn+1X » i nX

i I I
+1

grn iL<^\ >"> iaJVjJ Si. —* âjtJVlJ 2Sl.

Ail the maps in thèse diagrams are group homomorphisms if JX/JkX is consi-
dered a group under the "Jacobson opération" u°v u + v + uv and if ZX/JkX is

identified with ZxJX/JkX. Moreover, for i>0 the group structure of the
homotopy groups TTt(Y) of the underlying simplicial set of a simplicial group Y
coincides with the group structure induced by that of Y, if the identity of Y is
chosen as base point [7]. This implies that the exact couple defining É(Z, X) and
the exact couple obtained by replacing the ordinary addition on JX/JkX by the
"Jacobson opération" coincide everywhere, except for their tails

-* 7ro(grn ZXA 7To(ZXAP+1X)-^ 7T0(ZX/JnX).

But ail that is needed from the tails of the exact couples in the construction of the
associated spectral séquences are the images of the maps an and the subgroups
thereof. The image of an however inherits its group structure from that of
7ro(grn ZX), which is the same in both cases. We conclude that the two spectral

séquences coincide. Thus, k induces a natural homomorphism k:E(Z, X)-»
É(Z, X) of spectral séquences.

(iii) Since Enm(R, X) 0 Énm(R, X) unless n>0 and m>0 or n^O and

m 0 and since degdr (r,-1) it follows immediately that E*O 23£O and
É£0 É£0. An easy calculation shows that E£0 ker (7ro(r*+1X)-* iro(r*X)).
Since the functors F* préserve coequalizers we conclude that E^o E^0
L*iro(X). On the other hand É^o grn tto(KX) is the graded algebra associated

with the augmentation filtration of tto(RX). But the group algebra functor
préserves coequalizers and hence É^o grn Rtto(X).
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3.3. THEOREM: // X and Y are free simplicial groups, then:

(i) Ei,m=7rm(2?(R®Xûb)), Éi,m=7rm(T?(R<g>Xûb)), where 2R is the free Lie
algebra functor and TR is the tensor algebra functor. In particular E\ m

É É
(ii) Kio:Eio->Éio is injective.
(iii) El0 E^o Lrtt0(X), Élo Élo grn Riro(X).
(iv) Any séquence of homomorphisms {ht :H,(JR<8)Xab) -> H^R® Yab) \ i ^ m} in¬

duces homomorphisms h*tl:E*9l(R, X)->Ei,,(^? Y) and \ :£*,(#, X)->
Ê^j^R, Y) for i ^ m. 1/ h, is bijective for i < m and surjective for i m then the

same holds for the induced séquences {h^t \i^m} and {h*yl\i^m}. In
particular, E^m(R, X) and É^JR, X) dépend only on {H,(R® Xab) | i ^ m}.

Proof. (i) The freeness of X implies that LRX 2R(R<g)Xab) and grRX
TR(R®Xab). Hence, Ei,m= 7rw(2R(K(8)Xab)) and Éiifn= 7rm(TR(K®Xab)). If

-B

is a diagram of K-algebras or JR-Lie algebras satisfying eoaQ= 1 e^o then the

underlying jR-module of the coequalizer of the pair (e0, et) is the same as the

coequalizer of (e0, ex) in the category of JR-modules. Since in addition the
functors 2R and TR préserve coequalizers we conclude that H0(2R(K®Xab))
QRH0(R®Xab)) and H0(TR(K<g)Xab)) TRH0(R®Xab). Since the universal en-
velope functor UR also préserves coequalizers (ii) follows directly. (iii) is the same

as 3.2 (iii). To prove (iv) use Proposition 2.5 with F fiR:mR —>mR and

F=TR:mR—>mR, respectively. The proposition applies since R is a PID and

R(8)Xab is R-free.

