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On the structure of 5-dimensional Poincaré duality spaces

Ralph Stocker

Abstract We give a complète classification of simply connectée 5-dimensional Poincaré duahty spaces
up to onented homotopy type The most important step îs a method for describmg the Spivak normal
fibration and hence the exotic charactenstic class

1. Introduction

In the last two décades there hâve been developed many and powerful
methods to ieduce problems in difïerential topology to questions in homotopy
theory. If, for example, you want to classify difïerentiable manifolds with certain
properties up to diffeomorphism, you may try it as follows. First, you classify
Poincaré duality spaces with the corresponding properties up to homotopy type.
Then you décide which of thèse spaces hâve the homotopy type of a manifold.
And finally you look if this manifold is unique, i.e. you study the connection
between diffeomorphism and homotopy type in the given class of manifolds. Each
step leads to purely homotopy theoretical questions.

In this paper we présent the first two steps of this program for the class of
closed simply connected 5-dimensional difïerentiable manifolds. Thus we classify
the corresponding Poincaré duality spaces and we décide which of them hâve the
homotopy type of a closed manifold. This especially gives the homotopy classification

of thèse manifolds. In a subséquent paper [15] we shall présent the third step
and hence a new and purely homotopy theoretical proof of Barden&apos;s classification
theorem [1].

Of course the steps above give more than technical methods for solving
problems in differential topology. First, the understanding of the underlying
homotopy theory is necessary to understand the topology of manifolds. The
reason, for example, that diffeomorphism and homotopy type coincide for the
5-manifolds above, is not that the diffeomorphism invariants in [1] are also

homotopy invariants. The real reason is that thèse spaces admit sufBciently many
self-equivalences (which together with the exact séquence of surgery gives the
resuit). Second, Poincaré duality spaces are of own interest. The most intrinsic
invariants of thèse spaces are their &quot;tangential invariants&quot; (the Spivak fibration
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482 RALPH STOCKER

and derived invariants, e.g. exotic characteristic classes). In gênerai, they are
difficult to compute, and their géométrie interprétation is not obvious. In this

paper too the calculation of the exotic class is the most difficult part. But the
results and examples show clearly its géométrie meaning, so from the exotic only
the fascination remains, but no mystery.

Recall that an n-dimensional Poincaré duality space is a topological space P,

of the homotopy type of a compact n-dimensional polyhedron, together with a

class [P]eHn(P) such that the cap product n[P]:Hq(P)-^&gt; Hn_q(P) is an
isomorphism for ail q. Two such spaces P and P&apos; are of the same oriented
homotopy type if there exists a homotopy équivalence P-+P1 sending [P] to [P&apos;].

We dénote by OHPn the set ç&gt;f oriented homotopy types of simply connected
n-dimensional Poincaré duality spaces. This is a semigroup under connected sum
with zéro élément the class of the n-sphere. Of course OHP1 0, OHPn 0 for
n 2, 3, and there is a bijection between OHP4 and the set of isomorphy classes

of nonsingular symmetric bilinear forms on free abelian groups of finite rank
(induced by intersection numbers; this is an easy exercise). So the first nontrivial
example is to describe the structure of OHP5, and this will be presented hère.

The paper is organized as follows. In Section 2 we describe the classifying
invariants and we formulate the classification theorem (Theorem 2.2): OHP5 is

isomorphic to a certain algebraically defined semigroup J. The structure of J will
be studied in Section 3. With that resuit an alternative formulation of the
classification theorem is given in Section 4 (Theorem 4.1); it says that the
éléments of OHP5 may be uniquely described by certain integers (including &lt;»).

The most intrinsic invariant is what we call the linking order: it tells whether or
not the Stiefel-Whitney characteristic cycle and the exotic cycle are linked in the
whole space. The relations between the classifying invariants are proved in
Section 5 and Section 6. In Section 7 we do the necessary calculations in
homotopy groups; some very helpful remarks of the référée made this section
much more readable than in the first version of the paper. The calculation of the
exotic class, depending on a cell décomposition of the given space, is presented in
Section 8; it uses the results of [14]. The proof of the classification theorem 2.2 is

given in Section 9; hère we construct models for the generators of OHP5, and we

prove that the éléments of that semigroup are uniquely determined by the
invariants described in Section 2. In Section 10 we give a third version of the
classification theorem, namely a complète list of ail simply connected 5-
dimensional Poincaré duality spaces.

A first step for proving Theorem 10.1 was done in [6] where it was shown that
the spaces described in Section 9 generate the semigroup OHP5. The complète
structure of that semigroup was first given in [13], but with an unsatisfactory proof
since it used Bardens classification of 5-manifolds and hence methods of differen-
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tial topology. A homotopy theoretical proof failed because of the mystery of the
exotic class. Now it is possible, using the theory developed in [14].

Remarks on notations. They are as usual, but the following should be noted.
yeir3(S2) is the Hopf class. X(n) is the rc-skeleton of the CW complex X If
encXisa n-cell, then eneirn(Xin\Xin-1\ eneHn(X) and ëneHn(X) are the
éléments corresponding to a fixed characteristic map of that cell (if they are
deflned). If it happens that the boundary of en is the base point, we also write in,
ln insted of en, ën; then also tn€Trn(X). The map ën :X(n)-»X(n)vSn pinches the
boundary of a n-ball in en to the base point and ên :X(n)—&gt; Sn is its composite
with X(n)vSn-*Sn.

I thank the référée for his helpful suggestions.

2. The invariants and the clasification theorem

The invariants which classify simply connected 5-dimensional Poincaré duality
spaces are the second homology group, the linking numbers, the second Stiefel-
Whitney-class and, finally, the first exotic characteristic class.

Let F be a simply connected 5-dimensional Poincaré duality space.
The linking number of x, y eTor H2(P), where Tor G dénotes the torsion

subgroup of the abelian group G, is deflned to be Kronecker product ft(x, y) —

(x&apos;, y) g Q/Z, where x&apos; e H2(P; Q/Z) is such that |3*(x&apos;) H [F] x, with
j3 * : H2(P; Q/Z) -» H3(P; Z) the Bockstein corresponding to 0 -&gt; Z -» Q -&gt; Q/Z -» 0.
This defines a nonsingular skew-symmetric bilinear form (see e.g. [1])

b : Tor H2(P) x Tor H2(P) -+ Q/Z.

Let vP be the Spivak normal fibration of F [12]. This is a spherical flbration over
F, so its second Stiefel-Whitney-class

w w2eH2(P; Z) Hom {H2{P\ Z2)

is defined. Let g:P~&gt;BG be the classifying map of vP. There is a unique
obstruction eeH3(F;Z2) to lifting g to BO with respect to the canonical map
j.BO^BG. Since H3(F;Z2) H2(F;Z2) H2(F)&lt;g&gt;Z2, we may view e as an
élément 6gH2(F)®Z2.

Thèse invariants are related as follows:

2.1 LEMMA. (a) If xe Tor H2(P), then b(x, x) &lt;w, x), where {0,|}cQ/Z is

identifiée with Z2.
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(b) (w&lt;8&gt;id)(e) 0, where w&lt;8&gt;id :H2(P)&lt;8&gt;Z2-*Z2&lt;g)Z2 Z2.

The proof will be given in Sections 5 and 6.

Suppose given a finitely generated abelian group G, a nonsingular skew-
symmetric bilinear form b : Tor G x Tor G -&gt; Q/Z, a homomorphism w : G —&gt; Z2
and an élément e g G®Z2. If thèse dates satisfy w(x) b(x, x) for x g Tor G and

(w®id)(e) 0, then the System I=(G9 b, w, e) is called a System of invariants. It
is obvious how to define isomorphism and direct sums of Systems of invariants: let
J be the semigroup of isomorphism classes of Systems of invariants.

It follows from 2.1 that to each simply-connected 5-dimensional Poincaré
duality space there corresponds a System of invariants I(P) (H2(P), b, w, e). The
main resuit of this paper is the following:

2.2 CLASSIFICATION THEOREM. The assignment P-+I(P) induces an
isomorphism of semigroups OHP5 —» /.

It is straightforward that this assignment is well defined and homomorphic;
bijectivity will be proved in Section 9.

