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Minimal models for non-nilpotent spaces

W. Meier

Introduction

Minimal models in the sensé of Quillen [12] and Sullivan [15] hâve become a

standard method to study problems in rational homotopy theory, provided the

spaces involved are simply connected or nilpotent (see, e.g. [1], [3], [11], amongst
others). Recall that a space X of the homotopy type of a connected CW-complex
is nilpotent if irxX acts nilpotently on tt^X for ail i>l.

The purpose of this note is to adapt this minimal model description to more
gênerai spaces of the homotopy type of a CW-complex, and to apply it to basic

problems which are spécifie to the non-nilpotent situation.
In more détail, for a given CW-complex X we consider regular nilpotent

covers XN together with the covering transformations, which détermine an action
of the group G ttiX/N on the minimal model of XN. Then we show that the
model of XN, together with this G-action, describes the "rational homotopy type
of X" in a well defined sensé, provided that the rational cohomology dimension
of G is <1 (Theorem 2.3). This is the case, e.g. if G is either a finite or a free

group. The proof of our resuit is based on a paper by G. Cooke [4]. As an
immédiate application we get a classification of homotopy types of CW-complexes
having a given rational universal cover and a given finite or free fundamental

group (Corollary 2.7). Moreover we construct minimal models of cell complexes
whose (rational) attaching maps and two-skeleton are given (Proposition 3.1).
This can be applied in particular to homology circles (e.g. higher knot compléments)

with infinité cyclic fundamental group. Our main application is concerned
however with the explicit construction of a minimal model for the Q-acyclic
functor AQX ([5], [2]), where X is a CW-complex with H*(X, Q) of finite Q-type
and with finite fundamental group (Theorem 4.5). Recall that AQX is a Q-acyclic
space (i.e. H^(A°X, Q) 0) which is the homotopy fibre of the "rational plus
construction" <P : X-+ Xq (cf. [2], [9]). Moreover <P agrées with the rationalization
of X in the sensé of [2] as irtX is finite. Thus given the rational homotopy type of
X we can read ofï the rational homotopy groups of AQX from our model, and
hence we get explicit information on 7t,Xq. This in turn leads to information on
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Minimal models for non-nilpotent spaces 623

the rational homotopy groups of the plus construction X+ of Quillen [13]. The

groups 7r,X+ are of géométrie interest for any CW-complex X, as they may be

interpreted as certain bordism groups [7]. Moreover a knowledge of 7rtX+ is

useful for the classification of acyclic maps [9].
I wish to thank B. Gray and R. Strebel for helpful conversations and the

référée for pointing out [16].

§1. Homotopy actions on spaces and algebras

In this introductory section we recall some définitions and basic facts, and we
define homotopy actions on graded difïerential algebras as well as minimal models
of such actions.

(1.1) A homotopy action of a group G on a space XelICW, the homotopy
category of connected CW-complexes, is a homomorphism a : G—»^(X) from the

group G to the group ^(X) of homotopy classes of (free) homotopy équivalences
of X. A homotopy action a of G on X is équivalent to a homotopy action /3 of G
on Y if there exists a homotopy équivalence f:X—» Y such that the diagram

is commutative.
Hère £(/) is defined by [g]^[/grll where [g]e£(X) and f~l is any

homotopy inverse of / (cf. [4]).
(1.2) To define similar homotopy actions on algebras we first introduce some

notation. For a treatment of graded difïerential algebras and minimal models in
the sensé of Quillen [12] and Sullivan [15] we refer, e.g. to [3], [1], [11], [8].

DGA is the category of difïerential graded, augmented, commutative, associative

algebras defined over the rationals Q which are concentrated in non-negative
degrees and hâve a cohomology difïerential (of degree +1). We restrict DGA to
algebras A which are homologically connected, H°(A) Q, and we just call the
objects in this category "algebras."

DGLA is the category of difïerential graded Lie algebras defined over Q which
are concentrated in non-negative degrees and hâve a homology difïerential. We
just call objects in this category "Lie algebras."