Note: a) By proposition 3.2 it suffices to consider the spectral séquences
E(Z, X) and É(Z, X) as far as functorial properties of the spectral séquences are
concerned. This is of course not the case in 3.3 (iv) since the maps ht need not be

induced by a map from X to Y.
b) Similar spectral séquences can be obtained over the field Fp if the lower
central séries is replaced by the lower central p-series

G,
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where G(np) is the subgroup of G generated by {[xu xs]pV | spv ^ n}. Lip)G
®is*i G^/G^i has the structure of a restricted Lie algebra over Fp. If G is free
then L(P)G is isomorphic to the free restricted Lie algebra 2(p)(G/G(2p)) and

gr FpG T(G/G(2P)) [15]. With the obvious modifications theorem 3.3 still holds in
this case.

c) In the situation of Theorem 3.3 É^m(K, G) Hm(T*N(JR<g)Xab)) by the

Eilenberg-Zilber theorem. The Kùnneth formula can then be used to compute
É\R,X) in terms of H*(R®Xab)

Élm(R,X)& I ÉU^^e Z Tor^ÉU.ÉÏ,,).
i+j m i+j m — 1

For some values of n the Kùnneth theorem and the Eilenberg-Zilber map can
also be used to get more information about Elnjm(R, X).

3.4. PROPOSITION: If X is a free simplicial group and n is invertible in

R then K^iEl^R, X)->Ë^(jR, X) is a split monomorphism and

El^iR, X) H(finN(JR<2)Xal,)). In particular, k1 :E\Q, X)->É1(Q, X) is a (split)

monomorphism, E\Q, X) 2H(Q<g)Xa5) and É1(Q,X)

Proof: If M is an K-module and n is invertible in K then the map
pn : TnM-^>£nM given by

{0,
if n 0

-[m1[m2,...[mn_1, mj-••]], if n>0,

is a left inverse for the canonical inclusion ju,n : finM —» TnM. The assertions now
readily follow from the commutative diagram [9], Part I, 4.5

QnH(N(R<8>Xab)) -* H(2nN(R ®Xûb)) -> n(Sn(K®Xab))

TnH(N(R®Xab)) -U H(TnN(R®Xab)) ^ *(Tn

where / is given by the Kùnneth theorem and g is the Eilenberg-Zilber
isomorphism.

3.5. The proof of Theorem A is now an application of 3.3 and 3.4 to free

simplicial resolutions of a group G.
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A short exposition of free simplicial resolutions with ail the necessary proofs
can be found in [5]. Hère is a brief description. Let X be a simplicial group with
tto(X)= G and let e :X -» G be the augmentation. For n^O the subgroup

ZnX {(x0, xi,. •., *«+i) e Xnn+2 | £,(*,) ^(x.) for i < j}

is called the nth simplicial kernel of the augmented simplicial group e :X —» G. It
cornes equipped with faces {p, : ZnX —» Xn | 0 ^ i ^ n +1} and degeneracies

{q : Xn -» Z*X | 0 ^/ ^ n}, where p((x0, x,,..., xn+1) x, and q,(x) (o^eoX,...,
crJ_1eJ_1x, x, x, cr^^xX,..., cr^x), respectively. The homomorphism

ein):Xn+1-*ZnX

defined by e(n)x (eox, exx,..., en+ix) is the unique map that must exist by the
universal property of simplicial kernels. The augmented simplicial group e :X —»

G is called a resolution of G if e(n):Xn+1—» ZnX is surjective for ail n^O, i.e. if
7rn(X) 0 for n > 0 and tto(X) G. It is called a free simplicial resolution of G if
in addition Xn is free for each n ^ 0 and if sets Bn <= Xn of free generators can be

chosen in such a way that atBn cBn+1 for o^i^n. This définition is constructive
in the sensé that it allows for a step by step construction of free simplicial
resolutions. There is a comparison theorem, which says: "If £:X—» G is a free

simplicial group over G 7ro(X) and e:Y—» H is a resolution of H then any
homomorphism f:G-* H can be extended to a simplicial map <p : X —» Y such

that 7ro(ç) f and any two such extensions are homotopic. In particular, any two
free simplicial resolutions of G are homotopy équivalent". For a free simplicial
resolution X of G write E(R, X) E(R, G) and É(jR, X) É(R, G). By the

comparison theorem thèse spectral séquences do not dépend on the particular
choice of X and are therefore functorial in G. If X is any free simplicial resolution
of G then H*(K®Xûb) H%(G, R) H*+1(G, R) is the cotriple homology of G.