3. The algebraic classification of Systems of invariants

Let T be a finite abelian group and let 5 :TxT-&gt; Q/Z be a nonsingular
skew-symmetric bilinear form. Let |jc| be the order of xeT. A subset B
{x1}x2, ...,x2n_l5x2n}c=T is called symplectic if I^H^il and b(xt9xl+1)

-b(xl+i,xl) l/\xl\ for i — 1,3,... ,2n-l, and if b(u, v) 0 for ail other pairs
(m, v)eBxB. If the same is true except b(x,, *,) for some fixed /, then B is

called almost-symplectic with b-exceptional élément xr A subset of the form
BU{z}cT with |z| 2, b(z,z) \ and b(z,x) 0 for xeB is called quasi-
symplectic if either B 0 or B is symplectic.

3.1 PROPOSITION. There exists a maximal basis of T which is symplectic or
almostsymplectic or quasi-symplectic.

For a proof see [1]; it follows that T= Tx(BTt or T= T1©T1©Z2 for some
subgroup Tx e T (compare [17]).

Now let I (G, b; w, e) be a System of invariants. A basis B &lt;= G is called
spécial if the following holds:

(a) B contains a basis of Tor G as in 3.1.
(b) If w^O, then there exists zweB (the w-exceptional élément) such that

w(zw) l and ï
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(c) If e^O, then there exists zeeB (the e-exceptional élément) such that

3.2. PROPOSITION. There exists a spécial basis of G. If B resp. B&apos; is a
spécial basis of G with exceptional éléments zw, z&apos;w and ze, z&apos;ey then

(i) |zJ |z&apos;J and \ze\ \z&apos;e\.

(ii) If thèse orders are finite, then b(zw, ze) 0 iff b(z^y z&apos;e) 0.

The existence proof is similar to the proof of Lemma E in [1]. Take a basis B
of G containing a basis of Tor G as in 3.1 such that (b) holds. Then by
appropriate change of basis éléments (using (w®id)(e) 0) one gets a new basis

which is spécial. The proof of (i) and (ii) is the same as the proof of Lemma C in

To each System of invariants I (G, b, w, e) we assign numerical invariants i, j
and k as follows. For w 0 let i k 0. For e - 0 let / k 0. If w^ 0 resp.
e ^ 0, and if zw resp. ze is the exceptional élément of some spécial basis of G, let

foo if |zj &lt;» ._f°° if kel=0°
1

lm if |zw| 2m
7 U if |ze| 2n*

By 3.1 and 3.2 this is well defined. Finally let k 1 if b(zW9 ze) is defined and not
zéro; in ail other cases let fc =0. Thus we hâve 0^i, /^°° and fc =0,1, and if
fc l then 0&lt;i =/&lt;&lt;». (A more intrinsic définition of thèse invariants will be

given in section 4.)

3.3 PROPOSITION. Two Systems of invariants I (G,b,w,e) and I&apos;

(G&apos;,b\w&apos;,e&apos;) are isomorphic if and only if G^G&apos; and they hâve the same
numerical invariants i, j and k.

Proof. Since G^G&apos; there exists a spécial basis

B={au as, xl9 yl9..., *,, yn z}

of G resp. G&apos; such that |a,| \a[\ », and 1^1 |y,| |x&apos;J |yj|, where the éléments

z, z&apos; with \z\ |z&apos;| 2 only occur in the quasi-symplectic case. Let /: G -&gt; G&apos; be
the obvious isomorphism. We show that we may choose B and Br such that
b&apos;o(fxf) b, w&apos;°/= w and (/® id)(e) e&apos;; then / is an isomorphism of Systems of
invariants. The first two conditions are satisfied in the quasi-symplectic case, and

the third holds after an appropriate change of basis éléments (which is possible
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since / /&apos;)• If I is symplectic, then i 0 or oo5 hence V is symplectic. Therefore
b&apos;°(fxf) b, and by changing basis éléments one gets w&apos;°/= w and (f®id)(e)
e&apos;. In the almost-symplectic case one gets similarly b&apos;°(fxf) b, hence also
w&apos;°/= w. If / 0 or oo? then {f®id)e e&apos; is no problem. Let 1 &lt;/ &lt;oo, and let yl9

yi be the w-exceptional éléments. If k k&apos; 1, then x1? x\ are the e-exceptional
éléments, thus {f®id)(e) ef is true. If fc fc&apos; 0, then we may assume that the
e-exceptional éléments are x,, and x^ with v, jul^I. Then (/®îd)(e) e&apos; holds
after interchanging (x£, yi) and x&apos;^, y&apos;J.

4. Oassification of the spaces by numerical invariants

Let P be a simply connected 5-dimensional Poincaré duality space, with
Stiefel-Whitney class w e Hom (H2(P), Z2) and exotic class e g H2(P) &lt;8)Z2. We
define numerical invariants of P, the Stiefel-Whitney order, the exotic order and
the linking order, as follows.

The Stiefel-Whitney order is zéro if w 0, and it is &lt;» if w / 0, but w 0 on
Tor H2(P). If w^O on Tor H2(P), then it is the largest integer n such that w is

zéro on the subgroup Gn of Tor H2(P) consisting of ail x such that 2n~1x 0.

Similarly, the exotic order is zéro if e 0, and it is oo if e j= 0 and

e^(TorH2(F))®Z2. If 0^e€(TorH2(P))&lt;g)Z2, then it is the largest integer m
such that e is not contained in the image of Gm®Z2—&gt;H2(P)®Z2.

Suppose that the Stiefel-Whitney order and the exotic order are both equal to
n, where 1 &lt; n &lt; oo, and suppose further that for ail éléments x, y € H2(P) such

that (w, x) 1, y &lt;8&gt; 1 e and jx| |y| 2n the linking number b(x, y) has order 2n.

Then the linking order of P is defined to be 1; in ail other cases it is defined to be

zéro.
Choosing a spécial basis of H2(P) it is not difficult to prove that the invariants

i, j and k of the System of invariants (H2(P), b, w, e) are just the Stiefel-Whitney
order, the exotic order and the linking order of P, respectively. Therefore we get
from 2.2 and 3.3 the foliowing formulation of the main theorem:

4.1 CLASSIFICATION THEOREM. Two simply connected 5-dimensional
Poincaré duality spaces are of the same oriented homotopy type if and only if they
hâve the same second Betti number, the same two-dimensional torsion coefficients,
the same Stiefel-Whitney order, the same exotic order and the same linking order.

4.2 Remarks, (a) Since thèse invariants do not dépend on the orientation, we
see that homotopy type and oriented homotopy type coincide.

(b) A simply connected 5-dimensional Poincaré duality space P has the
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homotopy type of a closed smooth manifold if and only if its exotic order is zéro.
For this is équivalent to e=0 in H3(F;Z2), hence to the existence of an
orthogonal sphère bundle structure on the Spivak fîbration (compare 5.2 below),
and the resuit follows from Browder-Novikov theory [2].

(c) From the preceeding remarks it follows that (oriented) homotopy types of
closed smooth simply connected 5-manifolds are classified by H2(P) and the
second Stiefel-Whitney class, or, equivalently, by H2(P) and the Stiefel-Whitney
order i iP.

(d) The numerical invariants i, j and k above hâve the following géométrie
interprétation. The w-exceptional élément zw (of some spécial basis) which may
be called the &quot;Stiefel-Whitney&quot; cycle of F, has order T. Similarly, the &quot;exotic

cycle&quot; ze has order 2J. The linking order k describes the connection between thèse

cycles: it is 1 if they are linked and 0 otherwise (compare remark (b) in 10.2).

5. The relation between the Stiefel-Whitney class and the exotic class

In the following we dénote by X a simply connected CW complex of
dimension &lt;3. Let KO(X) [X,BO] resp. KG(X) [X,BG] be the group of
stable orthogonal sphère bundles resp. stable spherical fibrations over X, and let
j:BO^&gt;BG be the natural map. The second Stiefel-^Whitney class w w2
defines homomorphisms w : KO(X) -» H2(X; Z2) and w : KG(X) -* H2(X; Z2). If
g:X-*BG is the classifying map of ÇeKG(X), then there exists g&apos;:X-»BO

such that jgf | X(2) g | X(2). The différence cochain of the maps jg\ g.X^BG
represents an élément e(£)€H3(X;Z2), called the first exotic class of £ [5]. This
defines a homomorphism e:KG(X)--&gt;H3(X;Z2).

5.1 PROPOSITION. The following homomorphisms are isomorphims:
(a) w:KO(X)-^H2(X;Z2),
(b) w + e:XG(X)^H2(X;Z2)©H3(X;Z2).

Proof. By well known facts on jrn(BO) -&gt; irn(BG) for n &lt; 3, this is true for S2,

S3 and S2 Uk e3. Since X is a wedge of thèse spaces, it is true in gênerai.

