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Uniquely ergodic quadratic differentials

Howard Masur

Introduction

It has been of interest to know to what extent the Teichmuller spaces of genus
g > 1 with the Teichmuller metric has the géométrie properties of a hyperbolic
space. An example of such a property is that for every line L and point P not on
L there should be a unique line through P which approaches L in the positive
direction asymptotically. This property is what we study hère in the context of
Teichmuller space. This means examining particular examples of Teichmuller
extremal maps.

For any line L there is an isometric embedding of the unit dise with the
Poincaré metric into Teichmuller space such that the image contains L. The

uniquely determined image dise is called a Teichmuller dise. We refer to [9] for
détails. If P is on this dise, the existence and uniqueness are trivial as the question
reduces to considering the Poincaré dise. In his Princeton thesis, Kerckhofï [6],
proved uniqueness in the gênerai situation. If L is determined by a quadratic
difïerential with closed trajectories and thèse trajectories sweep out 3g-3 cylin-
ders, then an asymptotic line through P will always exist [6]. On any Riemann
surface the quadratic differentials with closed trajectories are a countable union of
sets of positive codimension so it is of interest to study this asymptotic property
for a wider class of quadratic differentials. Thèse are the quadratic differentials
whose horizontal trajectory flow is uniquely ergodic. Our main resuit is that if L is

determined by a uniquely ergodic q with no closed critical trajectories, then there
is always an asymptotic line through any P.

Thurston [13] and Bers [3], found examples of hyperbolic axes in Tg. As
Thurston showed, the horizontal and vertical trajectory structures of the quadratic
differential are attracting and repelling fixed points of the action of a diffeomorph-
ism on a sphère of foliations. Using this characterization one can prove the

asymptotic property for thèse lines directly. On the other hand, as Thurston
showed, the trajectory flows are uniquely ergodic so our theorem gives a différent
proof.
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256 HOWARD MASUR

For a detailed treatment of Teichmûller extremal maps we refer to [2]. For a

discussion of Teichmûller geodesics see [8] and [10]. We mention hère one bit of
terminology. If q is a quadratic differential, then the positive Teichmûller ray
determined by q is given by the Teichmûller maps /k with dilatation kq/\q\,

-1< fc <0. This means for each k the stretch is along the vertical trajectories, the
contraction is along the horizontal trajectories.

§2. A Preliminary counterexample

We begin with the following resuit.

THEOREM 1. If the Une L in Tg is determined by a quadratic differential q
with closed trajectories determining one cylinder of homotopy type y, there is a Une

Lr through P positively asymptotic to L if and only if P is on the same Teichmûller
dise as L.

Proof. by the remarks in the introduction, we need only consider the situation
of P not on the dise, and suppose L' through P exists. There are two cases

depending on whether or not L'is determined by the unique normalized differential

with closed trajectoris of homotopy class y on the Riemann surface at P.

Suppose first that it is. The theorem of [9] associâtes endpoints Q and Q',
O# Q' to L and V on the boundary Teichmûller space obtained by pinching
along the curve y. Then Proposition 2 of [10] shows the asymptotic distance
between L and L' is at least as great as the boundary Teichmûller distance
between Q and Q' which is positive.

Now suppose L' is determined by a q' not as above. Let j3 be any simple
closed curve disjoint from y. With respect to the me trie \q\112 \dz\, the géodésie in
the homotopy class of /3 is represented by a union of critical horizontal trajectories

on the boundary of the cylinder. Fix an annulus homotopic to p near the

boundary. For any k <0 this annulus can be embedded in the image surface under
the Teichmûller map. This shows the extremal length of j8 is bounded above along
the ray. Now consider the géodésie for j3 with respect to \q'\lf2 \dz\. If it is not
represented by horizontal trajectories alone, then as fc—>-l its length measured

with respect to the terminal differential with unit norm becomes unbounded.
Therefore the extremal length of |8 on the image surface which is at least as great
is also unbounded. However M-quasiconformal mapping change extremal length
by a factor at most M. Therefore (3 must be horizontal and since it was an

arbitrary curve disjoint from 7, q' has closed trajectories in the homotopy class of

y and we are back to the first case, a contradiction.
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§3. Uniquely ergodic quadratic différentiels

