On Tsuji's and Pommerenke's examples for fuchsian groups of convergence type.

Autor(en): Purzitsky, N.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 55 (1980)
PDF erstellt am:
30.06.2024

Persistenter Link: https://doi.org/10.5169/seals-42370

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On Tsuji's and Pommerenke's examples for fuchsian groups of convergence type

N. Purzitsky

Introduction

Let Γ be an infinitely generated fuchsian group acting on the unit disc Δ and Ω the set of ordinary points of Γ in the complex plane \varnothing. In this paper we will consider only those groups Γ for which $\Omega \cap \partial \Delta=\varnothing$, where $\partial \Delta$ is the boundary of Δ and \varnothing is the empty set. The classical problem to which this paper has relevance is the problem of determining the divergence or convergence of the series

$$
\left(\begin{array}{c}
\left.\sum_{\substack{c \\
c \neq 0^{*}}}\right)_{i r} \\
\frac{1}{|c|^{2}} .
\end{array}\right.
$$

This problem appears in [1, p. 176 and 6, p. 515]. This series is known to converge [6, p. 514] if the Lebesgue linear measure of the some fundamental domain D of Γ intersect $\partial \Delta$ is positive. Is the converse true?

No, in [6, p. 515] counterexamples for which $m\left(\bar{D}_{0} \cap \partial \Delta\right)=0$ are given, where $m(S)$ is the Lebesgue linear measure in $\partial \Delta, D_{0}$ is the Ford fundamental domain, and \bar{D}_{0} is the closure of D_{0}. Although these examples are probably correct, there was a significant gap in Tsuji's claim that his constructions provide examples to anything at all. In particular, it is not obvious that if $m\left(\bar{D}_{0} \cap \partial \Delta\right)=0$, then $m(\bar{D} \cap \partial \Delta)=0$ for all other fundamental polygons of Γ. This gap was filled by Pommerenke in [3], where he gives examples of his own. Actually Pommerenke proves that in fact if Γ is of convergence type, i.e. $\sum 1 /|c|^{2}<\infty$, and $m\left(\bar{D}_{0} \cap \partial \Delta\right)=$ 0 , then for any Borel subset B of $\partial \Delta$ for which $V(B) \cap B=\varnothing$, if V is not the identity transformation, we have $m(B)=0$.

The confusion to the validity or completeness of the Tsuji examples apparently stems from the notion that if $m(\bar{D} \cap \partial \Delta)=0$ for one fundamental polygon of Γ then $m\left(\bar{D}^{\prime} \cap \partial \Delta\right)=0$ for all other fundamental polygons D^{\prime} of Γ. In [4] examples are given to show that this notion is false. The theorem proved in this paper is an extension of these examples to all groups Γ for which $\Omega \cap \partial \Delta=\varnothing$.

THE MAIN THEOREM 1. Let Γ be an infinitely generated fuchsian group for which $\Omega \cap \partial \Delta=\varnothing$. Then Γ has a fundamental polygon P such that $m(\bar{P} \cap \partial \Delta)=0$.

Remarks. It will be evident that the above theorem is true for any function $m^{*}: \beta \rightarrow[0, \infty)$, where β is the set of Borel subsets of $\partial \Delta$, such that:
(a) $m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)$;
(b) if $A \subseteq B$, then $m^{*}(A) \leq m^{*}(B)$;
(c) for each $\varepsilon>0$ there exists a $\delta>0$ such that $m\left(\left\{e^{i \theta}: \theta_{0}-\delta<\theta<\theta_{0}+\delta\right\}\right)<\varepsilon$ for all θ_{0}.

Preliminaries. We use the following two theorems.

THEOREM 2. Let $\left\{C_{i}, C_{i}^{\prime}\right\}_{i}$ be a collection of circles perpendicular to $\partial \Delta$ which satisfy: (*) all circles are exterior or externally tangent to each other except for the possibility that $C_{i} \cap C_{i}^{\prime} \cap \Delta \neq \varnothing$ in the special case mentioned below. Let Γ be a fuchsian group and $A_{i} \in \Gamma$ be such that $A_{i}\left(C_{i}\right)=C_{i}^{\prime}$ with the outside of C_{i} going onto the inside of C_{i}^{\prime}. If A_{i} is elliptic, then we assume A_{i} is of minimal rotation, i.e. $\left|\operatorname{tr}\left(A_{i}\right)\right|=2 \cos (\pi / n)$ for some n, and that $C_{i} \cap C_{i}^{\prime} \cap \Delta$ is the fixed point of A_{i}, if $n \neq 2$. If $n=2$, then $C_{i}=C_{i}^{\prime}$. Then the polygon P formed by the intersection of Δ with the region exterior to all the circles from $\left\{C_{i}, C_{i}^{\prime}\right\}_{i}$ is a fundamental polygon of Γ if and only if
(1) the group generated by the $\left\{A_{i}\right\}_{i=1}^{\infty}$, denoted by $\left\langle A_{1}, A_{2}, \ldots\right\rangle$ is Γ and
(2) $\Omega \cap \partial \Delta=\varnothing$ or \bar{P} contains a fundamental set of $\Omega \cap \partial \Delta$.