5.2 PROPOSITION. Let A=XUae5 with aeir4(X). Then the following
homomorphisms are isomorphims:

(a) w:KO(A)-*H2(A;Z2)
(b) w + e : KG(A) -+ H2(A, Z2) © Ker (Sq2 : H3(A ; Z2) -^ H5(A ; Z2)).

Proof. The fourth homotopy group of S2, S3 and S2 Uk e3 is finite (the last one
by the Hurewicz theorem modulo the class of finite groups). Therefore, by the
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Hilton-Milnor theorem, tt4(X) is a finite group modulo Whitehead products.
Since thèse products are zéro in the H-space BO, and since it4(BO) Z, any map
X —&gt; BO extends to A —&gt; BO, unique up to homotopy since tt5(BO) 0. There-
fore KO(A) KÔ(X)y and 5.2(a) follows^from 5.1(a).

Since tt5(BG) 0, the restriction KG(A)-» KG(X) is injective. Therefore
vv + e in 5.2(b) is injective by 5.1(b).

Next we prove Sq2e(Ç) Q if ÇeKG(A). We may assume w(£) 0 (if not,
replace £ by £ + £&apos;, where f € KO(A) is such that w(g&apos;) w(f); it exists by 5.2(a)).
Then £|X(2) 0 by 5.1(b), and thisjmplies £|X /*£o for some /:X-*S3,
where £0 is the non zéro élément in KG(S3) Z2. Let g : A —» BG and go:S3-^
BG be the classifying maps of £ and £0&gt; respectively. Then 0 (g|X)°a
go°/°a. Since f°a€Tr4{S3) Z2(Sy) and go°SY^0 in tt4(BG), it follows that

/o«=0. Then /:X-»S3 extends to h:A-&gt;S3, and £ /i*£0 since KG(A)-^
KG(X) is injective. Therefore Sq2e(Ç) Sq2e(h*Ç0) h*Sq2e(Ç0) 0.

It remains to prove that to ugH3(A;Z2) with Sq2u 0 there exists Ce
KG (A) such that e(£) u. Choose g:A-»S3Ue5 with g*(t3) u and with
g*:H5(A) H5(S3Ue5). Then Sq2 0 in H*(S3Ue5;Z2), and since Sq2 detects
the non zéro élément of tt4(S3), this implies S3Ue5 S3vS5. Thus there exists

f:A-*S3 such that u =/*(t3), and we may take £ /*&amp;.

Now we are ready to prove (b) of Lemma 2.1. Let P be a simply connected
5-dimensional Poincaré duality space with Spivak fibration vpeKG(P). Recall
from Section 2 that the invariants of P are defined by w w(vp) and e e(vp).
The following is a spécial case of the Wu formula:

5.3 PROPOSITION. wUw Sq2u for ail ueH3(P;Z2), and wgH2(P;Z2)
is uniquely déterminée by this property.

We may assume P XUae5 for some simply connected CW complex X of
dimension &lt;3 and some a e 7T4(X). Then w U e(£) Sq2e(Ç) 0 for ail £ e KG(P),
by 5.2(b). Especially, for ^ vp9 we get w U e 0 which is just (b) of Lemma 2.1.

5.4 Remarks, (a) The proof above shows that the relation w U e(£) 0 is not a

spécial property of the Spivak fibration, but holds for ail stable spherical fibrations
over F. And (b) of Lemma 2.1 is essentially the Wu formula.

(b) If eeH3(BG;Z2) is the universal first exotic class, then Sq2e^0 [10].
Thus the relation Sq2e(Ç) 0 for ail £ e KG(A) is a spécial property of A in 5.2.

(c) Observe that the full statements of 5.1 and 5.2 are not necessary for the

proof of 2.1(b). However, we&apos;ll need them in Section 8.
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6. The relation between the Stiefel-Whitney class and the linking numbers

Let us first recall some wellknown facts on homotopy groups. We hâve
tt4(S2) X2(y°Sy) and tt4(S3) =Z2(Sy). I don&apos;t know an explicit référence for the
following proposition, but it is easily proved using 2.1 in [8], 5.4 in [7], and [11],
3.2 and page 261.

6.1 PROPOSITION. Let X(k) S2Uke3 with k&gt;2. Then ir4(X(fc))ss
irs4(X(k)) under suspension and

(a) 7T4(X(fc)) 0 ifkisodd.
(b) 7T4(X(fc)) Z2©Z2 if k 0 mod 4 and l4fork^2 mod 4. In both cases,

the following séquence is exact

0 » ^(S2) -^-&gt; 7T4(X(k)) -?U 7T4(S3) &gt; 0.

As in Section 5, we dénote by X a simply connected CW complex of dimension
&lt;3. Then to veH3(X) there exists a map t3:X—»S3, unique up to homotopy,
such that t3*:H3(S3)-*H3(X) maps the generator of H3(S3) onto v. Let
/# : H3(X) —» H3(X; Z2) be the obvious homomorphism.

6.2 PROPOSITION. There is a natural homorphism A : ir4(X) -* H3(X; Z2),
defined by &lt;/*, v, \a) {v}oae&gt;rr4(S3) Z2 for ail veH3(X) and ae7r|(X). If
X S3 then A{S7}=t3. IfX X(k) and k is even, then A({a})^0 if and only if

The proof is obvious (use 6.1 for the last part). In the following, the composite
tt4(X) -&gt; tt4(X) -&gt; H3(X; Z2) is also denoted by A : tt4(X) -» H3(X; Z2).

Next we defîne bilinear forms

H3(X; G) x tt4(X) ~* H2(X; G) and H2(X; G) x tt4(X, G) -^ H3(X, G),

both denoted by (x, a)^&gt;xC\a, as follows. Let A X Ua e5. If xe Hl(X; G)
H1 (A; G), where i 2, 3, then xHaeH5_,(X; G) H5^(A; G) is the cap pro-
duct xHe5 of x and the generator e5eHs(A). Hère, the coefficient group G is

arbitrary, and the cap product is with respect to G®Z-*G. Observe that
A X Ua e5 is a Poincaré duality space if and only if Ç] a : H3(X) -* H2(X) is an

isomorphism, and then f] « H [^1
For any aeir4(X) we define a bilinear form ba : Tor H\X) x Tor H3(X) -»

Q/Z by &amp;a(x, y) (jc&apos;,yna), where x&apos;s H2(X;Q/Z) is such that j3V x. This is
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motivated as follows. If P X Ua e5 is a Poincaré duality space, then ba(x, y) is

just the linking number of the éléments xfl[P] and yfl[P]. As for linking
numbers one proves that ba is well defined, homomorphic and skew-symmetric.
Furthermore, it is natural: if / : X —&gt; X&apos; and a e ir4(X) and u, v e Tor H3(X&apos;), then
^f*«(M&gt; v)= *&gt;&lt;*(/*M&gt; /**&gt;)• In the following proposition we identify {0, |}&lt;= Q/Z with
z2.

6.3 PROPOSITION. ba(z, z) &lt;/*(z), A (&lt;*)&gt; /or ail z€ Tor H3(X).

Proof. Since fea is skew-symmetric, the function z —&gt; ba(z, z) is a homomorph-
ism. From this and from naturality it follows that it is enough to prove 6.3 in the
cases X S2, S3 and X(k). The only non trivial case is X(k) with k even, and
hère it is enough to consider z ë3eH3(X) and aeirA(X) with ê3°a Sy, see

6.1. Then the right had side of 6.3 is not zéro (see 6.2), and so we hâve to show
that ba(e3, ë3) i Since j3*((l/fc)t2) ê3, this linking number is (l/fc)&lt;t2, ê3fla),
and it is enough to prove the following

Assertion. If aeir4(X(k)) and ê3°a Sy, then ê3Ha= (k/2)i2.

Proof. Let [e3, i2]e&lt;rr4(X(k), S2) be the relative Whitehead product of e3e

7T3(X(fc),S2) and i2€ir2(S2). Let b (k/2)[e3, i2]-«3od-17€ir4(X(fc), S2) where
a : rr4(D3, S2) 7T3(S2). Then db (fc2/2)[t2, t2]- (la2) o y 0 in tt3(S2), therefore b

has a counterimage |3 in 7T4(X(fc)). From 6.1 it follows that j3 a mod tt4(S2), and
since n(i2oYoS7) 0, we may assume |8=a. Thus a has image b in
7T4(X(fc), S2). This easily implies the formula

where e3:X(fc)-»X(fe)vS3, from which the assertion follows by naturality (since

n[t3,t2]:H3(S2vS3)-&gt;H2(S2vS3) maps t3 onto t2).

