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On the characterization of flat metrics by the spectrum

RUISHI KUWABARA

1. Introduction

Let M be an n-dimensional compact, connectée!, orientée! C°° manifold
without boundary. Let 91 be the space of C" Riemannian metrics on M with the

C" topology. For g e £%, Spec (M, g) dénotes the spectrum of the Laplace-
Beltrami operator A= -g'^V.V, acting on C° functions on M, namely,

where each eigenvalue is written as many times as its multiplicity. Then, the
Minakshisundarairfs formula for Spec (M, g) is given by

where the coefficients as's are expressed by the metric and its derivatives

(curvature) (cf. [1], [2], [3]).
It is obvious that if (M, g) is flat, as 0 holds for s ^ 1. However, as 0 (s ^ 1)

does not imply that (M, g) is flat. In fact, Patodi [2] showed that for the non-flat

space S3(c)x[JhT(-c)/A], the coefficients as's vanish for s^l. Hère, S3(c) and

H3(-c) are a Euclidean 3-sphere with constant curvature c>0 and a hyperbolic
3-space with constant curvature — c, respectively, and A is some discontinuous

group of motions of H3(-c). In the low dimensional cases, the following has been

shown.

THEOREM. (1) (Patodi [2]) For 2^n^5, a2^0 holds, and equaliiy holds if
and only if (M, g) is flat.

(2) (Tanno [3]) For n 6, a2 ^ 0 holds, and if a2 a3 0, then (M, g) is flat or

locally Riemannian product S3(c)xH3(-c).

The purpose of this paper is to prove the following theorem which asserts that
the condition a2 0 iocally' characterizes flat metrics.

427



428 RUISHI KUWABARA

THEOREM A. Suppose y is a C°° flat Riemannian metric on M. Then, there is

a neighbourhood U of y in 01 such that if g e U and a2(g) 0, g is also a flat metric.

Remark. For 2=ssn^s6, the neighbourhood U in Theorem A can be taken

equally to the whole space 0i, that is, if M admits a flat metric then a2(g) 0

implies that g is flat (see §7). For n^7, the author does not know whether there
are counterexamples or not.

As a corollary of Theorem A, we hâve the following theorem.

THEOREM B. Suppose (M, 7) is a flat manifold. Then, there is a neighbourhood

U of y in 01 such that if geU and Spec (M, g) Spec (M, y), then (M, g)

(M, y) (isometric).

In order to dérive this theorem, we hâve only to note the following resuit of
Kneser and Sunada [4].

THEOREM (Kneser, Sunada). There are only finitely many isometry classes of
flat manifolds with a given spectrum.

Remark. In the previous paper [5] we showed that a metric of flat torus is

characterized in the "infinitésimal" sensé by its spectrum. Theorem B is an
extension of this resuit.

After giving notations and a fundamental lemma in §2, we review in §3 the

properties concerning the space of flat metrics following Fischer and Marsden [6],
[7]. In §4 we study the function a2(g) and calculate its derivatives. In §5 we
establish the weak Morse lemma for normed spaces, which gives a basic tool for
the proof of the main theorem. Then we prove Theorem A in §6. Finally in §7 we
consider the "global" characterization of flat metrics.

Remark. Fischer and Marsden gave a theorem [6, Theorem 1.5.2], [7,
Theorem 10] which is of same type as our Theorem A. Our proof is performed on
the same lines as in [7], but differently in détails.

The author wishes to express his grateful thanks to Professor M. Ikeda for
carefully reading the manuscript and oflfering valuable comments.

2. Preliminaries

Let M be an n-dimensional compact, connected, oriented C°° manifold
without boundary. Let Tpq(M) dénote the tensor bundle of type (p, q) over M, and
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ST2(M) the bundle of symmetric covariant 2-tensors on M. For a C°° Hermitian
vector bundle T, let C°°(T) be the space of C°° cross-sections of T, and HS(T) the
Sobolev space of cross-sections of T with respect to a fixed C°° Riemannian
me trie. The topology of HS(T) does not dépend on the choice of a metric.