For the appropriate homotopy catégories HDGA, HDGLA of algebras or Lie
algebras respectively, as well as for the pointed versions of each, we refer to [3],

tu
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(1.3) DEFINITION. A homotopy action of a (discrète) group G on an

algebra A e DGA is a homomorphism a : G-*%(A) from G to the group fë(A) of
homotopy classes of automorphisms of A.

In the same way we define homotopy actions on Lie algebras. As in the
following completely similar définitions and results hold for Lie algebras, we omit
the corresponding statements.

(1.4) DEFINITION. A homotopy action a of G on A g DGA is équivalent to
a homotopy action p of G on BeDGA if there exists a weak équivalence
(=cohomology isomorphism) /:A—»BeDGA such that the diagram

«(g)

for every élément geG commutes up to homotopy.

(1.5) Remark. If one restricts to cofibrant algebras [3], every weak équivalence

/:A-^BgDGA has a homotopy inverse ([3], 6.5). Hence for cofibrant
algebras the définition of équivalence of homotopy actions on algebras takes a

form analogous to that on spaces. This in particular applies to minimal algebras
([3], 7.5).

(1.6) DEFINITION. A homotopy action a of G on A eDGA is minimal if A
is a minimal algebra.

(1.7) PROPOSITION. Every homotopy action a of G on A g DGA has a
minimal model.

Proof. Choose a minimal model e : M-*A e DGA, then we define a homotopy
action /3 of G on M which is équivalent to a: For an automorphism a (g):
A—> A, g g G, there exists a map M(a (g)) : M—» M e DGA (which is unique up to
homotopy) such that the diagram

a(g)
A > A

I M(«(g)) I

M >M
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commutes up to homotopy ([3], 8.7). As the map M(a(g)) is a weak équivalence,
and M is minimal, it is an automorphism of M.

(1.8) For our main resuit we shall need a relation between homotopy actions
on spaces in 11CW and such actions on algebras in DGA. This is established by
certain functors in ([3], §8). First recall that there are (adjoint) functors
F:HDGA-»H^ and M:H^-^HDGA, where USf dénotes the homotopy categ-
ory of connected simplicial sets. By taking the géométrie realization we can

replace this category by I1CW. Note that thèse functors hâve also pointed
versions. Let now a : G—>(£(X) dénote a homotopy action where Xe I1CW. Then
applying the functor M we get a homotopy action &:G—»<g(Mx), where Mx
dénotes a minimal model of X. Vice versa, a homotopy action 0 of a group G on
an algebra A e DGA gives rise to a homotopy action a of G on the space
F(A)e£f (or in IICW).

§2. Differential algebras and non-nilpotent spaces

In this section to any space X e IICW we associate minimal models in terms of
homotopy actions on suitable algebras. In the main resuit (Theorem 2.3) we give a

critérium on the fundamental group of X, which allows a description of the
"rational homotopy type" of X via minimal models. This generalizes the minimal
model approach of Quillen and Sullivan given for the homotopy theory of rational
nilpotent spaces. As an immédiate application we get a classification of spaces
with a prescribed rational universal cover and suitably given fundamental group.

Let Xe FICW be given. Then to X we associate minimal models as follows:
Consider fibrations (up to homotopy)

XN-»X-»K(irlX/N, 1) (2.1)

where XN is a nilpotent (e.g. a simply connected) covering space with respect to
the nilpotent normal subgroup N of ttxX. The covering détermines a free

topological action (and hence a homotopy action) a of G tj^X/N on XN. By
taking a minimal model 0 of this action we thus hâve associated a minimal model
to X (depending on the group N). By fibre-wise rationalization of (2.1) we get a

fibration (up to homotopy)

vN(0)~ X-»K(G, 1). (2.2)

Now suppose that XN(0) is of finite Q-type, i.e. the Q-vector spaces Hn(X;Q),
n>l, are finite dimensional. Then the Sullivan or Quillen model of this space
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allows to reconstruct the homotopy type of XN(0) in a précise sensé: In this case

the functors F and M restrict to adjoint équivalences (cf. [3] for minimal algebras
and [1], [11] for minimal Lie algebras). We now ask for conditions which allow to
reconstruct, in a well defined sensé, the fibre homotopy type of (2.2) (and hence
the homotopy type of X) from the minimal model /3 :G—><£(MXn) of X.