Now we return to Poincaré duality spaces.

6.4 PROPOSITION. Let a€7T4(X) be such that P XUae5 is a Poincaré

duality space, with second Stiefel-Whitney class weH2(X;Z2). Then wHa
À(a).

Proof. By définition of À we must show that (j#v9 w H a) — v °a for ail v e H3(X).
We hâve

(j*v, w H a) (j+v, w H [P]) (j+v U w, [P]&gt; {Sq2J*v, [P]),
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using the Wu formula 5.3. Extend t3:X-&gt;S3 to f:P-*S3U&amp;e5 with |3 t)°a
such that U:H5(P) H5(S2U^e5). Then Sq2j*v Sq2/*(t3)=/*Sq2(r3) and
&lt;/*i&gt;, w H a) (Sq2(t3), e5). Thus we hâve to prove that |3 t3°a=Oif and only if
Sq2 0 in H*(S3 U3 e5; Z2). This is true since Sq2 detects the non zéro élément in

Now we are ready to prove (a) of Lemma 2.1. Let P be a simply connected
5-dimensional Poincaré duality space, as usual P XUae5. If xeTorH2(P), let
z eTor H3(P) be the élément with zD[P] x. Then, using 6.3 and 6.4, we get (a)

of 2.1 as follows:

b(x9 x) ba(z, z) &lt;/#z, Aa&gt; (j*z, w D a) (j*z, w D[P])
&lt;/** U w, [P]) &lt; w, z H [P]) &lt; w, x).

6.5 Remarks, (a) Observe that 6.4 may be formulated as follows. If P

X Ua e5 is a Poincaré duality space and D f| [P] &apos; H2(X; Z2) H3(X; Z2), then
the Stiefel-Whitney class is given by w D&quot;1À(a). Especially, w only dépends on
the stable class {aJGTr^X).

(b) For closed smooth simply connected 5-manifolds Lemma 2.1(a) is proved
in [17], but the proof does not generalize to Poincaré duality spaces.

7. Calculations in homotopy groups

In this section we study the group tt4(X), where X is a simply connected CW
complex of dimension &lt;3. We start with a définition. If a g tt4(X), then, by 6.3,
the homomorphism f) a : H3(X) -&gt; H2(X) and the élément {a}e 7r4(X) are related

by ba(z, z) &lt;/*z, A{a}) for ail z €Tor H3(X). By définition of ba this is équivalent
to &lt;x,p*(x)n«&gt; &lt;/^*x,A{a}&gt; &lt;x,|8*A{a}&gt; for ail xgH2(Y;Q/Z), where

j3* : H3(X; Z2) -&gt; H2(X) is the Bockstein corresponding to 0 -&gt; Z -» Z -&gt; Z2 -&gt; 0.

More generally, we consider pairs (/, a) with /:H3(X)-&gt; H2(X) a

homomorphism and with a g 7t4(X), such that

&lt;x,//3*(x)) &lt;x,j3*Aa) for ail xgH2(X; Q/Z). (7.1)

Thèse pairs form a subgroup of Hom(H3(X), H2(X))©tt4(X) which we dénote

by A(X). Then we hâve a homomorphism &lt;f&gt; : tt4(X) —&gt; A(X) by a -» (H «, {«})•

7.2 PROPOSITION. TTiere is an exact séquence

7T2(X) ® 7T2(X) ® Z2 © 7T2(X) ® 7T2(X) ® 7T2(X) — 7T4(X) ~^-&gt; A (X) &gt; 0
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where the homomorphism &lt;f&gt;&apos; is induced by a ® b ® 1 ¦-» [a, b]°Sy and a
[a,lb,cJ}fora,b,ceir2(X).

The proof will be finished after 7.9 below. Let us first show that 7.2 is true if
X S2, S3 or X(fc). From [i2, i2]°S7 [i2,[i2, i2]] 0 in tt4(S2) it follows that
&lt;t&gt;&apos; 0 in thèse cases, and we must prove that &lt;\&gt; is bijective. This is trivial in the
first two cases, so let X X(fc). By 6.1 it is enough to show that the projection
A(X)-&gt;irJ(X) is injective. Given /:H3(X)-*H2(X), we hâve f(ë3) mi2 for
some meZk. If (/,0)eA(X), then, by taking x (l/fc)t2 in 7.1, we get 0
((l/fc)t2, mi2&gt;= m/fe in Q/Z, hence m =0 in Zk, which implies / 0.

In the following we&apos;ll prove that 7.2 is true for Xv Y, if it is true for X and Y;
then 7.2 is true in gênerai. Thus we hâve to study how the groups in 7.2 change if
X is replaced by Xv Y.

Let B(X, Y) be the group of pairs (/&apos;,/&quot;), with f&apos;:H3(Y)-*H2(X) and
/&quot; :H3(X)-h&gt;H2(Y) homomorphisms such that

&lt;*,fj3*y&gt; &lt;y,f&apos;|3*x&gt; for ail jcgH2(X; Q/Z), yeH2(Y;Q/Z). (7.3)

From 7.1 it follows that A(XvY) A(X)®A(Y)®B(X,Y), with the last
summand imbedded by (f,f&quot;)^&gt;(f&quot;+f,0). Given dgH5(XaY), consider the
homomorphisms induced by the (cohomology) slant product [4]

\v:H3(Y)-*H2(X) b^b\v
H2(Y)

where (:XaY-^ YaX permutes the factors. The pair (\v,\t*v) satisfies 7.3,
and so we get H5(Xa Y) -&gt; B(X, Y) cz A(Xv Y).

7.4 PROPOSITION. A(Xv Y) A(X) © A(Y) 0 H5(Xa Y), wirh the last
summand imbedded by v »-&gt; (\ r^t; + \ u, 0).

PSroo/. Consider the following commutative diagram with exact rows:

0-* I Hl(X)®H5_l(Y)~&gt;H5(XAY)-^Tor(H2X,H2Y)-^0

0 ~&gt; H2(X) &lt;8&gt;H3(Y)-» Hom (H3 Y, H2X) -&gt; Tor (H2X, H2 Y) -* 0.

The first row is exact by the Kûnneth formula. The second is obtained by applying
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the cofunctor Hom (—, H2X) to the split exact séquence

0 -* Ext (H2Y, Z) -JV H3(Y) -* Hom (H3Y, Z) -&gt; 0,

using the identifications (observe that H3(Y) is free abelian)

Hom (Hom (H3Y, Z), H2(X)) H2(X) ® H3(Y)

Hom (Ext (H2Y, Z), H2(X)) Tor (H2X, H2 Y).

If v € H5(Xa Y) and \ v 0 : H3( Y) -* H2(X), then v is in the image of H3(X) ®
H2(Y) in H5(XaY). Similarly if \t*t&gt; 0:H3(X)-*H2(Y), then f*t&gt; is in the
image of H3(Y)®H2(X) in H5(YaX), and v is therefore also in the image of
H2(X)&lt;8)H3(Y) in H5(XaY). Both facts imply v=0 and so H5(XaY)-&gt;
A(XvY) is injective.

Next let (f&apos;,f&quot;)eB(X, Y). By the diagram (and by the same diagram with X
and Y permuted) there exists v\ v&quot;eH5(XAY) such that f \vr and f&apos; \M&gt;&quot;.

Then 7.3 says that

(xAn(y\v&apos;-v&quot;) 0 (7.5)

for ail xGJf2(X;Q/Z) Hom(H2(X),Q/Z) and yeExt(H2(Y),Z). From the
commutative diagram

Hom (H2X, Q/Z) ® Ext (H2 Y, Z)( ^ }&gt; Hom (H5(X a Y), Q/Z)

i î-
Hom (Hom (Ext (H2Y, Z), H2X), Q/Z) Hom (Tor (H2X, H2Y)y Q/Z)

and 7.5 we see that gK(v&apos;-v&quot;) 0 for ail homomorphisms g : Tor (H2X,H2 Y) -»
Q/Z. This implies k(v&apos;-v&quot;) 0 and therefore u&apos; i?&quot; + a + 6 with aeH2(X)&lt;8&gt;

H3(Y) and fc € H3(X) ® H2(Y). Now define v v&apos;-b. Then it follows that \ v f
and \ t*v f. This shows that H5(Xa Y) —&gt; B(X, Y) is surjective and thus proves
7.4.

