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Steenrod squares in the mod 2 cohomology of a finite H-space

by James P. Lin*

§0. Introduction

In récent years the study of finite H-spaces produced some very surprising
theorems. I consider the theorem due to Emery Thomas, published in 1963 [9], to
be one of the most spectacular. For the class of H-spaces with primitively
generated mod 2 cohomology, the theorem describes a simple pattern of Steenrod

algebra connections between the algebra generators that dépends only on the

dyadic expansion of the degree of the generator. Because most, but not ail known
finite H-spaces hâve primitively generated mod 2 cohomology algebras, his results

imply a very rigid structure.
Of course, it is a very tantalizing problem to generalize results of Thomas to

non-primitively generated finite H-spaces. The purpose of this paper is to begin
this study. Thomas' theorems turn out to be corollaries of theorems about
truncated polynomial algebras over the Steenrod algebra. In this paper we prove
his results by studying a secondary cohomology opération applied to éléments of
the cohomology of the H-space. By considering Thomas' theorem from this other

viewpoint, we also obtain theorems about generators of H-spaces with non-
primitively generated mod 2 cohomology. Thèse theorems show there are Steenrod

algebra connections similar to those for primitively generated H-spaces for
generators of large degree.

Finally, we point out an error in the proof of theorem 1.1 of Thomas' paper.
This theorem claims that for primitively generated H-spaces X with PHoàd(X\ Z2)

finite dimensional, the odd primitives are connected by certain Steenrod algebra
éléments. This theorem is now open to conjecture.

I would like to thank many people for their assistance in writing this paper. I
thank Emery Thomas, David Kraines, John Harper and Alex Zabrodsky for
helpful conversations. I also thank Mamoru Mimura for his hospitality at Kyoto
University where the nucleus of the ideas was first created.

* Author was partially supported by the National Science Foundation and the Sloan Foundation
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§1. The theorems

We begin by descnbing a theorem due to Thomas [9] His theorem îs

THEOREM 1 Let X be a finite H-space whose mod two cohomology
H*(X, Z2) is pnmitwely generated Then if a primitive élément x has degree
2r + 2r+lk~l forsomek>Q, r>0, then

x Sq2y and Sq2 x 0

Remark 1 Note that every integar has a dyadic expansion Thomas theorem
implies if (degree x) + 1 is not a power of two, then x is in the image of a Steenrod

opération

Remark 2 There is an error in theorem 1 1 of Browder and Thomas [3] In
this theorem, they claim that if X has pnmitively generated mod 2 cohomology
then there is a structure theorem for H*(P2X, Z2) Â/D3Â©S where the

sphtting is over A(2)/(Sql)

We hâve Â=®,Z2[yl] where i H*(P2X)-*H*(X) has the property that i(y.)
form a basis for the odd primitives of H*(X,Z2)

The proof of the structure theorem is purely algebraic and dépends only on
the exact triangle

H*(P2X) > H*(X)

H*(X)®H*(X)

and the fact that H*(X, Z2) is pnmitively generated
Therefore, consider the following possible Hopf algebra

H*(X, Z2) s Z2[x4]© a (xs) with Sqf1x4 x,

This Hopf algebra is clearly pnmitively generated If one perforais the construction

descnbed in Browder and Thomas, there exist éléments y e H6(P2X Z2) and

2€H5(P2X,Z2) with i(z) x4, i(y) x5 with Sq\z) y, and therefore Sq2(z2)

y2
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The conclusion of theorem 1.1 implies there is an SÏ(2)/(Sq1) splitting

where z2eS. But Sq2(z2) y2 contradicts this claim. The error in their proof
stems from misuse of the Cartan formula mod 2 in proving S is an A(2)/(Sq1)
idéal. In the event that one assumes Sq1Heven(X; Z2) is decomposable, which is

true for finite H-spaces, one can prove S is an A(2)/(Sql) invariant idéal, and
Theorem 1.1 holds true.