3.6. Remark, a) Let {x; r} be a free présentation of the group G. If F and R
are the free groups on x and r, respectively, then the diagram

is an initial segment of a free simplicial resolution of G which can be extended

step by step. The maps in the diagram are given by eo(r)= 1, 6^) ^ eo(x)

ex(x) x cr0(x). Using such a free resolution the differentials d* :ÉsnA-*Ésn+St0

can be computed in terms of Fox derivatives. For instance if f is a représentative
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of an élément r in É\ t then

ds(f) I T,(DtlDl2 • • • A/)*,®- • -®x,,

where tjiZF—>Z is the augmentation map. The diagram above can also be

extended to a free simplicial group X with Xn Rx- • xRxF. X is not a

n-times
resolution of G anymore but tto(X) G and Theorem 3.3 still holds. The

resulting spectral séquences are similar to those used by Sjogren [11].
b) There are also functorial procédures to get free simplicial resolutions. The
standard simplicial G-resolution, where G is the free group cotriple, is functorial.
Another is obtained by applying Kan's Loop group construction to the classifying
simplicial set of the group G [7].

4. Applications

In this section we shall apply Theorem A as described in the introduction.
Again, R shall be a subring of Q containing Z. Many of the results, especially
those that dépend on É only, also hold if R is replaced by any principal idéal
domain of characteristic zéro. If G is a group then GR=limr*G is the R-
completion of G and GR is our symbol for the Bousfield K-localization.

4.1. THEOREM: If a grouphomomorphism f:G-*K induces an isomor-

phism /^H^C^^H^jR) and an epimorphism f*:H2(G, R)^> H2(K,R)
then it induces isomorphisms LR(f):LRG^LRK and gr R(f) :gr RG^gr RH.
In particular the R-completions f : GR -»KR and R(/) : RG->RK are isomorphisms.

Proof: In view of our hypothèses and Theorem A (iv) the homomorphism

f:G-»K induces isomorphisms Elt0(R, G)^El^0(R, K)9 J5j,0CR, G)^>
Éit0(R, K) and epimorphisms ElA(R, G)^ E^iR, K\ ÉiA(R, G)^ Éi^K, K)
which are of course compatible with the differentials. The assertions now
follow from the next Lemma and an obvious induction argument.

LEMMA. Let g:E-^> E be a morphism of spectral séquences with differentials
dr of degree (r, -1) and let Enm =0 Ënm whenever n<0 or m<0. If for some

r^lgr fias the property that gi0 is bijective and gi4 is surjective then gs has the

same property for ail s^r and g£0 is an isomorphism.
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Proof. This follows by induction on s^r. If gs has the property then the
commutative diagram with exact rows

Esnn,l

implies that im ds -» im ds is bijective, ker ds —» ker ds is surjective and thus that
gs+1 has the property. The assumptions on the forai of the spectral séquences
then imply that E~o JE^1 -^ Ê^1 Ë~o for ail n ^ 0.

Note that the jR-localization map l:G-*GR by définition satisfies the

hypothèses of the theorem.

COROLLARY. The R-localization map l:G-*GR induces isomorphisms
LRG-^ LRGR and gr RG-^ gr RGR. If G and K are finitely generated groups with
isomorphic p-localizations for every prime p, then LG LK and gr ZG gr ZK as

graded abelian groups.

While the first isomorphism of the theorem and of the corollary is well known
the second is not. However, in the spécial case where LRK is free as an R -module
one shows as in [1] for jR Z that the universal envelope of LRK is isomorphic to

gr RK and then the second isomorphism follows from the first. Since by the
Kûnneth theorem ÉX(R, G) can be computed explicitly in terms H*(G, R) the

spectral séquence É(R, G) is usually easier to handle than E(R, G). Much
information about E(Ry G) cornes from the natural map k. The proof of the

following theorem is a case in point.

4.2. THEOREM: Let G be a group with Ht(G, jR) torsionfree and

H2(G, R) torsion. Then:

(i) TR(R®Gab)^grRGand QR(R®Gab)-^LRG.
(ii) If a homomorphism f:G-*K induces a monomorphism f^iH^GyR) >-*

Ht(K,R) and if H2(K,R) is torsion then LR(f):LRG-* LRK and

gr R(f) : gr RG -> gr RK are injective.
(iii) If a homomorphism g:K-+ G induces a monomorphism g*:H^K, R)-*

HxCQJR) then LR(g):LRK-+LRG and gr R(g):gv RK-^gr RG are injective.
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Proof. If X is a free simplicial resolution of G then É^ m(R, G)
Hm(T«(K<g>Xai))) and by the Kûnneth formula

TorR (Êi_ltl, El,,).