To begin the discussion we employ a device of StrebeFs [12]. Given a

quadratic differential q on X, fix a small vertical segment ]8 containing no zeroes
and label the two sides |3+ and j3_. For each xe]3 consider the horizontal
trajectory leaving x on the + side. If the trajectory is dense it returns to |3 a first
time, either to /3+ or /3_. We will assume every noncritical trajectory is dense. Then*

X décomposes into a union of rectangles R, as in the following figures. Thèse are

Figure 1 Figure 2

rectangles in the natural coordinates of q. In figure 1, a trajectory leaving a point
x e Rl H p on the + side returns on the - side, in figure 2 it returns on the + side.

There are possibly rectangles of both types. The total height of the rectangles of
the second kind leaving and returning to |3+ is the same as the height of those

leaving and returning to j3_. Thèse rectangles Rt are identified to each other along
various pièces of the top and bottom horizontal edges. The endpoints of the
identifications are the zeroes xt of q.

If ail rectangles are of the first kind we may define a map T : j3 —> j3 ; for x e j3,

T(x) is the first return for a trajectory through x leaving on the H- side. If there

are rectangles of the second kind we must define T : /3+U |8_—> /3+U j3+. For
xe|3+ if the first return is to j3_(/3+), T(x) is the corresponding point on )3+(/3_).

There is a similar définition for x g |3_. It is possible to define T at the vertices of
the rectangles to be either right of left continuous depending on the type of the

rectangle. If ail rectangles are of the first kind, T is defined to right continuous
and is called an interval exchange map.

Now j3 and |3+U j3_ may be given the measure /ut defined by \q1/2\ \dz\. It is

clear /ut is invariant under T and we say T is uniquely ergodic if it is the only
invariant measure up to scalar multiples. Although a différent vertical interval
détermines a différent map T, an invariant measure for one induces an invariant
measure for the other. Therefore it makes sensé to say the quadratic differential is

uniquely ergodic.
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We now formulate a topological définition. Two quadratic differentials qt and

q2 on X hâve topologically équivalent horizontal trajectory structures if by a finite

séquence of homeomorphisms homotopic to the identity and a finite number of

opérations of collapsing and expanding of compact critical segments, the horizontal

trajectories of qt can be transformed to the trajectories of q2. In [5], p. 232,
the définition is given of the strong équivalence of two measured foliations. The
définition hère is the same except that we do not require vertical distances to be

preserved.

PROPOSITION 1. The quadratic differential q on X is uniquely ergodic if and

only if the only topologically équivalent quadratic dijferentials are real multiples.

Proof. If v is another (nonmultiple) invariant measure for T then v defines a

vertical measure for the topological foliation defined by the horizontal trajectories
of q. The main theorem in [5] says this measured foliation is realized as the
horizontal trajectories of a quadratic differential q' on X. Conversely, topologically

équivalent quadratic difïerentials define the same map T but différent
invariant measures.

Remark. It is possible for topologically inequivalent quadratic differentials to
define the same first return map, for instance if they correspond under a

homeomorphism of the surface.

An important and seemingly difficult question is whether almost ail interval
exchange maps are uniquely ergodic. See [14].

EXAMPLES. 1. As mentioned in the introduction, Thurston found
homeomorphisms which fix transverse foliations. Thèse foliations define a

uniquely ergodic quadratic differential. 2. Any interval exchange map with two or
three intervais is uniquely ergodic. Starting with an interval exchange map one
can always construct quadratic differentials inducing that interval exchange map.
We will give an example of such a construction in §4. Keynes and Newton [7]
found nonuniquely ergodic interval exchange maps with dense orbits.

We define the critical graph F of a quadratic differential to consist of the union
of the compact critical segments.

THEOREM 2. Suppose the Une L is determined by a uniquely ergodic q and F
contains no simple closed curves. Then for any P not on L there is a (unique) Une

through P positively asymptotic to L.

Remark, The set of q on X with nonempty F is of measure zéro in

H°(X, Cl®2) so if the conjecture on almost ail interval exchange maps being
uniquely ergodic is true, almost ail quadratic differentials will satisy the hypothesis
of the theorem. Our example in §4 will show the hypothesis to be necessary.