Let /3:G-»^(||F(MY)||) be a realization of this action, where Y XN and

||F(My)|| has the same homotopy type as Y(0). Then to obtain Y(0) as a covering
space of X out of the action |3 we hâve first to turn |3 into an équivalent free

topological action 7: G-»^(Y(0)), where Y(0)—Y(0). If this can be done in a

unique way (up to équivalence of homotopy actions) we say "|3 : G-^<£(MXn)
détermines the rational homotopy type of X." Our main resuit now gives a

sufficient condition when this is the case.

(2.3) THEOREM. Let Xbea space in IICW and let XN be a regular nilpotent
cover with respect to the nilpotent group N. Suppose that XN is of finite Q-type and
that G tt1X/N has rational cohomology dimension <1. Then the associated

minimal model /3 : G-^<£(MXn) détermines the rational homotopy type of X.

(2.4) Remark. There is a similar resuit valid for MXn replaced by a Quillen
model of XN. If XN is simply connected no finiteness condition on XN is necessary
[12].

Proof of Theorem 2.3. Let again dénote the realization of 0 by j3:G->
SS(||F(MY)||) where Y—XN. Then to (3 there can be associated a lifting problem
[4]

(2.5)

Hère G (Y) dénotes the space of free self-homotopy équivalences of the space Y.

It is an associative H-space with tt0G(Y)= <S(Y). The identity component is

denoted by GX(Y) and there is an exact séquence of H-spaces

Gt(Y) G(Y) -^ tt0G(Y).

Since 7r1BG(Y)—>tt1K(^(Y), 1) is an isomorphism, there is a lifting over the
two-skeleton of K(G, 1) which is unique on the one-skeleton. Then it follows
from the methods of [4] that the action (3 can be turned into a unique topological
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action équivalent to p if and only if the lifting problem (2.5) has exactly one
solution (up to homotopy). This is the case in particular if
Hn(G,{irn.2(G1(Y(0)))}) 0 Hn-1(G,{irn_2(G1(Y(o)))}) for ail n>3. This in turn
is satisfied if G has rational cohomology dimension <1. Note that one can replace

any topological action by an équivalent free topological action by taking a product
with a contractible free G-space W: In the notation as before set Ym Y'mx W,

where |3': G—»<£(Y('0)) is a topological action équivalent to |3, and let G act on
Y(o) via the diagonal action. Hence under the conditions of Theorem 2.3 there is a

well defined quotient space YiQ)/G — X associated to the homotopy action /3.

(2.6) Remark. In [15] Sullivan has given an algorithm which computes the

groups TT^G^Y^))) for a rational nilpotent space Y(0) (with suitable finiteness

assumptions).

(2.7) COROLLARY. Let XgIICW be a simply connectée rational space, and
let G be either a finite or a free group. Then there is a one-to-one correspondence
between spaces YelICW having a universal cover équivalent to X and with
fundamental group G, and the set of équivalence classes of homotopy actions

a : G—» <£(LX), where L dénotes the Quillen minimal model of X.

§3. A minimal model for cell complexes

In this section we indicate a construction for a Lie algebra model of any cell

complex whose two-skeleton and ail higher (rational) attaching maps are explicitly
known. As an immédiate application we get an algorithm for the computation of
rational homotopy groups of such spaces. This even works if the Lie algebra
model thus constructed doesn't completely détermine the rational homotopy type
of X (in the sensé of Theorem 2.3).