Theorem 2 is proven in [5].
The next theorem is a special case of Theorem 6 in [4].

THEOREM 3. Every infinitely generated group for which $\Omega \cap \partial \Delta=\varnothing$ has a Schottky fundamental domain P such that for each $A \in S(P)$ we have that A is either a handle generator, an ideal boundary generator, a parabolic transformation, an elliptic transformation, or a free hyperbolic element.

We need to define some of the terms of Theorem 3. A handle generator $X \in \Gamma$ is a hyperbolic transformation which identifies a pair of sides of P for which there is another hyperbolic generator Y, also identifying a pair of sides of P, such that $C_{X} \cup C_{Y} \cup C_{X}^{\prime} \cup C_{Y}^{\prime}$ is expressable as a Jordan arc, where C_{T} and $C_{T}^{\prime}=T\left(C_{T}\right)$ are sides of P identified by T. Note here that the axes of X and Y intersect.

An ideal boundary generator is a hyperbolic transformation which identifies a
pair of sides whose axis does not intersect the axis of any other hyperbolic transformation identifying a pair of sides of P.

A Schottky fundamental polygon of Γ is a hyperbolic convex region D in Δ which is the exterior of circles which satisfy (*) such that $\Delta=U_{V \in \Gamma} V(\bar{D})$ and $V(D) \cap D=\varnothing$ for all $V \in \Gamma, V \neq\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Cutting and Pasting. For the precise definition of cutting and pasting we refer to [1, p. 242]. We should say, however, that in this paper we will cut and paste only Schottky fundamental polygons and in such a way as to obtain only other Schottky fundamental polygons. With this restriction a rough definition of a cut and paste is the following. We draw a geodesic in P, say g, in such a way that $P \backslash g$ has two connected components, say R_{1} and R_{2}. We let $A \in \Gamma$ pair the sides C_{A} and $C_{A}^{\prime}=A\left(C_{A}\right)$ of P. We assume g is drawn so that $C_{A} \subseteq \bar{R}_{1}$ and $C_{A}^{\prime} \subseteq \bar{R}_{2}$. Then a cut and paste by A along g is the new polygon $P_{1}=\left[R_{2} \cup A\left(\bar{R}_{1}\right)\right]^{0}$, where S^{0} is the interior of S. To insure P_{1} is a Schottky polygon we choose g so that either both endpoints of g are in $\partial \Delta$, if A is not elliptic, or one endpoint of g is the elliptic fixed point of A, in the case A is elliptic.

Remark. Let the sides of P be labelled and enumerated by the sequence $\left\{C_{i}, C_{i}^{\prime}\right\}_{i=1}^{\infty}$, where $C_{i}^{\prime}=A_{i}\left(C_{i}\right)$ for some $A_{i} \in \Gamma$. Let $S(P)=\left\{A_{1}, A_{2}, \ldots\right\}$. We note $S\left(P_{1}\right)=\left\{A^{\varepsilon_{x}} X A^{\delta_{x}}: \varepsilon_{X}, \delta_{X}=0, \pm 1, \varepsilon_{A}=\delta_{A}=0\right.$, and $\left.X \in S(P)\right\}$. The change of $S(P)$ to $S\left(P_{1}\right)$ is called a Nielsen transformation. It is classical [2] that $\langle S(P)\rangle=$ $\left\langle S\left(P_{1}\right)\right\rangle$.

We now describe three ways of cutting and pasting a Schottky polygon P to a new Schottky polygon P_{1}. When we say below to cut and paste P to say P_{1}, we shall mean that: starting with P perform one of the three operations described below depending on X to obtain P_{1}. Note that in the type 3 cutting and pasting we also prescribe the number ε.

Type 1. Let A be either an elliptic or parabolic transformation (by assumption there are no free hyperbolic generators) and $x \in \partial \Delta \cap \bar{P}$. Let g be the geodesic joining x to the fixed point of A. The type 1 cut and paste is the cutting and pasting of P along g by A.