In a later paper, Theorem 1.1 is used by Thomas [9] to prove a theorem for
H-spaces that are not finite, but hâve PHodd(X; Z2) finite dimensional. This
theorem is now an open conjecture: Is Theorem 1 true if the word finite is

replaced by PHodd(X; Z2) finite dimensional?
We now proceed to prove Theorem 1 using secondary cohomology opérations.
The proof is by induction on r. For r 0 the theorem amounts to proving

PH2k(X;Z2)çimSq1.
Consider the following bundle induced over the contractible fibre space

K(Z2,2n-l) K(Z2,2n-l)

i i
BEn > LK(Z2,2n).

i i
K(Z2, n) > K(Z2, 2n)

flBEn En has the homotopy type of K(Z2, n - l)(g)K(Z2, 2n -2). It is shown in
Zabrodsky [10] that the coproduct of the 2n -2 dimensional fundamental class is

It follows that if Ê is a space which maps to En

with f*(in-i) u/0 and / is an H-map, then A/*(i2n_2)=
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In our case, let n 2k and let Ê be the bundle induced by

Ê

K(Z2, 2k) x K(Z2, 4k - 1) > K(Z2,4k)

There îs an H-map (in fact infinité loop map)

401

because

K(Z2, 4k -1) K(Z2, 4k)

-2k

K(Z2, 2k) x JC(Z2, 4k - 1) » K(Z2, 2k)

K(Z2,4k)

îs a diagram of infinité loop maps
Therefore if v=f*{i4k) then

where

and

Now to prove the theorem, PH2k(Xy Z2)limage Sq1, assume by induction
that the theorem holds for ail even primitives of degree greater than 2k

Given x€PH2k(X,Z2), x2ePH4k(X, Z2) Therefore x2=Sqly{ for some yj
By a simple argument (see Browder [2] p 365, bottom) there exists x Sqlyfe
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PH2k(X;Z2) and (x — x')2 Sqlw where w is primitive. If x — x' we are donc
Otherwise x — x' and w are primitive and there exists an H-map

h : X -* K(Z2, 2k) x X(Z2, 4k- 1)

with h*(i2k) jc-jc', h*(i4k_1)=w.
The relation Sq2k (x - xf) (x - x')2 Sq[ w implies there is a lifting f:X-*Ê

that makes the following diagram commutative :

K(Z2, 4k -1)

X > K(Z2, 2k) x K(Z2, 4fc - 1)
h

K(Z2,4k)

Now the H-deviation of f is a map D:XaX-»£.
Since rrD is the H-deviation of h and h is an H-map, it follows that D factors

through the fibre

K(Z2,4fc-l)

XÂX >E
D

Hence

Âf*(v) */*(i;)

At this point, we use the fact that H*(X; Z2) is primitively gênerated if and only if
H^(X; Z2) is commutative, associative, and has no squares [7].
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If jc-jc'limage Sq\ there exists a feH*(X;Z2) with <f, x-x')^0 and fSq1

0. Hence

im Sq1)

Therefore if x-x' 4 image Sq1, f2^0 which contradicts the fact that H*(X; Z2)
is primitively generated.

We conclude x x' + (x —x') g image Sq1. This proves the theorem in the case

v 0.

Before proceeding to the induction step, we will need a few more lemmas

concerning Hopf algebras and factorizations in the Steenrod algebra.

LEMMA 1. If A is a commuîative Hopf algebra over Zp, p a prime, there is an
exact séquence [7]

0 -> P(£A) -> P(A) -* O(A).

COROLLARY 2. Let x and y be odd degree primitives in a commutative Hopf
algebra A over Zp. Then i/x-y is decomposable, then x-y 0.

Proof. x-y is decomposable primitive, hence x-yeP(ÇA). But P(ÇA) is

even dimensional. Hence x — y 0.

The following relations hold in the Steenrod algebra.

LEMMA 3

Sq2lSq2' X Sq2lpb j>0, Sq^q1 0. (a)
1=0

r-l
i=0

Proof. Thèse relations are easily proven by induction, using the Adem
relations.

LEMMA 4. If xeH*(X; Z2) has nonzero projection in QH*(X; Z2) and x

0y for 0 g 91(2), then y has nonzero projection in QH*(X; Z2).