Next we compute tt4(XvY), using the Hilton-Milnor formula. We may
assume that X SA and Y=SB are suspensions, where A and B are connected
CW complexes of dimension &lt;2. Let [i, /]: S(A aB)-&gt; Xv Y be the Whitehead

product of the inclusions i :X-&gt; Xv Y and / : Y-&gt; Xv Y. The direct summands
of tt4(XvY) which correspond to the basic triple Whitehead products are easily
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identifiée with the groups in (b) below, by connectivity arguments. So we get:

7.6 PROPOSITION. tt4(XvY) is the direct sum of tt4(X), ir4(Y) and the

following subgroups:
(a) it4(S(AaB)), imbedded by a •-*[&gt;&apos;, ;]°a.
(b) &lt;tt2(X) &lt;g&gt; it2(X) &lt;8&gt; tt2( Y) and tt2( Y) ® tt2(X) ® ir2( Y), 6oth being imbedded

f)ya®t®c^[a, [b, c]]e tt4(X v Y).

Concerning the summand in (a), we hâve an exact séquence ([16], page 558)

B))-*H5(XAY)-*0 (7.7)

with the homomorphisms defined by a ® b &lt;8&gt; 1 ^ [a, b]°Sy and [i, j]°a »

where tt4(S(A aB)) -^ H4(S(A aB)) -*&gt; H5(Xa Y). Using the fact that Xx Y is

the mapping cône of [i,j], it is not difficult to prove that the cap product
PI dh /]°«) : H3(Xv Y) -&gt; H2(Xv Y) is given by the formulas

yeH3(Y)&apos;
l * j

With the notations of 7.2 and 7.4 this says

Y). (7.9)

Now we are ready to finish the proof of 7.2: from 7.4, 7.6, 7.7 and 7.9 it easily
follows that the séquence in 7.2 is exact for Xv Y, if it is exact for X and Y.

7.10 Remark. With 7.6 we may calculate the kernel of &lt;f&gt;f in 7.2, as follows.
Let G be an abelian group. Define L{G) A2 (G®Z2), the second exterior power
on the Z2 vector space G®Z2. Define M{G) to be G®G®G, with the

following relations added (where a,b,ceG):

0 (Jacobi identity),

0 (commutativity of Whitehead products),

a ® a ® a 0 (triple Whitehead products are zéro in tt4(S2)).

Then we get the following short exact séquence:

0 -* L(ir2(X)) © M(ir2(X)) -^-» tr4(X) X A(X) -» 0.

In gênerai, this séquence (which will not be used in the following) does not split.
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Having calculated the group 7r4(X), we now study its automorphisms which
are induced by homotopy équivalences of X Given u e H3(X; tt3(X)), there exists
a map fH : X—» X, unique up to homotopy, such that fu |X(2) id and such that the
différence cochain of the maps /M, id:X-+X represents the cohomology class u.
Let a g tt4(X) and consider

u PI a g H2(X; tt3(X)) tt2(X) ® tt3(X) ^ tt4(X)

u ® \a g H3(X; tt3(X)) ® H3(X; Z2) -^—&gt; Z2 ® tt3(X) ^&gt; tt4(X)

where o-(a® b) [a, b] and e(l® b) b°Sy. With thèse notations we hâve:

7.11 PROPOSITION, (a) /u°a a + cr(u na) + e&lt;M, A(a)&gt;.

(b) 1/ m is contained in the image of the coefficient homomorphism
H3(X; tt3(X(2))) -&gt; H3(X; tt3(X)), rhen /u indues the identity in ail homology and
cohomology groups. Especially, fu is a homotopy équivalence.

7.12 Remark. Let e3,..., e\ be the 3-cells of X, and ax,..., an e tt3(X). Let
/ : X —» X be the composite

where g pinches the boundary of a 3-bail in e3 to the base point (i 1,..., n).
Then / /u, where m g H3(X; tt3(X)) is the cohomoloev class represented by the
cochain ef«-&gt;at. In the following, we call / the map which is induced by the

assignment e3 »-&gt;•«,. It is a homotopy équivalence if ail a, gtt3(X(2)).

Proof of 7.11. As (b) is obvious, we only prove (a). Let e3cXbea fixed cell
and consider é3:X—»XvS3. From 7.6 we hâve

7T4(X V S3) 7T4(X) 0 7T4(S3) 0 7T2(X)

and the image of ae^fXvS3) in the last summand is just the image of
t3eH3(XvS3) under f] a :H3(XvS3)-»H2(XvS3) tt2(X). Applying this to
a è3°a (and recalling the définition of \a in 6.2) gives

* ë3Ha, i3].

By repated application of this formula, we get:
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with g from 7.12. Applying the map (id, au..., cO to this équation, where
ott &lt;u, e?&gt;, gives (a) in 7.11.

7.13 PROPOSITION. Let a,a&apos;e&gt;ir4(X) be éléments such that 4&gt;a=&lt;t&gt;a&apos; in
A(X) and ka \a&apos; 0. Suppose further that f] a f] a&apos; is an isomorphism. Then
there exists a homotopy équivalence / : X —» X such thaï f°a a&apos; and f \ X(2) id.

Proof. a&apos; —a lies in the image of the homomorphism &lt;f&gt;&apos; in 7.2. From the
relation

[a, b]oSy [a,bo 7] + [b, [a, bj] (a, b e tt2(X)) (7.14)

(which holds since it is true in the universal example S2vS2) it follows that the
image of &lt;£&gt;&apos; is contained in the image of

7T2(X) ® 7T3(X(2)) ^ 7T2(X) ® 7T3(X) ^ 7T4(X).

Therefore a&apos; a + cr(z) for some z e tt2(X) ® ir3(X(2)). Since

fi a : H3(X; tt3(X)) -&gt; H2(X; tt3(X)) tt2(X) ® tt2(X)

is an isomorphism too, there exists ueH3(X; tt3(X)) such that uC\a z, and u
lies in the image of H3(X; ir3(X(2))) -* H3(X; ir3(X)). Then, by 7.11, we get 7.13

by defining / /u.

7.15 PROPOSITION. Let a,afe7r4(X) be éléments such that \a=kaf and

f]a f) a&apos;: H3(X)-* H2(X) is an isomorphism. Then there exists a homotopy
équivalence f:X—&gt;X with f | X(2) id, such that a&apos;-/°a is a sum of éléments of
the form a°y°Sy and [b, c]°Sy, where a,b,ce tt2(X).

Proof. From Àa=Àa&apos; and 6.1, 6.2 it follows that {&lt;*&apos;} {a+0} in tt4(X),
where /3 is a sum of éléments of the form a°y°Sy. Then &lt;/&gt;(a&apos;) &lt;£(« + £) in
A(X), and therefore a&apos; a + |3 + o-(z) for some z€ir2(X)&lt;8&gt; tt3(X(2)). If / is

defined as in the proof of 7.13, then

/°a=a + &lt;r(una) + e«M, Àa» a&apos;-/3 + €«u, Àa»,

and a&apos;—f°a is therefore a sum as stated above.
We close this section with the following splitting principle which is an
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important step in the proof of the classification theorem:

7.16 LEMMA. Let aeir4(XvY) be an élément such that
(a) fi « :H3(Xv Y) -* H2(Xv Y) maps H3(X) and H3(Y) isomorphically onto

H2(X) and H2(Y), respectively.

(b) Aa € H3(X v Y; Z2) «es in fhe subgwup H3(X; Z2) o/ H3(X v Y; Z2).
Then fhere existe a homotopy équivalence /:XvY-^XvY, restricting to the

identity on the 2-skeleton, such ffiaf/°a€7r4(X)©7r4(Y).

Proof. Let [i, /]© |3 with 0 e tt4(S(A aB)) be the image of a under the projection

onto the summand (a) in the direct sum décomposition in 7.6 (where
X SA, Y SB). From assumption (a) and 7.8 it follows that the slant products

\Sh(P):H3(X)-&gt;H2(Y) and \t*Sh(0):H3(Y)-*H2(X)

are zéro. Therefore, by 7.9, the élément [i,/]°/3 lies in the kernel of
&lt;t&gt; : tt4(Xv Y) —&gt; A(XvY), and from the exact séquence 7.2 (with X replaced by
Xv Y) and 7.6, 7.7 we get that, in the obvious notation,

a g tt4(X) © tt4(Y) © [tt2X, &lt;iT2Y]oSy © [&gt;2X, [tt2X, tt2Y]]
©[7T2Y,[ir2X,7r2Y]].