Let X be a space in IICW. Then we first consider the universal covering
X —» X of X, where X XIit and tt tt1(X). If / : A —> X is a map of a simply
connected space A into X, a universal covering space for XUfCA can be

constructed as follows: One maps irxA into X by choosing a lifting /:A->X
and by sending (g, a) into fg(a) g • f(a), geir. Then the mapping cône of the

map ttX A—>X thus defined is a universal covering space of XUfCA. Note that
the map fg is not base-point preserving, but is (freely) équivalent to such a map if
A and X are based. For an inductive construction of a Lie algebra model of X we
start with C{?X2, where Xn dénotes the n-skeleton of X and C?X dénotes the
fibre-wise rationalization of the fibration (up to homotopy) X—»X—>K(G, 1). We

suppose that /7r2(X)(8)Q as a 7r-module is known. (This is the case, e.g. if either tt
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is a cyclic or a finitely generated free group, cf. [6].) Then the inductive step is

given in the following

(3.1) PROPOSITION. Let f:Sn+1-*X, n>\,bea lifting of the attaching map

f of an (n + 2)-cell to X. If a : ir—>^(LX) is a minimal model of X, the minimal
model for XUfe"+2 is quasi-isomorphic to /3:tt—><£(L), where j3 is defined as

follows: L LxUIIgeirL(yn+1)g (L(yn+1) dénotes the free Lie algebra on the

generator yn+i), and the differential d of L is given by d\Ljt d, the differential in Lx,
and d(yn+1)g g • x,,, where g • ^ e Hn(Lx) 7rn+1(X)®Q is represented by
/g : Sn+1 —> X. Moreover the action of tt on L is given by the action on generators.

Proof. If tt is finite this is a conséquence of ([11, Proposition 8.11, or [1]) and
the construction of the universal cover of a mapping cône as given above. If tt is

infinité one restricts the map tt x Sn+1-+X to finite subcomplexes of tt x Sn+l and

applies ([11], Proposition 8.11) again. Since homology and homotopy commute
with direct limits we get the resuit.

(3.2) EXAMPLES. (1) If X is a pseudo projective plane, i.e. the mapping
cône of a map /iS1—?S1 of degree q, q>2, then the action of TTlX Z/q on

X Vq-i S2 is explicitly known. The pseudo projective planes are basic examples
of rationally acyclic spaces (i.e. H*(X;Q) 0). If p 2, i.e. if X is the real

projective plane, this space is a two-stage in the sensé of [5], [9]. For p 3 the
universal cover of X can be described as the space obtained from 3 closed dises by
identifying boundaries. A covering transformation will be given by a cyclic
permutation of the dises followed by a rotation by 2tt/3. Therefore the Lie
algebra model of X is given by a :Z/3-> <£(LX), where Lx is the free Lie algebra
on generators a, b of degree 1, and the action is given by a(a) b, a(b) —a — b.

As an interesting application of this description of the rational homotopy type of
X one can show that the action of ttxX on 7r,(X)®Q is non-trivial for infinitely
many dimensions L This means that the Q-acyclic décomposition ([5], [9]) of X is

infinité.
(2) If X is a compact homology circle with /zr1Xs=Z we can use (3.1) and (1.7)

to get a minimal model, which détermines the rational homotopy type of X,
according to Theorem 2.3. Although X is not compact (as ttxX is infinité) the

groups TTtX^Q, i >2, are always finite dimensional Q-vector spaces. This follows
from the classical fact that Ht(X; Q) is a finite dimensional Q-vector space (see

Theorem 2.2 of [16]).
As a well known explicit example consider the mapping cône X of 6 : S2—>

S2vSl, given by 2a8-a, where geir^1 and aeTT2S2 are generators. Then one
can show that the minimal model of X is a :Z —> <£(LS(2o)), where the action is given
by a(g)(l) 2"8, g€Z.
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§4. The Q-acyclic functor

In [5] Dror has defined an acyclic functor A : IICW—> I1CW and for any
Xe ITCW a natural map a:AX->X such that

(i) AX is an acyclic space, i.e. H*(AX; Z) 0, and

(ii) The map a is, up to homotopy, universal for maps of acyclic spaces into X
This notion as well as the step by step construction given in [5] may be

relativized [2] to an jR-acyclic functor AR for a subring jR of the rationals. If one
concentrâtes on the case where JR Q and X is a space in IICW with finite
fundamental group and with Hl(X; Q) a finite dimensionai Q-vector space for ail

i, one has a well known relation between H*(X;Q) and H*(X;Q):