Proo/. This follows from the Cartan formula.

Now, armed with thèse lemmas, we return to the induction step of the

theorem.
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We may assume by induction that

PH2'+2'+lk-1(X;Z2)ç image Sq2\ (1)

and Sq2lPH2l-¥2l+lk-l(X;Z2) 0 for Kr.
By downward induction, we may assume

PH2t+2r+lk'-\X; Z2) s image Sq2\ (2)

and Sq2rPH2r+2r+lk'~1(X;Z2) 0 for fc'

Then let xePH2+2"kl(X; Z2). By Lemma 3

r-ï
r.2Sq2r+2r k Sq2'Sq2 k + 2, Sq2av

We hâve Sq2 +lfcx is primitive. Therefore

S<f+lkx S<fryr by(l) a,x S^'y, by (2).

For i>0, a,x and Sq2r+lfcx are odd primitives. By Lemma 1 they are indécomposable.

By Lemma 4, the y, are indécomposable. Since H*(X; Z2) is primitively
generated, Corollary 2 implies we may choose the y, for i>0 to be primitive.

Finally consider aox Sq1yo. If aox has nonzero projection in QH*(X; Z2)
then there is a primitive indécomposable w with aox^Sqlw modulo decomposa-
bles. But then aQx-Sqlw is primitive decomposable in degree 2 mod 4. Consider

the exact séquence for A H*(X; Z2)

We must hâve 6(aox-Sq1w)^0 because P(Ç2A) is concentrated in degree^
0 mod 4.

Hence there is a primitive generator z in degree T + 2r+lk-l with ao^~
S^1w z2 S^1(Vr+2r+lk"2^)- This implies aQx Sq\w + Sq2T+2r+lk-2z). Hence

we may choose yo w + Sq2r+2r+lk~2z to be primitive.
We now hâve relations
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where y, are ail chosen to be primitive. Hence

r-1 r-1
<sn2r+2'* x <w72rÇ^2r +

y 4- S^/2^ r S!/72r<w72rv 4- > S<72'SI/72lv

i=0 1=0

Now by Lemma 3

and by induction a}ly} Sq2lyr where y}l may be chosen primitive.
Continuing this process as far as possible, we produce relations among

primitives of degrees 2l+2i+1k-l for l<r. Let K,K be gêneralized Eilenberg
g

Maclane spaces K U K(Z2, nt) and K > K be a map that describes ail the

relations. If Ê is the bundle induced over this map,

There exists a map of infinité loop spaces

QK0

K >Kn

where n 2r + 2r+1fc-l and there is a veH2n(Ê;Z2) with /*(i>)e image
(Sq2', Sq2' \ Sq1) and lu u<8> u where 7r*(in) u.
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By construction, there is an H-map h:X—>K

f s
/

and a lifting f:X-+Ê. As before,

r r

i/*(u) /*®/*(ii®M)+X image Sq* x®x + £ image Sq2'.
1 0 1 0

Now x^image Sq2' for l<r. Because if so, then x Sq2y and we may assume

by Lemma 4 and Corollary 2 that yePH2l+2l+lk'~1(X;Z2) for some fc'>0. Hence
by induction Sq2y 0.

Therefore if x®xe Ya=o image Sq2\ we conclude

x Sq2y for some y € PH2rtkl(X; Z2).

It remains to show Sq2 x 0. By Lemma 3,

By induction Sq^fry 0. This complètes the proof. Q.E.D.
It may be instructive to trace through the proof for PH4k+l(X; Z2) limage

Sq2.

Note

Sq4k+2 Sq2Sq4k + SqlSq4kSq\

The relations are for xePH4k+l(X;Z2):

Sq4kx Sq2yi, Sq4kSq1x Sq1y0, ao Sq4kSq\ a, Sq4k

Sq2Sq2yl Sq1Sq2Sq1yl, a1A Sq2Sq\ Sq2Sq1yl S1
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Ail yr yhl are primitive. Let Kn K(Z2, n). Then

^ ~ K4k + l x K8k_! x K8k + 1 x K8k + 1 K K8k+] x K8k+2x Ksk+2 g

g*iHk + l Sq4ki4k + l-Sq2isk^1 g*i8k+2 Sq4kSqli4k + 1 - Sqli8k + 1

g*isk+2 Sq2SqliHk^l-SqliHk + l.