Thus we may write

with the éléments on the right hand side lying in the corresponding subgroup of
tt4(XvY) above. Let W(X, Y)cztt3(Xv Y) be the image of the Whitehead
product tt2(X) ® tt2( Y) -&gt; 7T3(X v Y). Then we hâve

s a(s&apos;) for some s&apos;e tt2(X) ® W(X, Y)

t o-(t&apos;) for some r&apos;€7T2(Y)® W(X, Y),

where cr is as in 7.11, a(a&lt;8)b) [a, b]. The assumption (a) implies (compare the
proof of 7.13) that there exists

u&apos;eH3(X;W(X,Y)) such that ufDa sf.

Since the cohomology class iï takes values in W(X, Y), it follows that the élément
e«u&apos;, Aa», with e as in 7.11, lies in [ir2X, Tr2Y~\&lt;&gt;Sy. From the relation 7.14 (with
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X there replaced by X v Y) we get

|&gt;2X, 7T2Y]oSy C [&gt;2X, 7T3( Y(2))]©l&gt;2Y, [7T2X, 7T2Y]].

Therefore r + e((u&apos;, Aa)) lies in that subgroup, and so we may write

for some r&quot;e&lt;jr2(X)&lt;g&gt;7r3(Y(2)) and r&apos;e7T2(Y)&lt;g&gt; W(X, Y). Again by assumption
(a) there are éléments

t/eH3(Y; W(X, Y)) such that i/n« r&apos;

t/&apos;eH3(X;7r3(Y(2)) such that u&quot;na r&quot;.

Now we define, with the obvious identifications,

u -u&apos;-v&apos;-v&quot;eH3(XvY;&lt;Tr3(XvY)),

and consider the corresponding map / /u:XvY-&gt;XvY. By 7.11(b) it is a

homotopy équivalence, since W(X, Y^^CCXv Y)(2)). From 7.11(a) and the

équations above we get (observe that 2e((,» 0):

The cohomology class vf lies in the subgroup H3(Y; W(X, Y)) of H3(Xv
Y; tt3(Xv Y)), and, by assumption (b), the homology class Aa lies in the subgroup
H3(X;Z2) of H3(Xv Y;Z2). Both facts imply (v\ Aa&gt; 0. The cohomology class
v&quot; takes values in ir3(Y), therefore s((v&quot;, Aa»€ tt4(Y). Thus the last équation says

foaeir4(X)®7r4(Y).

8. Calculation of the exotic class

By the Wu formula, the Stiefel-Whitney classes of a Poincaré duality space P
are determined by the action of the Steenrod algebra on H*(P;Z2). It is not
known whether or not there exists a &quot;Wu formula&quot; which describes the exotic
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characteristic classes of P by certain (higher, twisted) cohomology opérations in P.
So we hâve to look for other methods.

Let P be a Poincaré duality space of the form P SAUae&quot;, with A a
connected CW complex of dimension &lt;n-3, and aG7rn-i(SA). Let
/3 :KG(SA)-&gt;{A, S0} be the canonical bijection, and let

ym:&lt;Trr(SA)-*{Sr-\Am} (r, m&gt;2 and Am=AA---AA)

be the stable Hopf invariant (see below). The following is one of the main results
of [14]:

8.1 THEOREM. The restriction T) vP\SAe KG(SA) of the Spivak fibration
of P onto SA is uniquely characterized by the following équation in {Sn~2, A}:

Thus if we know the attaching map of the top cell and its Hopf invariants, we may
calculate the Spivak fibration vP | SA and hence its exotic characteristic classes.

To apply this resuit to our case, we&apos;ll need some facts on Hopf invariants. First
recall its définition, as given in [14]. Choose k&gt;r and consider the inclusions
i:SA-+SAvSk and j:Sk-^SAvSk. Given aeirr(SA), the élément [i°a,/]e
7rr+k_1(SAvSk) may be uniquely written as

[i°«,j1 [u&gt;Ska+[al;/]]o7|(a) + [aai,/]]]o^(a) + • • (8.2)

using the Hilton-Milnor formula. Then ym(a) is defined to be the stable class of
7kn(a)G7rr+k_1(SkAm). This defines homomorphisms ym as above. If A is a

suspension, then ym(a) is up to some sign just the stable class of the Hopf
invariants Àm(a) in [3].

Hère is a first application of 8.1:
8.3 LEMMÀ. Let a =[t2, i3]+m(L2oyoSy) + n(i3&lt;&gt;Sy) in tt4(S2vS3), where

m,neZ2- Then the Poincaré duality space P (S2vS3) Uae5 has exotic characteristic

class e m(n + l)(t2® 1) in H2(P)® Z2.

Proof. This is the case A S1 v S2 in 8.1. The Hopf invariants of a are easy to
compute, either directly by the defining équation 8.2, or with [3]. It results that
7m(«) 0 if m&gt;3 and
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Thus 8.1 reduces to {&lt;*} + ({idA} a /3(Tj))°y2(a) 0 in {S3, A}. Using the formulas
for a and Y2(a), and applying the retraction A —» S2, gives the following équation
in {S2, S0}:

From Aa m3€H3(S2vS3; Z2), see 6.2, and from 6.4 and 5.1 it follows that
/3(tî) | S1 n € {S1, S0} Z2. Therefore the last équation gives j3 (tj) | S2 m + mn
in {S2, S0} Z2, hence tj | S3 m + mn in KG(S3) Z2, and this proves 8.3.

For our second application of 8.1 we need some préparations. In the following,

n &gt; 2 is a fixed integer, and we set A S1 Un e2, thus SA X(n) S2 Un e3,

and

AvA=(SîUeî)v(SlUel), X SA vSA =(S?U6Ï)v(SiUe|).

Let h, i2*A-»AvA and jl9j2:SA--&gt;X be the inclusions. We first note the
following:

8.4 PROPOSITION. There exists a map uo:S3^AaA representing the

homology class of the cycle t1Ae2 + e2Ai1. This map is a duality map in the sensé

of Spanier-Whitehead duality, and therefore induces an isomorphism D0:{A, S0}—&gt;

{S3, A} by D0(a) ({id}Aa)°{u0}, Finally, this isomorphism maps {S~27°S~17°
ê2} onto {^oS^yoy}.

Proof. Since AaA is simply connected, u0 exists. Since ail slant products
\uo:Hl(A)-^Hn-l(A) are isomorphisms, it is a duality map. By homology
arguments, the map (idA a ê2) ° u0 : S3 -» A a S2 S2A S3 U e4 is the inclusion ;

this gives the final statement in 8.4.

Next, consider the following bijections (see 5.1 and 6.1):

H2(SA ; Z2) © H3(SA ; Z2) +^_ KG(SA) *&gt; {A, S0} -% {S3, A} tt4(SA).

From 8.4 it follows that i2°yoSye7r4(SA) corresponds to ê3 under thèse bijections.

So we get from 6.1 and 6.2:

8.5 PROPOSITION. If n is even, there exists a unique élément 80e7r4(SA)
such that, under the bijections above, the éléments 0, -ô0, i2°y°Sy and L2°yoSy-
ô0 in tt4(SA) correspond to the éléments 0, t2, ë3 and Z2+ë3 in H2(SA;Z2)©
H3(SA ; Z2), respectively. This élément satisfies the équations ê3°80 Sy, À(Ô0) e3

andê3n50=(n/2)i2.
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The last équation is just the assertion in the proof of 6.3. Observe that, by 6.1,
we hâve the following two cases. If n#2 mod 4, then 2 8Q 0, the séquence in 6.1
splits, and 0 is an isomorphism of groups. If n 2 mod 4, then 2 80 L2°y°Sy, the
séquence in 6.1 does not split, and |3 is a bijection of sets, but no homomorphism.

8.6 PROPOSITION. Let [h,/2]:S(A aA)-»X be the Whitehead product,
and define r0 \jl9 /2]°Su0e 7T4(X). Then ë\ C\ t0 —i\ and ê\ H r0 t?.

This follows from 7.8 and the homological properties of u0 in 8.4 (the sign
results from [4], page 191, (2.12)). Observe that 80 and t0 dépend on the choice
of the élément u0 in 8.4. However, we hâve:

8.7 PROPOSITION. The éléments r0 and T0+hoô0 in tt4(X) are unique up to

homotopy équivalences / : X —? X with f \ X(2) id.