Uniquely ergodic quadrotic differentials 259

Proof of Theorem 2. We will first prove the theorem in the case that F is

empty. By the main theorem of [5], there is a unique quadratic differential q' on
P whose horizontal structure is measure équivalent to that of q. In this case this
means there is a homeomorphism of the horizontal trajectories homotopic to the

identity which also préserves the vertical distances between trajectories. Now q'

may not hâve unit norm but taking terminal quadratic differentials along the line
V determined by q' we can find one with unit norm. Since the terminal quadratic
differential détermines V as well we may assume q' has unit norm to begin with.

Pick small vertical segments j3 and 0' for q and q' joining the same horizontal
trajectories and having one endpoint in common. Since q and q' are measure

équivalent, the first return maps T and measures /ul on j3 and pf are the same. The

rectangles Rt and R[ hâve the same height and are identified in the same way;
only their lengths are différent. Now let €>0. We must show for K large enough
the points at distance \ log K on L from the base point are within e of points at
distance \ log K along L' from P.

In ail estimâtes to follow O(e) refers to any function such that O(e)/e<B as

e —» O where B dépends only on the base points and not on K
Since T is uniquely ergodic, for any continuous / on j3 or |3+L^_ (|3' or

j3'+ U |3'_), Un XJTJ /(T'(x)) converges uniformly to J fdu as n -? oc? f15, p. 136]. A
routine approximation shows the same to be true if / is replaced by the
characteristic function of an open interval. Pick N large enough so that ail n>N,

IV~ LXRT'W-viR) <e (1)
n ]=sQ

for each i and any xe/3. Of course the same holds for R[ and /3'. For any ô>0,
we can find intervais o-c=/3 and cr'cijS' joining the same trajectories of equal
length less than 8 such that for any xea, T{x)4cr and T(x) not a vertex of Rt
for 0</<N-l and -N+l</<0. We require the same condition on a.

Consider the induced return map and décomposition for thèse intervais giving
rectangles S, and S\ of equal height. For x € S, let ^(x) be the number of visits of
x to Rt before returning to cr. This is the same as the number of visits of x to R[
before returning to a' for x € SJ. We wish to compute the lengths denoted | | of S,

and S;. Then

l$l=I|R,k(x), and ISi
i=i

where the sum is over ail rectangles Rt and R[. Let t? I,1iW,. Then by (1)
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\vjv - fi(jR,)| <e. Therefore

Therefore »

Ici
f-^=l + O(€) as e->0. (2)

Let y be a vertex of a rectangle S, and |y| the distance to a zéro along a

trajectory. Let y' be the vertex for S'. Then an argument exactly as above shows

We would like to map S, to S{ by an eO(e) quasiconformal map preserving the
zeroes which is linear along the edges so the maps would glue together to a map
between the surfaces. The lengths and heights hâve ratios which are eO(e).

However the positioning of the zeroes présents difficulties and hère is where we
must let K->oo for then the heights of S, and SJ go to infinity. The first case of
the theorem follows from the lemma.

LEMMA. Let R^ and R^ be two rectangles with vertices A,, A[i 1,..., 4 such

that /(JR€)/i(K:) |A1A2|/|AiA^| eO(e) as e-»0. Suppose there are points
Pl9 P2 on the top (AxA^ and bottom (A3A4), P[, Pr2 similarly on R'e such that

lAiPxl/lA'iP^e0^ and |P1A2|/|P'1A£| eO(e) with similar equalities for P2 and

P2. Finally suppose the heights h(R€) h(R'e) satisfy \A1A2\/h(R€)= O(e) as

e—>0. Then there is an éo(e) quasiconformal map Re to R'€ which is linear on ail
sides and sends Pt to P\, P2 to P2.