Let gt :X—» i"v8k+3 be defined by

gf(^8k+i) ^2i8k + i + Sq1i8k+2 + Sq1ï8k+2.

Then stably

— ^q Uk + i-

g, g, are assumed to be infinité loop maps.
In view of our proof of Thomas' theorem, it now becomes clear that there

exist certain generalizations of this theorem to H-spaces whose mod 2 cohomology

is not primitively generated. Certainly, if the variables that appear in the
domain of the opération are primitive, there is no obstruction to obtaining a

secondary opération that detects the dual of a square.
Work of Browder [1] shows that for any finite H-space X, the square of an

odd homology primitive is zéro.
In Lin [5] it is shown that generators of the cohomology ring may be chosen so

that they hâve a "primitive degree." This means roughly for each generator x
there exists an 91(2) subHopf algebra Bx with ÂxeBx®Bx and xiBx. Bx
therefore measures the déviation from primitivity of x.

The following theorem is proved in Lin [5]:

THEOREM 2. Let x be a generator in Hn"1(X; Z2). Let B be an 91(2) subHopf
algebra with âxeB®B and x<£B.

Suppose Sqn =£ a,6, and btx is decomposable in B for each i. Then there is a

secondary opération <f> defined on x and <d<£(x) x®x+Xim at +I(B)H*(8)H* +
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H*®I(B)H*. Hence if tePHn.l(X;Z2) with <f,B> 0, t®teker£at then
fVO.

Theorem 2 can be used to prove the following theorem about H-spaces with
possibly non-primitive cohomology rings:

THEOREM 3. Let X be a finite H-space and let n be ihe largesî integer such

that QHn(X; Z2)^0. Expand n + 1 dyadicly

n4-l 2r°-h2r> + • • • +2r% 0<ro<r1< • • • <rs.

Then for ail indécomposables of degree 2l +2I+1k — 1 > 2r%

In particular Qn Sq2'nSq2'* • • • Sq2'- 'Q2'-"1.

Before proving this theorem, we remark that this proves that there are the

following Steenrod squares Connecting generators of the exceptional groups

(1) H*(G2):Sq2x3=x5

(2) H*(F4):Sq8x15 x23

(3) H*(E6):SqBxl5 x23,Sq2x15 x17

(4) H*(E7) : Sq8xl5 x23, Sq2x15 x17, Sq4x2, x27

(5) H*(E8) : Sq8x15 x23, Sq2xl5 x17, Sq4x23 x27, Sq2x27 x29.

Note that E6, JE7 and E8 are not primitively generated; in fact, x15 may be

chosen such that Âx15 contains x2®x9 as a summand [8].
We now prove Theorem 5.

Proof. Our restrictions imply n>2'+2I+1fc-l>2r--l. Therefore k>0.
We induct on /. If / 0 and k is even, Kane [4] proves Q2k 0. If / 0 and k

is odd, k 2m + l, then we must prove Q4m+2^imSq1, if 4m + 2>2rs-l. We
need the following Lemma:

LEMMA 5. Let A be a commutative finite dimensional Hopf algebra over 21(2)

with Sq1Acven decomposable. Then given a generator y e Aodd with y2 ^ 0, we hâve

y24imSq1D where D
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Proof. By the Borel structure theorem A is isomorphic as algebras to a tensor
product of truncated polynomial algebras of heights a power of 2. Hence, A/I(A)3
is isomorphic to a tensor product of truncated polynomial algebras of heights 2

and 3. Let

be the projection. Then tt is an algebra map over the Steenrod algebra. Hence if
y2eSql(I(A)2), then 0^ ir(y)2 eSql(irI(A))2. Since degree 7r(y)2 is even, we may
write

where deg Tr(^) is even, deg 7r(ct) is odd. Then Sq*Ae"en decomposable implies

Hence 7r(y)2 belongs to the idéal generated by the even generators. This is a

contradiction. Q.E.D.