Proof. For t0 this follows from 7.13, using 8.6 and Sto 0. Observe that to
and 80 only dépend on Su0, and, by the exact séquence 7.7, Su0 is unique up to
S(t1At1)oSyG7r4(S(AAA)). If we replace Su0 by Suo + Si^Ai^oSy, then t0 is

replaced by to to + [i?, *&gt;%\oSy. The isomorphism Do in 8.4 must be replaced by
D&apos;0(a) D0(a) + ({t1}Aa 111)°{7&gt;, and therefore 80 and 8&apos;0 80 + i2&lt;&gt;y&lt;&gt;Sy. Now
let f:X-+X be the map induced by e\-*-(i2°y) and ei-*[*&lt;\,i&gt;l], see 7.12.
Then it follows from 7.11, 7.14, 8.5 and 8.6 that / is a homotopy équivalence such

that /1 X(2) id and /&lt;&gt;(To + jt o 80) r&apos;o+jt o 8&apos;0.

8.8 PROPOSITION. The Hopf invariants of T0G7r4(X) are given by the

following formulas:
(a) y2(r0) ({h a i2}- {i2 a h})°{u0}
(b) 73(t0) 0 if n^2 mod 4; otherwise

Proof. By the defining équation 8.2 we hâve to calculate the following
Whitehead product

where now i:S(A AA)vSk and j:Sk -*S(A aA)vS\ The idea is to express it
by Whitehead products as in 8.2, using the Jacobi identity and commutativity. The
problem is that A S1 Un e2 is not a suspension, so it is not obvious that the
reduced diagonal d : A -* A a A is null homotopic. But this is what is needed in
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the proof of the Jacobi identity. Now it is not difficult to show that d is null
homotopic if n#2 mod 4, while if n 2 mod 4 it is homotopic to the composite of
ê2:A-*S2 and (iîI2)(i1ai1):S2-+AaA. If with this information we copy the
usual proof of the Jacobi identity (see e.g. [3], especially the Witt identity on page
192 of [3]) we get a gêneralization of it which together with 8.2 implies 8.8.

Now we are ready for our second application of Theorem 8.1:

8.9 LEMMA. With the notations above, let P XUae5 with

in tt4(X), where r, s e Z2 and a 0 or a 1 (of course a r s 0 if n is odd).
Then P is a Poincaré duality space; its oriented homotopy type does not dépend on
the choice of u0 in 8.4; and its invariants are given by w aï\ e H2(P; Z2) and
e s(a-l)ë? + rê|eH3(P;Z2), or, equivalently, e r(i?®l) + s(a-l)(il® 1)6
H2(P)®Z2.

Proof. P satisfies Poincaré duality by 8.5 and 8.6. From 8.7 it follows that the
oriented homotopy type of P does not dépend on the choice of u0 in 8.4. From
Sto 0 and 8.5 we have k(a) ae\, therefore w atl by 6.4 and 8.6.

It remains to calculate the exotic class of P. Let r\ vP \ X and /3 /3(t|)g
{AvA, S0}. By connectivity arguments, Theorem 8.1 reduces to

From (b) in 8.8 and from Y3(ji°Ô0) 0i ai&quot;i aii}°T3(^o)&gt; which is true by naturality
properties of the Hopf invariants, it follows that y3(a) is a sum of éléments of the
form t^Ai/Aifc, where / 1 or fc l. Since &lt;w, tf) O, the fibration 17 is trivial
over S?czX (recall 5.1), so (3°tî 0. Both facts imply that the third summand
above is zéro, hence

0)o72(a) O. (8.10)

From the définition of a and 8.8 (a) we get (since 72(7) 1):

72(«) ({ii a ij—{i2a h})°{&quot;o}+a{h a h}° 72(^0)
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Defining j3k 0°ik e{A, S0} for k 1, 2, it follows that (recall p°i\ 0)

Therefore 8.10 is the following équation in {S3,AvA}:

Applying the retractions rur2:AvA-&gt; A gives two équations in {S3, A}, which

may be written as follows (recall Do in 8.4):

oS-17o7} (8.11)

(8.12)

Suppose a=0. Then 8.11 and 8.4 imply 02 r{S~2y°S~ly°ê2}. Furthermore,
(w, t|) 0, hence tj is trivial on S\ and so j32°i1 0. Therefore 8.12 gives
^1 s{S~2yoS~1yoê2}. Both facts imply e së\ + rëi, as stated.

Finally, let a 1. Then &lt;w, t2)= 1, so rj^O on Si and ^t1 ={S&quot;27}. Therefore

8.12 gives D0(j3i) 0, hence pi 0, and therefore (e, e?&gt; 0, as stated.

Furthermore, 8.11 reduces to D0(j82) -ô04-r(t2o7oS7), where we hâve iden-
tified {S3, A} and tt4(SA). From this and from 8.5 we get that t] \ SjUel has

Stiefel-Whitney class t2 and exotic class rë\, and 8.9 is proved.

9. The Poincaré duality spaces and the proof of the classification theorem

We first describe models for Poincaré duality spaces which generate the
semigroup OHP5. Thèse models are divided into five classes.

Class I. It only contains the sphère S5 with System of invariants I(S5) 0.

Class II. It contains the unique Poincaré duality space P such that H2(P) ^ 0 is

a finite cyclic group.

Proof of existence: Take P (S2 U2 e3) U e5 with the 5-cell attached by 80e
tt4(S2 U2 e3), see 8.5.

Proof of uniqueness. By 3.1 we hâve H2(P) Z2, hence P (S2U2e3) Uae5
for some a e &lt;n4(S2 U2 e3) such that ë3Ha t2. By 6.1, this élément is unique up
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to L2°y°Sy. Since by 7.11 there exists f:X — X such that /°a a + i2°y°Sy, we
see that P is uniquely determined. Following [1], we write P X_x. The invariants
are

(Z2(x),b,w,0) with

and (i, /, fc) (1,0,0); for we must hâve b^ 0, and w and e are then determined
by 2.1.

Class III. It contains the Poincaré duality spaces P such that H2(P) Z. There
are precisely three such spaces:

Moo (S2vS3)Ue5 with e5 attached by [i2, i3]

Xoo (S2vS3)Ue5 with e5 attached by [t2, &lt;,3] + i3°Sy

M^ (S2vS3)Ue5 with e5 attached by [t2, i3]+i2°&lt;yoS7.

The invariants are as follows (use 6.4, 6.2 for w and 8.3 for e):

Soc I(MOO) (Z,0,0,0) and i=/=fc=0
(Z,0, w,0) with w#0 and i=œ, / fc 0

(Z,0,0,e) with e^0 and i k 0, j=oo.

Thèse spaces are wellknown. M^ is simply S2 x S3. By [9], X^ is the total space of
the non trivial S3-bundle over S2, and M&apos;^ is the total space of the non trivial
S2-fibration over S3 [5]. This gives other proofs that e f 0 for M^. (Since ML -* S3

is not stably équivalent to some bundle, its total space is not a manifold (Theorem
4 of [18]), and therefore has non zéro exotic class. Compare also page 32 in [10].)
There is one further candidate with H2 Z, namely (S2vS3)Ue5 with the 5-cell
attached by [t2, i3] + t2°y°Sy + t,3°Sy. But the homotopy équivalence t2^i3,
t3H-&gt;t3 + t2°7 of S2vS3 shows that it coïncides with X*,.

Class IV. It contains ail Poincaré duality spaces P such that H2(P) Zw © Zn
for some n&gt;2 and such that w 0. We may assume that P XUae5 with
X (S?Une?)v(SlUnei) and 6(tf, t!)= 1/n, è(tf,t2) O for i 1,2 (compare
the arguments following 9.1 below). Furthermore, if n is even and e^0, we may
assume that e t?®l. It follows that H « H ^o&gt; where t0 is from 8.6, and

(since ka 0 by 6.4)

for some r, seZ2. Therefore, by 7.13, there exists a homotopy équivalence of X
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sending a to this sum, and so we may assume

From 8.9 it follows that r s 0 if e 0, and r 1, s 0 if e ^ 0. Thus class IV
contains precisely the following spaces (recall 8.7):

Mn (Si Un ef) v(S| Un el) U e5 with e5 attached by r0llll with e5 attached by

The spaces M&apos;n are only defined if n is even. The invariants are as follows:

Sn I{Mn) (Zn(x)©Zn(y), b, 0, 0)

where in both cases b(x, y) Un and b(x, x) b(y, y) 0. Thus i / fe 0 for
Mn and i k 0, / r for M^, where n Xs with s odd.