Type 2. If A is a handle generator and $x \in \partial \Delta \cap \bar{P}$, then we need four cuts and pastes. We assume that as one walks $\partial \Delta$ counterclockwise one encounters the sets $\{x\}, C_{\mathrm{A}} \cap \partial \Delta, C_{\mathrm{B}} \cap \partial \Delta, C_{\mathrm{A}}^{\prime} \cap \partial \Delta, C_{B}^{\prime} \cap \partial \Delta$, respectively. Draw g_{A} from x to the endpoint of C_{A} for which $C_{\mathrm{A}} \cap \Delta$ is in one component of $\Delta \backslash g_{\mathrm{A}}=R_{1} \cup R_{2}$, say R_{1}, and $C_{B} \cap \Delta, C_{A}^{\prime} \cap \Delta, C_{B}^{\prime} \cap \Delta$ are all in R_{2}. Cut along g_{A} and glue $A\left(R_{1}\right)$ to R_{2} along C_{A}^{\prime}. Repeat this procedure in succession for C_{B}^{\prime} and $A(x), g_{A}^{\prime}=A\left(g_{A}\right)$ and $B^{-1} A(x), g_{B}=B^{-1}\left(g_{B^{-1}}\right)$ and $A^{-1} B^{-1} A(x)$. In the resulting polygon the sides which are paired by A and B all have both endpoints equivalent to x.

Type 3. Let A be an ideal boundary generator $x \in \partial P \cap \partial \Delta, \varepsilon>0$ and x_{A}, y_{A} be the fixed points of A. We first observe that there exists a $\delta>0$ such that $|A(z)-z|<\varepsilon$ if either $\left|z-y_{A}\right|<\delta$ or $\left|z-x_{A}\right|<\delta$. Let $C_{A}, C_{A}^{\prime}=A\left(C_{A}\right)$ be the sides of P, a Schottky polygon, which are paired by A. Let x_{A} be inside the circle determined by C_{A}^{\prime} and let w be the endpoint of C_{A} which lies in the connected component of $\partial \Delta \backslash\left\{x_{A}, y_{A}\right\}$ which does not contain x. Let g_{1} be the geodesic joining x to w. Cut P along g_{1} and paste along C_{A}^{\prime} to obtain a new polygon P_{1}. If $\left|A(w)-A^{2}(w)\right|<\varepsilon$, we stop. If not repeat this procedure. By the above remarks, since $\lim _{n \rightarrow \infty} A^{n}(w)=x_{A}$, we see that after finitely many applications we do indeed obtain a fundamental polygon for which a pair of the equivalent endpoints, $w_{1}, w_{2}=A\left(w_{1}\right)$, of the sides identified by A are within ε of each other. Since the minor arc determined by w_{1}, w_{2} has length $\theta=2 \arcsin \left[\left|w_{1}-w_{2}\right| / 2\right]$ we see that θ can be made arbitrarily small by this cut and paste.

Proof of the Main Theorem. We start with the fundamental domain P of Theorem 3. We let $\left\{s_{i}, s_{i}^{\prime}\right\}_{i=0}^{\infty}$ be the sides of P enumerated so that $s_{i}^{\prime}=A_{i}\left(s_{i}\right)$ for some $A_{i} \in \Gamma$. We set $S(P)=\left\{A_{i}\right\}_{i=0}^{\infty}$. We assume that $m=m(\bar{P} \cap \partial \Delta)>0$, otherwise we take P as our fundamental domain. We also assume that -1 is an endpoint of s_{0} and $1=A_{0}(-1)$ is the endpoint of s_{0}^{\prime} equivalent to -1 . If A_{0} is a handle generator we let $A_{j_{0}}$ be the member of $S(P)$ whose axis intersects the axis of A_{0}. Set $S_{0}=\left\{A_{0}\right\}$, if A_{0} is not a handle generator, or $S_{0}=\left\{A_{0}, A_{j_{0}}\right\}$, if A_{0} is a handle generator.

We do the case that A_{0} is not an ideal boundary generator. This means that the sides of P paired by the elements of $S(P) \backslash S_{0}$ lie in either $\bar{H}^{+}=\{x+i y: y \geqq 0\}$ or $\bar{H}^{-}=\{x+i y: y \leqq 0\}$; say \bar{H}^{+}. In the general case the proof given below would be repeated for the sides which lie in \bar{H}^{-}.