We use the following notations.

Vs HS(T£(M)); the Hs vector fields,
As HS(7^(M)); the 1-forms of class Hs,
Ss2 HS(ST2(M)); the symmetric covariant 2-tensor fields of class Hs,

â)s; the group of Hs difTeomorphisms of M, defined for s>(n/2)+ 1 (see Ebin
[8]). The group 2>s+1 acts on Ss2 as follows;

where r)*fi dénotes the pull-back of h by 17.

9ft*(c: S|); the Hilbert manifold of Riemannian metrics of class Hs. The
manifold £%s is an open convex positive cône in S2, and invariant under the
action of â)s+1.

^s(c^s); the subset of flat matrics of class H\ defined for s>(n/2)+l.
If the s is omitted, the space is understood to be of C° class and endowed with

the C°° topology.
We define various inner products of HS(T) (s > (ni2) + 1) by g e $ls as follows;

(a) <T, T% gu. • • • gjJ, gkk' - • • gmm'Tk }mTlk> >m.9

(b) <T, T%= t <V(gr)T, V(gr)r>2 (fc^s),g
0

where Vlr)T is the tensor field Ve • • • VeT and Vg is the covariant derivative with
6 6 6 6

respect to g.

(c)(T,T')*= <T,r>ïdV(g),

where dV(g) dénotes the volume élément induced from g.

Using the above inner product (c), we can introduce the Riemannian structure
on Sks by g *->(,)£. This metric is Q)s+1 -invariant, Le., 3)s+1 acts by isometry (see

[8, pp. 18-21]).
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For a metric g e 01, we define a difïerential operator

Sg : C~(ST2(M)) - C~(T«(M)); (S8£), -V&.

Then ôg extends to a continuous linear map ôg:S|—> Ai-1. The adjoint operator
ô* of ôg with respect to (,)g extends to a map

(S*)* : As -> SrT ; {(Ôsgm, |(^xg),,,

where s>(n/2) + l, and «SP is the Lie derivative and X(e Vs) is dual to £

LEMMA 2.1 (Berger and Ebin [9]). For g €01, there is an orthogonal
décomposition

where the summands are orthogonal with respect to (,)g.

3. Space of fiât metrics

In [6] and [7] Fischer and Marsden studied the space £F of flat metrics of class

Hs. We review their results in the first part of this section (Lemma 3.1 and

Proposition 3.2).
In Lemma 2.1, g is assumed to be of C° class (more precisely, g is required to

be of class Hs+1). However, if g is flat, the following is obtained by one of the

regularity theorems.

LEMMA 3.1 ([6, p. 237], [7, p. 530]). Let ge&\ s>(n/2)+l. Then there is

an orthogonal décomposition

We dénote by F(g) the Riemannian connection of g g 0l\ Let JCS be the set of
flat Riemannian connections of class Hs. For FeSP1, set

Furthermore, for ge£%s, let us define

Eg:Ss2^0ls; h .-» g exp (g'1 h),
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where g ]h is an endomorphism of TX(M) at each xeM, given by h]= glkhkj in
local coordinates. Then Eg is a C* diffeomorphism with JBg(O) g (see [8, p. 36]).

PROPOSITION 3.2. Let TeJ{s'] and ge&\, s>(n/2)+l. Set PSs2(g)

{heSs2\ Vgh=0}. Then,
(a) 3F\ Eg(PS2(g))y and ?F\ is a finite dimensional closed C°° submanifold of

0l\ Moreover, the tangent space of ?F\ at g is

(b) ^s 2)s+1(^i) {T)*7e^s; t)G^s + 1, ye&\}, and &s is a closed C°
submanifold of $l\ Moreover,

TgOF) PSs2(g)0(Ôsg+1)*(As+1).

Proof. See Fischer and Marsden [6, Theorem 1.3.3], [7, Theorem 6].