Class V. This class consists of ail spaces P such that H2(P) Zn © Zn for some
even integer n&gt;2, and such that vv^O. Again we may assume that P XUae5
with X as above, and b(i\, 1%) 1/n, b(i\, tf) O and b(i\, iQ — h This gives the
following formulas (recall 6.4):

-ti w tf,

From 8.5 and 8.6 it therefore follows that H «= D (to+/i°5o) an^ Àa

1» t&gt;y 7.15, we may assume that

for some r, s, teZ2. The homotopy équivalence / in the proof of 8.7 adds the term
t?°7°S7 + [ti, tl]°S7 to the right hand side, so we may assume f 0. Let
g :X=*X be the map induced by e\ -&gt; i\°y and el-&gt; (nl2)(tl&lt;&gt;y)9 see 7.12. Then,
by 7.11, 8.5 and 8.6, g adds the summand ii°y°Sy, and hence we may also

assume that s 0. Finally, the coefficient r is determined by the exotic class: from
8.9 we hâve r 0 if and only if e 0. Thus class V contains for each even integer
n&gt;2 precisely the following two spaces (recall 8.7):

n (S\ Une\)v(Sl Unel)Ue5 with e5 attached by

(??)(|l)5 with e5 attached by
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The Systems of invariants are

(ZM(x)eZM(y),b,w,0)
&apos;n I(X&apos;n) (Zn(x)®Zn(y), b9 w, x®

where in both cases b(x, y) 1/n, 5(x, x) 0 by fc(y, y) =\. Thus if n 2fs with s

odd, we get (i, j, k) (f, 0, 0) in the first and (i, /, fc) (f, f, 1) in the second case.

The following table shows ail spaces together:

p
s5

xœ

ML
X-i
MB

m;
x»

A?)
0
Soo

Too

T_x
sn

s;

H2(P)

0

z
z
z
z2
znezn

zn©zn
zn©zn

w

0

0

0

0

0

e

0

0

0

0

0

0

7^0

Now it is easy to prove that the function OHP5 —&gt; J in Theorem 2.2 is surjective.
In fact, from Proposition 3.2 it follows that the Systems of invariants in the table
above generate the semigroup J. Since ail of thèse are realized by Poincaré duality
spaces, it follows that OHP5 -» / is surjective.

To prove injectivity of OHP5 --&gt; J, we first observe that the discussion of the
five classes above has shown the following:

9.1 PROPOSITION. Given the dates in the last three columns of the table

above, there is one and only one Poincaré duality space with thèse dates (namely the

space in the left column and in the corresponding row).

Now let P be an arbitrary simply connected 5-dimensional Poincaré duality
space. We are going to prove that P is uniquely determined (up to oriented
homotopy type) by its System of invariants I(P) (H2(P), b, w, e), or, equivalently,
by H2(P) and its invariants iP, /P and kP.

Following 3.2, we choose a spécial basis {xl | -s &lt; i: &lt;2f +1} of H2(P) such that
the following holds:

9.2 Ixj^oo for i^0; if iP °o, then x0 is the w-exceptional élément.
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9.3 For / 1,3,... ,2r-l we hâve |x,| |xI+1| fc, =k]+1, and b(xpx,+1)
-~b(xJ+l9x]) llkr Ail other linking numbers between thèse éléments are

zéro, except b(x2, x2) j in the almost symplectic case.

9.4 x2t+i with |x2t+il k2t+i 2 is the w-exceptional élément in the quasi-
symplectic case.

9.5 If /p^ 0, we dénote by /0 the unique index between -s and 2t such that xJo is

the e-exceptional élément (Lemma 2.1(b) implies /0

If H2(P) is free resp. finite, forget xu x2t+l resp. x_s,..., x0; if we don&apos;t

hâve the quasi-symplectic case, forget x2t+ù an&lt;^ îf H2(P) 0, forget ail: then
P^S5.

Let X be the wedge of the following spaces:

X^SfvS3 (î&lt;sO)

X, =(SJ2Uef)v(SJ2+1 Ue?+1) (7 1,3,..., 2f-l)
X.2t-f l S2t+ i U 62(+i

Hère, for l&lt;n&lt;2t+l, the 3-cell e^ is attached by a map of degree kn. We may
assume that P P(3) U3 e5 for some /3 e 7T4(P(3)). There exists a homotopy équivalence

/:X-h&gt;P(3) such that f*(iî) xn for ail -s&lt;n&lt;2r + l, and such that
/*(D~1xl) tf for i&lt;0, where D:H3(P)-» H2(P) is Poincaré duality. If a
/i1d3)e7r4(X), then XUae5 and P hâve the same oriented homotopy type.
Therefore we may assume that P X Ua e5, that the basis above is the géométrie
basis, i.e. xn tl for ail n, and, furthermore, that rffla tf for i&lt;0. From this
and from 9.3 and 9.4 it follows that fl « maps H3(Xt) isomorphically onto H2(Xt)
for i&lt;0 or i 1, 3,..., 2t +1. Furthermore, since wfla À(a) by 6.4, we hâve

À(a) 0 (if w 0) or A(a) tg (if iP=°°, by 9.2) or A(a) e? (in the almost-

symplectic case, by 9.3) or À(a) e2t+i (in the quasi-symplectic case, by 9.4). In
any case, we hâve ail assumptions we need to apply the splitting principle 7.16,
and by induction it follows that there exists a homotopy équivalence / : X -* X
with /1 X(2) id such that f*a Z «i with at e tt^X,). Therefore we may assume,
without changing the properties of the basis xl i? above, that

where a, e 7r4(X,). This means that P splits as a connected sum
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where Pl=XlUe5 with e5 attached by ax. Furthermore, the éléments of the
spécial basis x» t* which lie in H2(PX) form a spécial basis of H2(Pl). Therefore
we get from 9.2-9.5 and from Proposition 9.1 the following:

(a) Px =Moo for i&lt;0 and i//0; if i jo&lt;0, then P, -M£&gt;.

(b) P0 Xoo if jp oo (then we must hâve /o/0). If /P&lt;00, then P0 Moo or
Po M&apos;oo according as /0 £ 0 or j0 0.

(c) P! Xkl in the almost-symplectic case, if /0^l, and P1 Xkl in the
almost-symplectic case if j0 1. If we do not hâve the almost symplectic case, then
Pi Mkl or P1 Mkl according as /ofÉ{l, 2} or /oe{l, 2}.

(d) For / 3,5,...,2f-l we hâve P^M^ if jo^{/,j + 1} and Pj=Mk} if
°

(e) P2t+1 X^.
It follows that P is uniquely determined by the spécial basis above, hence by

its invariants, and this complètes the proof of the classification theorem.

10. A complète list of the Poincaré duality spaces

We now give a third version of our main theorem:

10.1 CLASSIFICATION THEOREM. The following is a complète list of
(oriented) homotopy types of simply connected 5-dimensional Poincaré duality
spaces and their numerical invariants (i, j, fc);

p

P#X_j
P#X2~
P#M&apos;2~

P#X2m#J\

P#X2,

for l&lt;m^°°

for 1 ^ n ^ °°

4&apos;2n for l&lt;n^°°

42n for l&lt;m, n^«

for l&lt;n&lt;°°

(0,0,0)

(1,0,0)

(m, 0,0)

(0,n,0)

(l,n,0)
=o (m, n, 0)

(n, n, 1)

Hère P M» # • • • # M» # Mkl # • • • # M^ (s rimes MJ wirfi pnme powers

ku...,kr and r,s&gt;0 (i/r s O, thenP S5).

Proof Replacing the model spaces by their Systems of invariants and using
2.2, this reduces to an easy algebraic exercise. Any System of invariants splits as a

direct sum 1 1&apos; + F, where V has a free and I&quot; a finite group. V is a direct sum of
copies of Soo, Too and T«, and /&quot; is a direct sum of the other generators in Section



The structure of 5-dimensional Poincaré duality spaces 509

9. In both cases it dépends on (j, j, fc) which summands can occur. Using this and
the obvious isomorphisms (n^2 even)

tboo&quot;&quot;

one gets the list above. It is complète since it members hâve différent invariants
(i, j, k) or différent second homology group.

Remarks, (a) The summands in the list above are ail indécomposable in the
semigroup OHP5, except X2: we hâve X2 X_1#X_1, since obviously T2

(b) Hère is an example for the importance of the linking order: the spaces
Xrn # Mn and Xn # Mrn (n &gt; 2 even) hâve the same second homology group, the

same Stiefel-Whitney order and the same exotic order, but they hâve différent
linking order.

(c) Our notation differs from that in [1]: the spaces M2» and X2« are denoted

by Mn and Xn, respectively, in [1].
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