We let i_{1} be the least positive integer among the indices of $S(P) \backslash S_{0}$. We choose $x=1$ and cut and paste, as dictated by the type of generator $A_{i_{1}}$ is, in such a way that 0 is in the resulting polygon P_{1}. We set $S_{1}=S_{0} \cup\left\{A_{i_{1}}\right\}$, if $A_{i_{1}}$ is not a handle generator. If $A_{i_{1}}$ is a handle generator, then we set $S_{1}=S_{0} \cup\left\{A_{i_{1}}, A_{j_{1}}\right\}$, where $A_{j_{1}}$ is the unique element of $S(P)$ whose axis intersects the axis of $A_{i_{1}}$. Let T_{1} be the set of circles determined by the sides of P_{1} which are paired by elements of S_{1}. If $A_{i_{1}}$ is an ideal boundary generator than we choose $\varepsilon_{i_{1}}=\frac{1}{2}$ in the type 3 cut and paste.

We next endow $S\left(P_{1}\right)$ with the enumeration derived from $S(P)$. This is best described by observing that each $Y \in S\left(P_{1}\right)$ is of the form $Y=W A_{j} V$, where $W, V \in\left\langle S_{1}\right\rangle$. We index Y by j and write $S\left(P_{1}\right)=\left\{A_{0}=Y_{0}, Y_{1}, \ldots, A_{i_{0}}=Y_{i_{0}}, \ldots\right\}$, where $Y_{j}=W A_{j} V$ for some $A_{j} \in S(P)$.

We continue inductively. Given $n \geq 1, P_{n}, S_{n}, T_{n}$ we enumerate $S\left(P_{n}\right)=$ $\left\{X_{0}=A_{0}, X_{1}, \ldots\right\}$ by the enumeration derived from $S\left(P_{n-1}\right)$. We note that if S_{n}
contains precisely k_{n} ideal boundary generators then $J_{n}=\partial \Delta \cap \operatorname{Ext}\left(T_{n}\right)$, where Ext $\left(T_{n}\right)$ is the closed region outside all the circles determined by the sides of P_{n} in T_{n}, has $k_{n}+1$ connected components, $J_{1, n}, \ldots J_{k_{n}+1, n}$ all of which are in $\bar{H}^{+} \cap \partial \Delta$.

Now for each component $J_{r, n}$ let $S\left(P_{n}\right)_{r}=\left\{X \in S\left(P_{n}\right) \backslash S_{n}: C_{X} \cap J_{r, n} \neq \varnothing\right\}$, where $C_{X}, C_{X}^{\prime}=X\left(C_{X}\right)$ are the sides of P_{n} paired by X. We see that from the way we cut and the definition of boundary generator, that $C_{X}^{\prime} \cap J_{r, n} \neq \varnothing$ if and only if $C_{X} \cap J_{r, n} \neq \varnothing$. We let $i_{r, n}$ be the least positive index among the indices of $S\left(P_{n}\right)_{r}$ and x_{r} the endpoint of $J_{r, n}$ closest to 1 . We now cut and paste P_{n} by $X_{i_{1, n}}$ to $P_{1, n}$ and then for $j=1,2, \ldots, k_{n}$ in succession we cut and paste $P_{j, n}$ by $X_{i, n}$ to $P_{j+1, n}$ and finally $P_{k_{n}, n}$ is cut and pasted by $X_{i_{k_{n}+1, n}}$ to P_{n+1}. By our assumption on ± 1 and s_{0}, s_{0}^{\prime} all geodesics drawn in the cutting and pasting have 0 outside the circle determined by them. Therefore we can and do choose all cuts and pastes so that $0 \in \cap_{n=1}^{\infty} P_{n}$. Naturally the type of cut and paste used in each step will be determined by the type of generator $X_{i, n}$ is. In the case $X_{i, n}$ is an ideal boundary generator we choose $\varepsilon_{i, n}=1 /\left(k_{n}+1\right) 2^{n}$.

To complete the induction we set $S_{n+1}=S_{n} \cup\left\{X_{i_{1, n}}, \ldots, X_{i_{r, n}}, X_{j_{r, n}}, \ldots, X_{i_{k_{n}+1, n}}\right\}$ and T_{n+1} to be the circles determined by the sides paired by elements of S_{n+1}. Now set $S=\cup_{n=1}^{\infty} S_{n}, T=\cup_{n=1}^{\infty} T_{n}$. We note that if the index j has an element $X_{j} \in S_{n}$, then $A_{j}=W X_{j} V$ for some $W, V \in\left\langle S_{n}\right\rangle$ is in $\left\langle S_{n}\right\rangle$ and hence $A_{j} \in\langle S\rangle$. Since each P_{n} and $P_{r, n}$ is a Schottky polygon each j has such an X_{j}. For the only way we could miss setting $i_{r, n}=j$ for some r, n is that the index j vanished from $S\left(P_{n}\right)=\left\{X_{0}, \ldots\right\}$. This would mean that if $S\left(P_{n-1}\right)=\left\{Y_{0}, Y_{1}, \ldots\right\}$, then $W Y_{j} V=I$ for some $W, V \in\left\langle S_{n}\right\rangle$ and $Y_{j} \notin S_{n}$, and this is not possible. Thus $\langle S\rangle=\Gamma$. It is also clear 0 is outside all the circles $C \in T$. So by Theorems 2 , the region P^{\prime} exterior to all the $C \in T$ is a fundamental region of Γ.