In the remainder of this section, let us prove the following Proposition 3.3. For
g € &\, set

Then we hâve the following.

PROPOSITION 3.3. (a) S(g) is a closed C°° submanifold of 9ts, and &\ is a
closed C°° submanifold of S(g). Moreover,

(b) For any neighbourhood V of g in S(g), there is a neighbourhood U of g in 0ls

such that UdQ)s+1(V).

Proof. (a) We hâve PSs2(g) ^ (ôsg)~l(0) ^ Ss2, where each subspace is closed.

Therefore, the assertion is obvious because Eg is a C°° diffeomorphism.
(b) By the regularity theorem ([6, Theorem 1.3.1]> [7, Theorem 5]), there is

î]€^s+1 such that Tj*g g' belongs to 9. Hence, the orbit Os(g) through g is

equal to Os(gr) and is a C°° submanifold of 0l\ Let N=N(Os(g)) be the normal
bundle with respect to the weak Riemannian me trie y ^ (,)° ([8, pp. 30-31]). We

defineE:N-»âr by E(y,h) =Ey(h), where y e Os(g) and h eNy =(ô;)-1(0), N
being the fibre of N at 7. Then, it is easily shown that E is a C° map and

£(17*7, rj*fi) Tï*E(y, h) holds for 7] e3)s+1. Moreover, the first derivative of E

y
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at (g, 0) is given by

dE(g,0) (h\ftlf)=h'+fi'\

where h'e Tg(Os(g)) (ôsg+1)*(As+l) and h"eNg (8sgy\0). Thus, dE(g, 0) is an

isomorphism (Lemma 3.1). Therefore, there are a neighbourhood V of g in 0ls

and a neighbourhood W of (g, 0) in N such that E : W—» Ur is a diffeomorphism.
Let 7 »-» (,)^ be the strong Riemannian metric of <3i\ Then, the neighbourhood W
is given by

W {(y,h)eN; ye W, (h, h);<s, e>0},

W being a neighbourhood of g in Os(g). For given V(czS(g)) there is e'(^e)
such that if V {(g; h)eNg; (h, h)g<e'}, Eg(V')a V holds. Set

and [/= E( V"). Then U is open in ST and satisfies U^ S>s+1( V). In fact, if 7 is in

U and 7 E(rî*g, h), then (^lfh W belongs to V because (r]~l)*:Ss2-^ Ss2 is

an isometry with respect to the metric (,)5. Thus, 7 E(r)*g, rj*fi')
D

4. Derivatives of a2(g)

For g€£%, let {/J, l?|km, JRtJ and r dénote the Christoffel symbol, the
curvature tensor, the Ricci tensor and the scalar curvature, respectively. The

curvature tensor is deflned by

^ A{']-4r{iUfS}fi}-(!l('idx Ijm) dx l]k) {]m){skj ljk){sm)

in terms of the local coordinates (x1)-

It is known that the Minakshisundaram's coefficient a2 is given by

Where |R|2 R,,kmR"km and \P\2 R,,R" (cf. [1], [2], [3]).
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It is easily shown that Spec (M, 17*g) Spec (M, g) for tj g S and g 6 01, hence

F(rî*g)-F(g)holds.
The function F car» be regarded to be defined on 0V if s>(n/2) + 4. We write

this function F\
PROPOSITION 4.1. The function Fs on <3l% is of C° class.

We need the following lemma which was proved in [10, 11.3].

LEMMA 4.2. // £ and 17 are C°° vecîor bundles over M and f : £ —» 17 is a C00

/ïfrre preserving map, then for s>n/2 the map f*:Hs(Ç)-> Hs(r]) defined by

/» /°a is of C00 class.