In particular Éi,1 Éi_14(2)RÉl)0©Éi_1)0®ÉÎ;ieTorR (ÉJ_lf0, Élt0) and É^o
Ê\-ito®RÊ\tO. Induction onn^l shows that È\x and thus Érnl is torsion for ail

n^l and ail r^l if H2(G, R) É\1 is. Consider the commutative squares

By induction onr^lwe first conclude that dr 0 and then since by Theorem A
K*,o: ^i,o ~^ Éi)0 is injective also that dr 0 for ail r ^ 1. This establishes claim (i)
in view of Theorem A. To prove (ii) note first that by the hypothèses on G and K
the map É* 0(R, G) -> É^R, K) induced by / is injective and É^R, K) is

torsion for ail r^l. Induction on r^l shows that Ér+t0(R, G)-+É*t0(R, K) is

injective for ail r^ 1. The rest follows from the commutative squares

Ji,o(R,G)E
!¦ !¦

The proof of (iii) is similar. D

For JR Z thèse results hâve been obtained with différent methods in a récent

paper by R. Strebel [14]. If R Q the condition on H^G, R) is of course
redundant and assertion (i) always holds if H2(G) is torsion. Moreover, if H2(G)
is torsion then there exists a minimal subring JR of Q for which the conditions of
4.3 are satisfied, namely R Z [2"1], where X {peZ | p prime and HX(G) has

non-trivial p-torsion}. If Ht(G) has no non-trivial p-torsion for some prime p
then K^Q. This happens in particular if Ht(G) is finitely generated. If HX{G, JR)

is free as an R -module then the isomorphisms of 4.3 (i) are induced by a free

subgroup F^G.
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4.3. COROLLARY: If H,(G, R) is a free R-module and H2(G) is torsion
then there exists a free subgroup F^G such that grJRF^»grRG, LRFJ1^LRG
and thus FR-=^GR. In particular, if H^G) is free, H2(G) is torsion and G is

residually nilpotent then G is parafree.

Proof. For any élément y 6H^G, R) there is an invertible élément reR such

that ry e im (H^G) -* H^G, R)). Thus, to any JR-basis Y of H^G, R) we can find
a linearly independent subset X of H^G) such that card X card Y. If F is the
free group on the set X then there is a homomorphism h : F —» G which induces a

monomorphism hîic:H1(F)>->H1(G) and an isomorphism h^:Hx(F, R)^>
H^G^R). Since H2(G) is torsion it follows from 4.3 (ii) that L(h):LF-+LG,
and thus h:F->G itself, is injective. By 4.3 (ii) or 4.3 (iii) both LR(h):LRF-+
LRG and gr R(h) :gr RF—»gr RG are isomorphisms.

It follows now trivially that the conditions of the corollary are satisfled for a

prenilpotent group G if and only if GR R. Also the following well-known resuit
[2] is proved very efficiently in our présent framework.

4.4. THEOREM: For any group G the séquence

0 -> LRG -» gr2 RG -> gr2 RGab -> 0

is exact. If G is abelian then, gr RG^SR(R®G). If Gab is finitely generated then

the séquence splits.

Proof. By the functoriality of the spectral séquences E(R, G), É(R, G) and

the naturality of k : E(R, G) -* É(R, G) the diagram

H2(G, R) ^H^G, R) — LRG/ \ / \ /H2(Gab, ^y-^fH^G^, R) -* LRGab
II 1

H2(G,R) —UlTH^G.R) —U gr2RG/ / /H2(Gab, R) > TfH.iG^, R) » gr2 J?Gab

is commutative and has exact rows. Since LRGab 0 ail our assertions except the
last one follow immediately by diagram chasing. If K®Gab is finitely generated
JR-module with K-basis {y!,..., yn} then the set {y^, \ 1 ^ i ^j ^ n} is an K-basis
for SR(R<8>Gab). The K-module morphism s :SR(R®Gab)-*TR(R®Gab)
defined by s(yly/) y,®^ is a section for the canonical projection p:Tf(JR(8)
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Gab)-* SR(R®Gab). The required splitting can be constructed via the right hand
bottom square in the diagram.