Proof. By dividing each rectangle in half we may assume there are no points
P2 and P2 on the bottom. With a simple affine stretch we may assume ^^2!
|A;A2|. Therefore let the A, and A[ hâve coordinates (0, b), (a, b), (a, 0), and

(0, 0) in the z and w planes, resp., and suppose Px and P\ hâve coordinates (c, b)
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and (c', b) resp., where de' eO(€) and (a - c)/(a - c') eO(€). The quasiconformal
map is

c Ib

\lc'-a \y 1

w a + (x-a) 1 f+1 L u

Hère w u H- it>, z x + iy. One checks easily that this has the desired mapping
properties. Now for x < c

Since y/b<l and c'/c-l O(e) we hâve wx eO(e). Recalling a/5 is O(e) we
hâve My O(e) so the map is eO(€) quasiconformal. We get similar estimâtes for
x > c, proving the lemma.

The above proof fails if F is nonempty. For then there are segments of F on
the top or bottom of some S, giving two or more dividing points. As K—>o° the

lengths hâve fixed ratio with corresponding lengths on S{. Instead we hâve to map
neighborhoods of F onto each other by eo(€) quasiconformal maps for each K and

map their compléments as before. The compact trajectories will in gênerai not
correspond.

Let / be the sum of the orders of the zeroes contained in F. Since F contains
no closed curves there are 1 + 2 trajectories leaving F which are arbitrarily long.
Consider a neighborhood U of F as in the following drawing.

(1-3)

The boundary of U consists alternately of horizontal and vertical trajectories. We
choose the horizontal trajectories leaving the graph to hâve common length h.

Then the horizontal trajectories on 8U hâve length 2h plus possibly one or more
lengths of the pièces of F.

For h fixed and large the vertical segments on 8U must be short and in fact,
can be made arbitrarily small. For large enough K depending on h, we give them
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each length h/K, half on each side of the horizontal trajectory. Along the ray L at
distance \ log K, the corresponding trajectories leaving the graph FK hâve length
K~1/2h and the vertical pièces on 8U hâve length Kmh/K K~mh. By renor-
malizing the terminal quadratic differential qK we can take ail lengths to be h.

Consider then this neighborhood UK of FK on the terminal surface. Each UK
embedds conformally in the Riemann sphère in such a way that qKdz2 is the
restriction of (zl +p(z)) dz2 for some polynomial p(z) of degree at most 1-2 (See

Lemma 3.15 of [5]).
If we let ft-*<» with respect to |q1/2<iz| and set qK K%/fi2 then the

segments leaving FK hâve qK length 1 and the critical segments hâve lengths
which approach zéro. In particular then by taking h, K large enough we can make
qKdz2 arbitrarily close to zl dz2 on UK.

On the surface defined by P take a similar neighborhood of F' taking h'= h

and for the vertical segments v' v. Then for large K, qfK dz2 (z1 + p2(z)) dz2 on
U'K with p2(z) near zéro. Now since the vertical lengths on 8U'K are equal to the
vertical lengths on 8UK and the horizontal lengths difïer only by lengths on FK

and Fk which approach zéro, 8U'K can be made arbitrarily close to 8UK in the

z-plane. We may therefore map UK to U'K by an eO(e) quasiconformal map which
is linear along the pièces of 8UK. A complète justification can be given by
mapping the two régions to the upper half-plane. The desired boundary map
satisfies an M condition where M —>• 1 as h, K —» oo. One can then apply an

Ahlfors-Beurling extension. [1],
We continue with the proof of the theorem. Given €>0 we fix the neighbor-

hoods in the above discussion so that there is an eo(e) quasiconformal map
between them for ail large K. This means in particular the length h above is fixed.
Now we proceed as in the first case. We can assume the rectangles S; and SJ are
as in the following drawing (drawn for S,).

0 R

The "missing" rectangle QPQR is part of UK. Since h is fixed, a and a' can be

picked small enough so that

\AXA2\I\A\A^ lA.Ol/lAiO'1, |RA2|/|K'A'2|, |PQ|/|P'Q'|

are ail 1 + O(€> while |OP| |O'P'|, jA^J |AiAi| and again lA^I/^A4|
O(€).
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Again we may assume \AXA2\ \A[A2\. We map I to V and II to IV by affine

maps which are eO(e) quasiconformal. Now we map III to III1 as in the lemma.
Hère the base corresponds to y 0, the top to y b. The map is

-4(f')M 0<x<c

Hère P and P' hâve coordinates (c, b) and (c', b') and Q and Q' hâve coordinates
(d, b) and (d', b'). Estimâtes as in the lemma and (3) show that the map is eO(€)

quasiconformal finishing the proof.