Proof of Proposition 4.1. We prove that g »-> JM|R|2dV(g) is a C°° function. The

proof is done in two steps.
First step: </> : g •-> |R|2 is a C map of ST into Hs2{M, jR), the Hilbert space

of ail H5 2 functions. In fact, we hâve

IKI ~ KhcdK]kmgaig 'g g

Thus, as is easily shown, \R\2 is a rational combinations of g, dg, d2g, so that
\R\2 : J2(£) -^MxKisaC00 fibre preserving map, where £ is the fibre subbundle of
ST2(M) consisting of positive definite forms on each tangent space and J2(£) the
second jet bundle of £. Noting that 01" =Hs(£)dHs~2(/2(£)), we can conclude
from Lemma 4.2 that <f> is a C°° map of ST into Hs 2(M, R).

Second step: The function ip:Hs~2(M, R)x0ls -^ R defined by (/, g) •-*

ÏMfdV(g) is of C° c/ass. In fact, fix goe<3ls and define n:0ls-> Hs(M, R) by the

équation jn(g) d V(g0) d V(g). Then it is easy to see that the map /x is of C°° class

(see [8]). The map 1// is decomposed as 1//= i//0o(idx jll), where

i/V- Hs2(M, R)x H2(M, R) -> H is defined by (/,f)^JMff'dV(g0). Since jll and

i//0 are C maps, ^ is of C°° class.

Finally, the function g^->JM|jR|2 dV(g) is decomposed as follows:

Hs~2(M,R)xHs(M,J*)

t)xi
*l f '+

(|R|2,g) > |R|2dV(g)
J M

Since (f) and 1// are C°° maps, g^-^jM^I2 dV(g) is of C°° class.

It is similarly shown that the functions g*-*iM\p\2 dV(g) and g|-^JM'r2 dV(g)
are of C°° class. D
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PROPOSITION 4.3. Fs(ri*g) Fs(g) holds for r) e$)s + l.

Proof. The action Ss2x3)s + l->S2 is continuous ([8, pp. 17-18]), and F is of
C* class. Hence, the proposition follows from F(r}*g) — F(g) for ge£ft and r\ € 3).

Now, we give the formulas about the derivatives of F\ which hâve been

calculated in the previous paper [5].

PROPOSITION 4.4. For g e <9C and h e Ss2, the first derivative of Fs is given by

dF(g)(h)=f <T(g),h>«dV(g)=f TIJ(g)fiI'dV(g), (4.1)
J M J M

where

V and the curvatures being induced from g. Therefore, if ge3F\ then dFs(g) 0,

Le., a flat metric is a critical point of Fs.

Proof. This is a direct but tedious calculation (cf. [5]).

Remark. T(g) is an élément of Ss2'4, and g »-> T(g) isa C° map of 0ls into
Ss2~~4. This is proved on the same Unes as Proposition 4.1.

PROPOSITION 4.5. The second derivative of F at ge0ls is given by

d2Fs(g)(K k)= f <[dT(g) + |T(g)tr(g)]h, k)°g dV(g), (4.2)
J M

where tr(g)h gl!hir In particular, at ge3F\

d2F8(g)(h, h) 3f
•'m

(4.3)

Proof. This is obtained by straightforward calculation starting from (4.1).

Remark. dT(g) + (l/2)T(g)tr(g) is an élément of L(SS2; Ss2~% the space of ail
continuous linear maps of Ss2 into Ss2~~4.
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5. Weak Morse lemma for normed spaces

In this section we estabhsh the weak Morse lemma for normed spaces This
work îs motivated by Tromba's paper [11], in which the Morse lemma for
almost-Riemannian mamfolds îs considered

Let Xu X2, be normed vector spaces, and define L(XU Xk, Xk + 1) as

the normed vector space of ail continuous k-hnear maps of Xx Xk into Xk + 1

Let |3 be a continuous bihnear form on a normed vector space X, î e

|3 g L(X, X, R) j3 îs called the weak inner product of X if (a) j3(x, y) j3(y, x), (b)

j3(x, x)>0 for x^O The space X with |3 îs regarded as a pre-Hilbert space
denoted by Xp Let Xp be the completion of X^, and ($ the continuous extension
of f3 to Xp Thus the space X36 îs a Hilbert space with inner product /3 The
canomcal injection X—>X/3(Xp) îs continuous