4.5. Let us turn to the natural map #:gr KG®gr RH-^gr R(Gx K). For

any group G the canonical Lie algebra homomorphism <p : LRG —> gr RG induces
a natural surjective map of graded algebras $: l/LRG—»gr RG, where ULRG is

the universal envelope of LRG. If LRG is free as an K-module then $ is an

isomorphism. This is proved in [1] for R Z using Quillen's resuit [8] for jR Q.
The more gênerai case where JR is any intégral domain of characteristic 0 follows
by exactly the same arguments if Q is replaced by the quotient fleld of JR. The
functor LR of course préserves products while the functor U transforms products
into tensorproducts. This implies that ULRG® ULRK is naturally isomorphic to
ULR(GxK) and that the natural map

X : gr JRG<g>gr RK -> gr jR(G x K)
R

is surjective. It is of interest to know under what conditions x is an isomorphism.
Our first resuit is a trivial conséquence of the remarks just made.

PROPOSITION. If LRG and LRK are free as R-modules then

X : gr KG®gr RK -* gr JR(G x K)
R

is an isomorphism.

The conditions of the proposition are by no means necessary. Take G Zn
and K Z/mZ. Then by [1], gr ZG<g>gr ZK-h> S(G)<g>S(K)^ S(G<$K)^>
grZ(GxK), where S is the symmetric algebra functor. On the other hand x is

not always an isomorphism. If for example G Z/rZ and H Z/sZ with (r, s)#
1 then [grZG0grZH]n=Z/rZeZ/sZe(Z/(r,s)Z)n-1 while grnZ(GxH)
grn+1Z(GxH) for large n. The proposition will nevertheless be useful to flnd
weaker conditions under which x is an isomorphism.

4.6. THEOREM: If R is a PID of characteristic 0 then

X : gr KG®gr JRX -* gr R(G x K)
R
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is an isomorphism if either one of the following conditions is satisfied:

(a) gr RK is torsionfree (in particular if LRK is free as an R-module),
(b) Gab and Kab are both torsion and TorR (H^G, R), HX{H, R)) 0,
(c) G and K are both finitely generated abelian and TorR (H^G, R), HX(K, R)) 0.

Proof. If e : X —» G is a free simplicial resolution of G then e x id : X x K —>

G x X is a resolution (not free of course) of GxK. This is because the functor
-xK:©—»© préserves simplicial kernels and epimorphisms. By 3.2 the spectral
séquence É(R,XxK) converges weakly to gr R(GxK) on the n-axis, that is

É£0(]R, XxK) gr jR(GxK). If LRK is free as an J?-module then 4.5 and the
universal coefficient theorem imply

î.e.:

Él(R, Xx K) É\R, G)<g>gr RX0TorR (É1^, G), gr JRK).g

The second term in the direct sum is actually zéro since gr RK is R-free. Going
through the spectral séquence step by step the universal coefficient theorem
shows that Ér(jR, XxK) Ër(R, G)<g)Rgr RK for ail r^l. In particular

\:gr RG®Rgr RK-*gr R(GxK) is an isomorphism if LRK is JR-free. This in
turn means that the above formula for É1(R, XxK) holds for arbitrary G and K.
If gr RK is torsion free (condition a)) procee bas above to get the desired resuit.
Condition b) of course implies that TorR (É^o (R, G), gr RK) 0 for ail s^l.
But the obvious induction argument and the universal coefficient theorem show

that

É£t(R, G)®R gr RK

and

)^[E£l(R, G)<g>R gr RK]n0TorR (E£o(K, G), gr RK)n+r

if TorR (É*y0(R, G), gr RK) 0 for 1 ^ s ^ r. Condition c) is a simple combination
of a) and b).
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4 7 COROLLARY If Ris a PID of charactenstic 0, then

(î) gr R(Z x K) ©r=o gr, #K for arbitrary K,
(n) grn R(GxX) grn RG©grn KX for alln^l if Gab and Kab are both torsion

andR®Torx(Gab,Kab) 0

(ni) gr KG =®gr RGp if G is finite and Gp is the p-Sylow subgroup of the mlpotent
residual G

To prove (m) use the fact that for a prenilpotent group G the graded algebra

gr RG is isomorphic to gr RG, where G is the mlpotent residual of G For abelian

groups and jR Z the results of the corollary were first proved by J B S Passi

[10] using idéal theoretic methods In low degrees the methods used to prove 4 6

yield a httle more than stated m the theorem, namely

4 8 PROPOSITION If R is a PID of charactenstic 0, then

for (a) n =ss 2 if G and K are arbitrary groups,
(b) n^3 i/K<g)Tor(Gûb,Kûb) 0,
(c) n ^ 4 if £I+J.3 TorR (gr, RG, gr, RK) 0

However, we do not know whether TorR (gr RG, gr RK) 0 implies that \ is an

isomorphism
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