§4. A counterexample

Theorem 2 fails when there are closed curves in F as a neighborhood like U
does not exist. Consider an interval exchange map with two intervais. Attach
rectangles Rx and R2 as indicated in the drawings

«1 g «o h

The points A, B, C, D are simple zeroes for the quadratic difïerential and the

rectangles are attached along a, b, c, d, e, /, g, and h. Assign some lengths to thèse

segments and to the rectangles to form a surface of genus 2 and a difïerential q as

in the following figure. If |ao«il 1 and «2 is irrational, the trajectories / and h

are dense. Since this is an interval exchange map on two intervais, the flow is

uniquely ergodic [4]. The segments a, b, d, e form a curve yu while c, d form y2.
We show there are points P with no lines asymptotic to the line L determined
by q.
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First form for each K a neighborhood VK of FK as m the following figure.

As before, we can make the vertical and horizontal segments on ôVK long and

equal by taking K large. It is easy to see then that for K1<K2, VKi embedds

naturally m VKr Also, 8VK bounds a torus TK with one hole and tor hxed Ko,
8VK and ÔV^ bound an annulus AK whose modulus —»oo as K—»o°. Cut this
annulus along the horizontal trajectories leaving the graph, dividing AK into two
simply connected régions. Map each to the upper half-plane. We get two régions
each as in the following figure.

As K-^oo, the lengths |PO|, |QJR|, \RS\, \ST\ and \OT\ become unbounded while
|OM|, \MN\ and \NP\ are fixed. Consider the maps

w — and
z

w —.z

The image of the two together in the w-plane is as follows.
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The quadratic differential is now 1/co4 dw2. The inner boundary is 8VK and
collapses to 0 as K —> oc. There is therefore for each K a canonical way of filling in
TK to a punctured torus To and qK to a quadratic differential q0 which is 1/co4 dw2

in local coordinates at the puncture.
One proves by the method used in Theorem 3 in [10] that for every

convergent séquence in the Bers embedding of Tg of points on L, there is a

B-group with a noninvariant component representing To.

Now the differential q0 on To also has critical closed curves in the homotopy
classes yx and y2- We may vary q0 and To by varying the lengths of the segments
a, b, c, d and e, giving a new punctured torus Tj and a quadratic differential % on
T1 with a pôle of order 4 and closed critical trajectories in the classes yx and y2.
We construct the interval exchange map with thèse new lengths giving a compact
surface and a quadratic differential q' with the same measured foliation as q. (The
lengths of the rectangles are essentially arbitrary.) The line L' determined by q'
cannot be asymptotic to the line L determined by q. Suppose there are M
quasiconformal maps, M—» 1 between the surfaces on L and L'. This would give
a conformai map between To and Tx. The proof of this fact is precisely the same
as the proof of Proposition 2 in [10]. Finally, suppose q' on this surface is any
other quadratic differential. Then the horizontal foliations F of q' and F of q are
not measure équivalent. However, as in the proof of Theorem 1, the curves yu y2
must still be critical for q' if L' is to be asymptotic to L. This forces the flrst return
map to be a two interval exchange map and hence uniquely ergodic. Now let
|8n —> F be a séquence of simple closed curves converging to F in the sensé of
measured foliations (see [5] or [13]). The curves jSn are represented by geodesics
with respect to q'. Suppose the vertical lengths vn of |8n —» 0 as n —» oc. Then there
are subsequences which converge to trajectories of q'. Since thèse trajectories are

equally distributed, as q' is uniquely ergodic, the |E3n are equally distributed in the
limit as well, and one concludes ]3n —» F', a contradiction.

Therefore vn is bounded below and the extremal length of j3n on the surfaces

on L' goes to infinity uniformly as K—>°c. However, for each K we may take |3n

close to F so that the extremal length of j3n is close to the extremal length of
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qK dz2 on the terminal surface. However this latter îs 1/K by Proposition 3 of [6],
givmg a contradiction.
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