Let / X->R be a Ck function, fc^2

DEFINITION The Ck function / îs of Ck class if
(a) for each xeX, the second denvative d2f(x) belongs to L(Xp, X^,K)
(b) x -* d2f(x) îs a Ck 2

map of X into L(XP, Xp, JR)

Suppose X=YxZ (the product normed space), and f X-+R îs a C^
function (k^2) We hâve

d2/(x)((w, u), (m', i/))

where (m,u), (m', u')e VxZ, and D/(x) (i 1, 2) îs the partial denvative of / at x

with respect to the i-th variable Since / îs of C£ class, there îs a unique
B(x)eL(Z(i,Zp) such that

for k, veZ Moreover, x^B(x) îs a Ck 2
map of X into L(Zp,Zp)

DEFINITION Let K be a subset of Y The subset K x {0} of X îs called the

|3 - nondegenerate cntical subset of /, if for each xeKx{0},
(a) df(x) 0, and

(b) B(x), the continuous extension of B(x) to Zp, îs invertible

We are now ready to state and prove the following

PROPOSITION 5 l(weak Morse lemma) Let f X=YxZ->R be a C£

function, fc^2 Suppose K is a compact subset of Y If the subset Kx{0} is a
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p-nondegenerate criîical subset of f and /(Kx{0}) 0, then there are a neighbour-
hood V of the origin in Z and Ck~2 map $ : Kx V—> Zp such that

(a) <t>(x) 0 if and only if x (y, 0), and

(b) fjx) |Df/((y, D))(*(x), <f>(x))9 x (y,2)eXxV,
where D\f{x) is the continuons extension of D\f(x) to Zp x Zp.

Proof By the Taylor's formula we hâve

/((y, z)) [ (1 - À)D|/((y, Az))(z, z) dX.

Set

J(y, z)(u, v)= I (l-A)D|/((y,Az))(M, u)dA.

Then, J(y, z) belongs to L(ZP, Z/3; JR) since / is of C| class. Therefore, we car»

write J(y, z)(w, t?) /3(B(y, z)u, u) and D\f((y, 0))(m, u) 2/3(B(y, 0)w, i;) where

B(y, z)eL(Zp; Zp). Let B(y, z) be the continuous extension of B(y, z) to Zp.
Then, (y, z)*->B(y, z) is a Ck~2 map of X into L(ZP; Zp). Moreover, B(y, z) is

self-adjoint for each (y, z). Since B(y, 0) is invertible and K is compact, so B(y, z)
is invertible in Kx V, V being a neighbourhood of the origin. Define Q(y, z)

B(y, z)-lÈ(y, 0) and Q is a Ck~2 map ofKxV into L{Zp\ Zp). Now Q(y, 0)

identity and since a square root function is defined in a neighbourhood of the

identity operator by a convergent power séries with real coefficients, we can
define a Ck~2 map R:KxV(^KxVr)-^L(Z^;Z&) with each R(y, z)
invertible and Q(y, z) [jR(y, z)]2. We see easily from the définition of Q
that Q(y, z)*B(y, z) B(y, z)Q(y, z) hence R(y, z)*B(y, z) B(y, z)J?(y, z)
holds. Thus, we hâve K(y, z)*B(y, z)JR(y, z) B(y, 0), or B(y, z)

R^y, z)*B(y, 0)R1(y, z), where i^y, z) R(y, z)"1. Now, set

Kj(y, z)z, and we hâve

/((y, z)) fïiR^y, z)*B(y, OJR^y, z)z, z)