We now turn to the proof of Theorem 3. For l 0we must prove Q4m+2ç

im Sql.
Let B(n) be the 21(2) subHopf algebra generated by éléments of degree <n.

Following Torsion I [5], an élément xe Q4m+2 has primitive degree r if there is a

représentative xeB(r+l), x£B(r), ÂxeB(r)®B(r).
By induction assume ail 4m+ 2 dimensional generators of primitive degree

less than r lie in image Sql. Given x of primitive degree r with représentative x,

note that Sq4mx is decomposable because degree Sq4mx is greater than the degree
of the highest generator.

Hence the projection Sq4m[x] in H*/B{r) is decomposable primitive. Hence

Sq4m[x] [yf SqlSq4m[y]. But for degree reason Sq4m[y] is decomposable. It
follows that [y]2eSqlD. This contradicts the lemma unless [y]2 0.

We conclude Sq4m[x] is zéro. Therefore Sq4mxeH*I(B(r)) and âSq4mxe

B(r)(£)B(r). By an argument in Torsion I [5], Sq4mx is decomposable in B(r).
Applying Theorem 2 to the factorization Sq4m+3 Sq3Sq4m there is a secon-

dary opération <$> defined on x with
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If x^im Sq1 + B(r) there is a tePH4m+2 with <f, x>^0 (t, im Sq1 + B(r)> 0.

Hence (f2, <£(x))^0 which is a contradiction.
Therefore x g im Sq1 + B(r). Now by induction QB(r) c im Sq1, hence xe

im Sq1, and Sq'x^O. This complètes the case / 0.

Assume by induction that for n>21 + 2l +lk'- l>2r- 1, l'<l that

and

Let JceQ2l+2'+lk-\ n

There is a factorization

Now because n>21 +2l+1k- 1 >T* - 1, 2l+1k must hâve 2r* in its dyadic expansion.

Therefore since degree al>2l+1k it follows that a,jc has degree>2r^+1 - 1>
n. We conclude atx is decomposable for each i.

Let x be an r primitive représentative for Je and assume by induction that ail
2' + 2l+1k-l dimensional generators of primitive degree less than r are in the
image of Sq2\ Then at[x]eH*/B(r) is primitive decomposable. For i>0 a,[x] is

of odd degree, hence a,[x] 0. For i 0 ao[x] is of even degree, hence

But degSq2'+2"'^2[y]>n.
Therefore Sq2'+2'*'k~2[y] is decomposable, and [y]2eSq'D. By Lemma 5,

[y]2 o.

For ail i, therefore at[x] 0. Hence a,xGH*J(B(r)) and âalxeB(r)®B(r).
By the argument of theorem 2.2.1 of [5], atx is decomposable in B{r).

Now suppose x^ im Sq21 +B(r). Then there is a primitive teH*(X;Z2) with
<r, x) + 0 and <r, im Sq2' + B(r)) 0.

We claim tSq2' 0 for i < l Suppose not. Let tx tSq2\ and let xt g
H2'+2-lk-2.-i be dual tQ ^ (iti9Xi)^Om Then xt^0 and 0 ^ <!,, xl) <fSq21, xt)
(t, Sq2xt). This implies Sq2'O2l+2I+lkl ^ 0 which contradicts our inductive assump-
tion. Hence the claim is proven.
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Applying Theorem 2, there is a secondary opération <}> defined on x with

X im

It follows that 02, $(jc))^O which is a contradiction. Therefore x€im Sq21 +B(r)
which implies

xeim Sq21 + QB(r)2l+21 'k \
By induction on the primitive degree

so q
It follows that

2lS2lQ21Sq2'xeimSq2lSq2lQ21 'k £ Sq^ftO2"1*1"1,
i=0

and deg ftQ2'+lk ] ^2l mod 2I+1. By induction S^'ftQ2'*1*-1 - 0. We hâve shown

and

This complètes the proof of Theorem 3.
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