It remains to show $m\left(\bar{P}^{\prime} \cap \partial \Delta\right)=0$. We show that for any $\varepsilon>0, m\left(\bar{P}^{\prime} \cap \partial \Delta\right)<\varepsilon$. We let $\varepsilon>0$ and choose N such that $\sum_{j=N}^{\infty} 1 / 2^{j}<\varepsilon / 2$; then $\varepsilon / 2>1 / 2^{N}$. We consider P_{N}. Let $J_{1, N}, \ldots, J_{k_{N}+1, N}$ be, as before, the connected components of $\partial \Delta$ outside the circles from T_{N}. Since $\Omega \cap \partial \Delta=\varnothing$, for each $r=1,2, \ldots, k_{N}+1$ there exists $N_{r}>N$ such that $\max \left\{m\left(J_{t, N_{r}} \cap J_{r, N}\right): t=1,2, \ldots, k_{N_{r}}+1\right\}<\varepsilon / 2\left(k_{N}+1\right)$. Let $N^{\prime}=$ $\operatorname{Max}\left\{N_{1}, N_{2}, \ldots, N_{k_{N+1}}\right\}$. We observe that, if $k_{N^{\prime}}>k_{N}$, there are at most $k_{j}+1$, $j=N, N+1, \ldots, N^{\prime}-1, J_{r, N^{\prime}}$ for which

$$
C_{j}=\frac{1}{\left(k_{j}+1\right) 2^{j}} \geqq m\left(J_{r, N^{\prime}}\right)>C_{j+1}=\frac{1}{\left(k_{j+1}+1\right) 2^{j+1}}
$$

and there are at most $\left(k_{N}+1\right) J_{r, N^{\prime}}$ such that

$$
C_{N}=\frac{1}{\left(k_{N}+1\right)} \frac{1}{2^{N}} \leqq m\left(J_{r, N^{\prime}}\right) \leqq \frac{\varepsilon}{2\left(k_{N}+1\right)}=d, \quad \text { since } \quad \varepsilon \geqq \frac{1}{2^{N-1}} .
$$

This follows from our choice of the " ε " in the type 3 cutting and pasting. Hence,

$$
\begin{aligned}
m\left(\partial \Delta \cap P^{\prime}\right) \leqq & \sum_{r=1}^{k_{N^{\prime}}+1} m\left(J_{r, N^{\prime}}\right)=\sum_{j=N}^{N^{\prime}-1} \sum_{C_{1+1}<m\left(J_{r, N^{\prime}}\right) \leqq C_{1}} m\left(J_{r, N^{\prime}}\right) \\
& +\sum_{m\left(J_{\left.r, N^{\prime}\right)} \leq C_{N^{\prime}}\right.} m\left(J_{r, N^{\prime}}\right)+\sum_{C_{N} \leqq m\left(J_{r, N^{\prime}}\right) \leqq d} m\left(J_{r, N^{\prime}}\right) \\
\leqq & \sum_{j=N}^{N^{\prime}} \frac{1}{2^{j}}+\frac{\varepsilon}{2}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

REFERENCES

[1] Lehner, J., Discontinuous groups and automorphic functions, AMS Surveys No. 8, Providence, R.I., 1964.
[2] Magnus, W., Karrass, A., Solitar, D., Combinatorial groups theory, Wiley Interscience Publishers, New York, 1966.
[3] Pommerenke, Ch., On the Green's function of fuchsian groups, Ann. Acad. Sci. Fennicae, Ser. A I Math. 2, 409-427 (1976).
[4] Purzitsky, N., Fricke polygons for infinitely generated groups I. (to appear).
[5] -, A cutting and pasting of infinite sided polygons with applications to fuchsian groups. (to appear Acta Mathematica).
[6]. Tsusi, M., Potential Theory, Chelsea, New York, 1959.
Dept. of Mathematics
York University
Downsview, Ont. M3J 1P3, Canada

Received June 29, 1979