H*(X; Q) H*(X; Q)G, G ttjX,

where H*(X;Q)G is the invariant subalgebra of H*(X;Q). This enables us to
imitate the construction of A°X by a step by step construction of a minimal
model for A°X, which détermines its rational homotopy type according to
Theorem 2.3. In this way we get an effective tool to systematically compute the

higher homotopy groups of A°X if irxX is finite.
(4.1) For our construction of a model for A°X we first recall the construction

of AQX itself (cf. [5] in the case jR-Z): AQX may be defined as AQX
lim A^X, where

X

is a tower of fibrations as follows:
(i) As uxX is finite it is Q-perfect and we put A?X
(ii) A^X (n>l) is defined as the fibre square

(4.2)

^X, Q), n)

Hère the vertical map on the right is the universal path fibration and pe
Hn(A?_1X;Hn(A^1X;Q)) Hom(Hn(A?_1X;Q), H^A^^Q)) corresponds
to the identity in the latter group. It is immédiate from the construction that the
fibre of A^X-^A^X is (n - 2)-connected. Hence

if i<n-2.
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Let now a : G->(£(Mx) be a minimal model of X, where G ttxX is a finite
group and X, the universal cover of X, is of finite Q-type. Then according to (4.2)
we construct a minimal model (3 : G-^^iM) for A°X as follows: Put (31 a : G—>

g(Mx). For n>l 0n:G-*£(MYn), where Yn dénotes A^X, is obtained as a

pushout

î
Mv < M W)<g> !-„_,( W) (4.3)

ff
Hère W=Hn(A^_1X;Q) Hn(A^_1X;Q) Hn(A^X;Q)°. Moreover r
corresponds to p in diagram (4.2) under the isomorphism

[LniW), MY]^Hn(Y; Q)(g> W* (cf. [8], p. 20) (4.4)

for a simply connected space Y of finite Q-type. (Ln(W) dénotes the symmetric or
exterior algebra on W as to whether n is even or odd, and /^(W)^ Ln_t(W) is

an acyclic algebra.) Hence we obtain

THEOREM 4.5. Let X in I1CW be a space with finite fondamental group and
with universal cover of finite Q-type. Then

(a) the Q-acyclic space AQX has a minimal model a : G—»fë(My), Y A°X,
which détermines the rational homotopy type of AQX, and

(b) a may inductively be constructed as follows:
(i) ax P : G—» <£(Mx), where p is a minimal model of X
(ii) for n>\ an : G-»«(MYn), Yn A?X, /s isomorphic to G-+%(M),
where M MYn_i(8)TLn_1(W),W-Hn(Yn_1;Q)G, and the differential d in
M is given by d{a®\) dMa® 1 and d(l®w) tw®1, aeMYn v.

Hère r
corresponds to p in (4.2) via (4.4). Moreover the G-action on M is induced

from the action on Mx and is trivial on new generators.

(4.6) Remark. If an : G-^%{M) is not already minimal we hâve to replace it
by a minimal model (cf. [8], §8), so as to be able to read ofT the homotopy groups
of A^X as the generators in the model.

§5. Explicit computations and examples

As we may see from Theorem 4.5, an effective computation of the homotopy
groups of A°X dépends on the possibility of an effective computation of
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W Hn(A^_1X;Q)°, the invariant subalgebra of the cohomology algebra of

A^X. If X is such that ttxX=G acts trivially on ir.XOQ for ail i >2, the space
A°X is rationally trivial. So the first interesting case arises if we hâve a non-trivial
(=non-nilpotent) action of the finite group G on 7rnX(8)Q for exactly one
dimension n>2. Then the computation of 7rtAQX<8>Q reduces to that of
7rlA°Y<g)Q, where Y is a two-stage Postnikov System