Finally, c^)((y, z)) Ri(y, z)z 0 holds if and only if z 0, because Rx(y, z) is

invertible. D

COROLLARY 5.2. Besides assumptions in Proposition 5.1, assume that

D22f((y,0)){u,u)>0

holds foryeKandu(eZ)^ 0. Iff(x) 0 and x g K x V, tfien x foe/ongs toKx {0}.
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Proof. From Proposition 5.1, we hâve only to prove that Dff((y, 0))(w, u)>0
holds for any w(gZ/3)^0. Suppose there is w^O such that Dff((y, 0))(u, u)

j3(B(y, 0)u, u) 0. Then, infp(u u)=ï j3(B(y, 0)u, w) 0, hence zéro belongs to the

spectrum of B(y, 0), which is absurd because B(y, 0) is invertible.
In the remainder of this section we give a supplément.
Let us define a C°° map x(eX) •-> |8(x) (the weak inner product of X) such

that the topology of Xp(x) does not dépend on x. We call this map the weak C°°

Riemannian structure of X. Let (3 |3(0). Then, for each xeX, there is

C(x)eL(Xp;Xp) such that

/3(x)(y, z) j3(C(x)y, z), y, z € Xpix)( Xp),

and x •-> C(x) is of C° class. Moreover, we can easily prove the following.

PROPOSITION 5.3. Letf:X-+Rbea Ck function (k^2). / is o/ C^ class if
and only if

(a) for each xgX, d2/(x)eL(Xp(x), Xp(x); K), and

(b) i/ B(x) is giuen 6y d2/(x)(w, t>) |3(x)(B(x)w, u), rhen x^B(x) is a Ck~2

map o/ X into L(Xj3; Xp).

6. Proof of the main theorem

In this section we prove the following theorem and Theorem A.

THEOREM A'. Let yeSF and s be sufficiently large. Then, there is a neigh-
bourhood [/c^o/7 such that if geU and Fs(g) 0, g is in &\

We define f:Ss2->R by f=FsoEy. Let / be the restriction of / to X
(8syyl(0)(czSs2). Then, / is a C°° function (Proposition 4.1). Let Y PS2(y). We
hâve the following from Propositions 3.2 and 4.4.

PROPOSITION 6.1. /(y) df(y) 0 holds for each y g Y.

We apply Corollary 5.2 to the function / on the Hilbert space X.

Let us introduce a weak C°° Riemannian structure on X. First, we define a

weak Riemannian me trie on 0T as follows;

(fc,fc)g= f [(h,k)^ + 2<Vh,Vfc)^ + <VVh,VVk)^]dV(g)
Jm

(6.1)Â2t



438 RUISHI KUWABARA

where Âg is the rough Laplacian defined by (àgh)l} -g^V^Vfh,, in local coordi-
nates.

LEMMA 6.2. Let Lg (l + Âg)2. Then, the maps

and

are of C" class.

Proof. First, we note that for each ge£%s, Lg has a continuous linear inverse

Lg1. In fact, the difïerential operator (1-f Âg)2 is an injective self-adjoint elliptic
operator. Therefore, Lg is surjective by the décomposition theorem (e.g.

[12, Ch. XI]). Furthermore, by the open mapping theorem Lg has a continuous
inverse.

Now, it is easily shown that (g, h)*->Lgh is C°° (cf. [13, Lemma 2.11]).
Moreover, it follows that g^Lg is a C°° map of <3ls into L(S2;SS2~4). On the

other hand, Lg^L"1 is a C° map (e.g. [14, Ch. 8]). Therefore, g*-*L~l is C°
and accordingly (g, h)»->Lg1h is C°°.

PROPOSITION 6.3. The Riemannian structure defined by (6.1) is of C° class.

Proof. The proposition follows from Lemma 6.2 and the proof of Proposition
4.1.

Now, we define a C°° Riemannian structure ]8(x) on Ss2 as the pull-back of (,)g
by Ey. Namely,

j3(x)(y, z) (dEy(x)(y\ dEy(x)(z))g,

where g Ey(x). ^^Let j3 0(0). Obviously, (S^ S2 holds.

PROPOSITION 6.4. The function f:X-*R is of C£ c/ass.