K(Q,n)-^Y->K(G,l) (5.1)

with Q a finite dimensional Q-vector space, and n > 2 (cf. [9], [10]). If n is even

we hâve H*(Y;Q) H*(K(Q, n);Q)G =S(Q)G. According to Theorem 4.5 this
leads to the classical problem of Computing invariant éléments generating the

subalgebra S(Q)G of the symmetric algebra S(Q) (see [14] for a récent exposition
of this beautiful topic). Assuming Y is of the form (5.1) with n even one can

express 7r,AoX<8>Q in a range in terms of the cohomology ring H*(Y;Q)
S(Q)G. The fibration (5.1) is determined (up to fibre homotopy type) by the
G-action on O, i.e. by a rational représentation a> : G—>Aut (Q), and without
restriction of generality we can assume that co has no invariant éléments except 0

(cf. [10]). Moreover we restrict to the case n 2 as the gênerai case of even
numbers n is similar. Then we hâve

(5.2) PROPOSITION. Let K(Q, 2)-»X-»K(G, 1) be a fibration determined by

a finite dimensional rational représentation co : G —> Aut (O) of the finite group G.

Suppose furthermore that a) has no invariant éléments except 0. Then

(a) tt2AqX=Q and tt1AqX= tt1+1X^ for i>2
(b) tt4X£ H4(K(Q, 2), Q)G, tt5X£ 0, rr6X+ H6(K(Q, 2), Q)G,

tt7Xq coker ô8, tts^q ker ô8, and ttqXq coker 810.

Hère Ôt :H;(X;Q)->(H*(X;Q)®H*(X;Q))l, i<10, is the géométrie diagonal

(5.3) Remarks, (i) This resuit could directly be obtained by (tedious) computa-
tions based on Theorem 4.5.

(ii) In principle there is a similar expression of tt10Xq depending only on the

cohomology ring H*(X; Q). For higher dimensions however one can not expect a

gênerai description of tt^Xq entirely in terms of H*(X;Q).

Proof. Statement (a) is immédiate whereas (b) follows from the EHP-sequence
(3.8) in [1]
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Hère A(i) (H*(X£, Q)®HHc(Xq, Q))l+2 and the séquence îs vahd for i <9 as X£
îs 3-connected

As an illustration of our descnption of AQX by a minimal model we exphcitly
détermine ît m the following simple example

(5 4) EXAMPLE Let eu Z/2 -^ Aut (Q), Q Q2, be the représentation given
by <o(l, 1) (-1, -1) Then H*(X, Q) H*(K(Q, 2), Q)z/2 - PQ[u, v, w]/(uv - w2)

with deg u deg u deg w 4 From (5 2) we see that 7r2A°X Q2, 7r3A°X
Q3 and tt6AqX Q, and by a method of [10] one can even show that thèse are
the only non-vanishing homotopy groups Hence

MA1^ s S(a, b)®E(a, ft 7)® S(ô)

where deg a deg 5 2, deg a deg /3 deg 7 3 and deg 6 6 The action
a) Z/2—»^(MAQX) îs given by o)(a) -a, o)(b) -b and îs trivial on the other
generators For the difïerential we hâve to follow up the construction as given in
Theorem 4 5 One finds that da a2, d|3 b2, dy ab, dô a2 fi -

(5 5) Remarks (a) Followmg this pattern ît îs straightforward to détermine
models for the Q-acychc spaces studied in ([10], §4) Moreover, using the

algonthm as given m Theorem 4 5 one can do exphcit calculations of 7rtAQX

beyond the range given in (5 2) m many cases where the method of [10] doesn't

apply It îs not clear however what îs the actual range where Theorem 4 5

exphcitly works, since it îs not known to what extent one can exphcitly détermine

generators of invariant subalgebras of cohomology algebras
(b) In pnnciple one could also détermine 7rtAQX by a Serre spectral séquence

argument, again usmg Dror's construction of AQX However, beyond computmg
cohomology algebras exphcitly, this dépends on the possibility of passmg from
cohomology to homotopy and vice versa Therefore our approach seems to be
much more adéquate as our model keeps the entire cohomology and homotopy
information on AJ?X simultaneously
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