For the proof we fîrst prove the following lemmas.
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LEMMA 6.5. The ftrst and the second derivatives of Ey are given by

and

d2Ey(x)(y,z)=y\i —i—

respectively, where {A, A2 • • • Ak} YJlTA(T{l)Acr{2) • • • Ao.(k), rhe summation being
taken over ail permutations a of (1,2,. k).

Proof. Thèse are straightforward calculations.

From this lemma we immediately obtain

LEMMA 6.6. ForeachxeX, dEy(x)eL((Ss2)p;(Ss2)fi) and d2E7(x)eL((%
(S^^; (SS2)p). Moreover, the maps

Ss2 -> L((Si)p ; (Si)p); x ^ d£7(x),

^, (SJ)P ; (Syp); x ^ d2£7(x)

are o/ C°° c/ass.

Lemma 6.7. For each ge9t\ dFs(g)eL((Ss2)fi; R) and d2Fs(g)eL((Ss2)l3\ R).
Moreover, the maps

and

«' -^ L((SJ)P, (S^)p; R); g

are of C" c/ass.



440 RUISHI KUWABARA

Proof. From Proposition 4.4 and 4.5 we obtain

dFs(g)(h) (T(g\ h)°g (L~lT(g\ h)g,

d2Fs(g)(h, k) (Lg1[dT(g)+|T(g)tr(g)]h, fc)g.

Hence, using Proposition 5.3, we hâve dFs(g)eL((S2)^; R) and d2Fs(g)e
L((Ss2)p, (SDp ; R). Moreover, it is easy to check that g *-* dF2(g) and g •-» d2Fs(g)
are C°. D

of Proposition 6.4. We hâve

d2/(x)(y,z) d2Fs(E7(x))(dE7(x)(y),d£7(x)(z)) + dFs(E7(x))(d2jE7(x)(y,z)).

Therefore, the proposition foliows from Lemmas 6.6 and 6.7.

At the origin of X we hâve d2/(0)(x, x) d2Fs(7)(d£7(0)(x), dEy(O)(x))
d2Fs(7)(x, x). Since x€(67)~1(0), we hâve the foilowing from Proposition 4.5.

d2/(0)(x, x) 3 J [3(^xsf + Ç7sS7sxll)Ç7t^7\)] dV(y)

[Â2 + 37tr(7)Â2]x, x)7 (6.2)

Set D- A7 + 37 tr (7)A7. The symbol of the differential operator D is

given by a(D)(v)x (||u||4 + 37||i;||4tr (7))x, for veT^M) and xeST2(M). Thus

a(D)(v)(v^0) is injective. Hence, by the décomposition theroem ([9,Theorem
4.11]), we hâve

Ss2 range(D)©ker(D), (6.3)

because D D*(the L2-adjoint of D). Moreover, it follows that D2 D*D is

elliptic, and D2 : Ss2 —> Ss2~s is a Fredholm operator.

LEMMA 6.8. ker (D)= Y( PSs(y)).

Proof. From (6.2), Dx 0 holds if and only if Vs Vsxtj Axss 0. This condition
is équivalent to Vx 0, i.e., x g Y, because M is connected and compact.
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Set Z range (D) H X, and we hâve a décomposition,

We immediately obtain the following from (6.2).

PROPOSITION 6.9. d2/(0)(z, z)>0 holds for z(eZ)ïO.

Since Vy(L~lD) (L~lD)\7y for yef, we hâve

X, L;1D(Z)c=Z. (6.4)

Hence, we get from (6.2),

LEMMA 6.10. B(0) is invertible

Proof. Obviously, B(0) is injective, hence, by the open mapping theorem we
hâve only to show it to be surjective. From (6.3) (by replacing s with s-4), we hâve

Ss2 range (LylD)-hLyl (ker(D)).

Since L;1 (ker(D))= Y, we conclude that Z L~lD(Z) (L-1D)2(Z) by noting
(6.4). Hence (L~lD)2(Z^) is dense in Z3. On the other hand, (L~lD)2(Z^)
{L~XYD2{Z&) is closed because (L~l)2D2:Sl-^ Si is Fredholm. Therefore,
(LylD)2(Z&) Z3, which leads to B(0)(Z3) (3L;!D)(Z3) Z3. D

From this lemma we Ziaue the following.

PROPOSITION 6.11. There is a compact (3-nondegenerate critical subset

KaY of f:X(= Y®Z)-*R, which contains the origin.

Proof. Noting Lemma 6.10 and that / is of C^ class, we see that there is a

neighbourhood W<=- Y of the origin such that B(y) is invertible for y g W. Since Y
is of finite dimension, so locally compact, there is a compact subset K= Ûf<^

W (Ûf being the closure of the open set U') which contains the origin.

We are now in a position to prove Theorem A'.

Proof of Theorem A'. From Propositions 6.1, 6.4, 6.9 and 6.11, the function
/:X(= Y®Z)->R satisfles the assumptions of Corollary 5.2. Let K=Ùf and V
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be the sets mentioned in Corollary 5.2. Since Ey:X-+ S(y) is a C30 diffeomorph-
ism, there is a neighbourhood W=Ey(U' + V) of 7 in S(y) such that Fs(g) 0

implies g e 3Fsr (F F(7)) if g e W. From Proposition 3.3, (b), there is a neighbourhood

U of 7 in 0ls such that l/d®s+1(W). Then 1/ satisfies the assertion of the
theorem because ^s S>s+1(^i), and Fs (r)* g) Fs (g) holds for tjg^s + 1

(Proposition

4.3).

By virtue of Theorem A' we prove Theorem A.

Proof of Theorem A. Let yef and U{<=-0ls) be the neighbourhood
mentioned in Theorem A'. Then, U'= UH01 is a neighbourhood of 7 in 01 because

the inclusion map 01 —> <3ls is continuous (Sobolev lemma). This neighbourhood
U' satisfies the assertion of Theorem A.

Remark. The space 01 is an ILH-manifold [13]. Moreover, it is easy to see

that 9 is an ILH-submanifold of 01.

7. Supplementary discussions

The purpose of this section is to prove the following theorem, which "glob-
ally" characterizes flat metrics.

THEOREM 7.1. Suppose n dimM^6 and &*<f>. Then,

The theorem for n ^5 was proved by Patodi [2]. We give the proof for n 6.

Hereafter, we assume rc dimM 6.

The following is due to Tanno [3, Lemma 1].

LEMMA 7.2. If F(g) 0, then (M, g) is conformally flat and the scalar

curvature r is vanishing.

The Gauss-Bonnet-Chern formula for n 6 is given by

X(M)=—-^ f [T3-12T|P

-24R'kR'mRllkm+24Rs'R'skmRllkm-8R"kmR;klR',ms

-2R\mRk™R°\,]dV(g).
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When (M, g) îs conformally flat and r 0, this reduces to

)kUg (7
M

LEMMA 7.3. Suppose (M, g) is conformally flat and t 0. If
V(R,k=0

P^oo/. By Tanno [3, Lemma 2], if (M, g) is eonformally flat and t 0, we hâve

f Ç7lR,k)Ç7lR>k)dV(g)=-l\ R)R>kRÏ dV(g).
J M J M

Using (7 1), we get V,JR,k 0 if X<M) 0 D

Proof of Theorem 7 1 Since 3<^ $, x(M) 0 holds Tanno [3, Proposition 5]
showed that if (M, g) is conformally flat and t V,Kjk 0, then (M, g) is either (1)

locally flat, or (2) Riemanman product S3(c)x[H3(-c)/A], A being some dis-
continuous group of isometries of H^(-c). On the other hand, the homotopy
group 7T3(S3(c)x[HV c)/A]) Z, hence the mamfold S3(c)x[H3(-c)/A] has no
flat metncs (Cartan-Hardamard Theorem) Now, the proof is completed by virtue
of Lemmas 7 2 and 7.3.

Remark For m ^ 7, the author does not know wether there is such a mamfold
that satisfies

F
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