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Two types of birational models

Markus Brodmann

1. Introduction

Let V be a quasiprojective irreducible algebraic variety over an algebraically
closed field fc. Using the terminology of [8] we call a birational model Y-^ V in
which Y is a Cohen-Macaulay (CM) variety a Macaulayfication of V. We say that
a birational model Y-*&gt; V préserves a given local property P if a point p of Y
satisfies P whenever its image &lt;p(p) in V does. The aim of this paper is to describe
two classes of blow-up, which for certain varieties V furnish a very simple way to
get Macaulayfications that préserve normality and regularity. In view of the fact
that V admits nonsingular models if k is of characteristic 0 [15] or of dimension^
3 [1] [22] our construction should satisfy two requirements: It should work in any
characteristic and it should be essentially simpler than the processes of desing-
ularization. Our results will show that both requirements are satisfied.

Let W be the closed subset of the non-CM points of V. We only will deal with
the case dim (W)^ 1, as it is done in [8] where a very effective method is given to
construct Macaulayfications in this case. Unfortunately the Macaulayflcations
described in [8] do not préserve normality nor regularity. So using them means
losing a lot of information on the basic variety V. Our main results are:

(1.1) THEOREM. Assume that dim (W) 0. Then there is a curve C^Vsuch
that the blow-up Blv(C)-^&gt; V of V at C is a Macaulayfication which préserves
normality and regularity.

(1.2) THEOREM. Assume that dim(W)=l. Then there is a surface SçV
and a two-codimensional closed subvariety T of the blow-up X:= Blv(S) -^&gt;VofV

at S such that the blow-up Y: Blx(T) -4 X of X at T is a Macaulayfication and
such that &lt;p and $ préserve normality and &lt;p°i|f préserves regularity. So Y **

&gt; V is a

Macaulayfication which préserves normality and regularity.

In [8] Macaulayfications also are constructed by one or two consécutive

blow-up according to whether dim(W) equals 0 or 1. (According to [4] it is

possible in the case dim(W) l to replace the second blow-up by a finite

388
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birational covering. This at least gives the préservation of normality and regularity
for the second step). But the blow-up are centered at ideals which in non-trivial
cases never may occur as ideals of sections vanishing at a subvariety. This is

contrary to our construction which makes essentially use of the reducedness of the
ideals which define the blow-up. It turns out to be important for the préservation
of normality that the occurring centers C, S and T are normally torsion-free (This
implies more than the mère préservation of normality, namely that normality is

preserved even &quot;arithmetically&quot;: e.g. the morphism from the projecting cône of
the blow-up to V préserves normality). The essential feature to guarantee the
CM-propery of our blow-up is that the centers C, S and T define ideals which
locally are the unmixed part of &quot;standard-ideals&quot; (e.g. ideals which are generated
by &quot;standard séquences&quot;). Standard-séquences (S-séquences) already hâve been
introduced and studied in [4]. Standard-ideals may be considered as a cohomolog-
ical analogue to the permissible subvarieties which occur as the centers of blow-up
in Hironakas&apos; resolution of singularities [15]. So one of the main properties of
blowing-up at a S-idéal is the préservation of the cohomology type of the
exceptional fiber [4], [5], [6]. Under the mentioned analogy this corresponds to
the &apos;préservation&quot; of the local Hilbert-functions under a permissible blow-up [2],
[14], [20]. The above property of the blow-up at a S-idéal makes it basically
useful for Macaulayfication, as this latter is nothing else than an improvement of
the local cohomological properties by means of blow-up.

(1.1) and its proof allow to draw the following conséquences:

(1.3) COROLLARY. Let V be a normal and assume that dim (W) 0. Then
there is a curve CçV such that Blv(C) —&gt; V is a Macaulayfication which préserves
regularity and such that Blv(C) is arithmetically normal.

(1.4) COROLLARY. Let V be a normal and of dimension 3. Then there is a

curve CçV such that Blv(C) is arithmetically normal and arithmetically CM and
such that Blv(C) préserves regularity.

(1.5) Remark. The proof of (1.1) will show more. Namely, if dim(W) 0 we

may write W {pu pt}. Then there are mPi-primary ideals q.çffy.p, such that
the following holds: The gênerai curve C which is the restriction of a set-theoretic
complète intersection in the projective closure of V and whose defining idéal at
the point pt is contained in % has the property requested in (1.1), (1.3), (1.4). So,

embed V into a projective closure V&apos;. Then there are natural numbers vu ,vt
(which may be estimated by the lengths of the local cohomology of Cv at the

points p,) such that C:=C&apos;|V is of the requested type as soon as C is a

set-theoretic complète intersection which vanishes of orders? vx at p, and which is

in a sufficiently gênerai position.
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As a conséquence of (1.2) and its proof we get:

(1.6) COROLLARY. Let V be normal and assume that dim(W)=l. Then
there is a surface SgV and a subvariety T^Blv(S) :X such that Bly(C) and
Blx(T) are arithmetically normal, such that the morphism Y: Blx(T)-+ V
préserves regularity and such that T is CM.

(1.7) COROLLARY. Let V be normal and of dimension ^4. Then there are

SçV and T^Blv(S) which are as in (1.6).

(1.8) COROLLARY. Let V be of dimension ^4. Then there is a Macaulayfi-
cation Y—*VofV which préserves regularity and such that Y is normal

(1.9) Remark. For the varieties S and TçX fîlv(S) it holds a statement
similar to (1.5): S may be realized by the restriction of a set-theoretic complète
intersection vanishing of sufficiently high order at W and being in a sufficiently
gênerai position (defined in a projective closure of V). Once having chosen S,

there are finitely many points pu ,pteV such that T may be obtained as the
restriction of a set-theoretic complète intersection hypersurface in a projective
closure of the exceptional fiber X of X—&gt;V, which moreover vanishes of
sufficiently high order at the fibers of pl5..., pt and which is in a sufficiently
gênerai position.

The main difficulty of the proofs in fact consists in showing some correspond-
ing local results. The local features needed to proof (1.1) are some results given in
[6], where already a local version of (1.1) is given. Thèse results also are needed

to show (1.2). They are presented in the second section. Hère we also list a

number of rather technical results from [6] which will be used currently in the
sequel.

(1.2) also needs some additional algebraic background, mainly the concept of
&quot;double-standard-sequences&quot;. We already used this concept (in a slightly différent
way) in [4]. The corresponding results are given in section 3.

Section 4 gives the conclusive globalization of the previously local results and so

complètes ail the proofs. Hère we mainly will use arguments of Bertini-type of the
kind which are found in [9].

We use the following notations:

Conceming graded rings: If A JR0©i?1©- • • is a graded ring and if M
©hezMi is a graded A-module, M&gt;n is the A-submodule ©h&gt;nMH of M. If
N ©Kez Nh is another graded A module we write &lt;p : M &gt;N to express that &lt;p

is a liomogeneous A-homomorphism of degree d.
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Concerning Rees-rings and associated graded rings: If I is an idéal of the ring R,
9t(J) dénotes the Rees-ring ©nSs0Jn oî /, Gr(I) the corresponding associated

graded ring dï([)/Idl(I) ©n3s0 rir^x. If g is an idéal in the structure sheaf of a

scheme, #t(^) and Gr (/) are defined analogous.
Let xel. Then x* dénotes the one-form in 91(1) which is induced by x: x*

(0, x, 0, ...)• * is the corresponding one-form in Gr(J). B1R(J) stands for the

blow-up Proj (9t(I)) of R at /. If $ is an idéal in the structure-sheaf of a scheme

X, Blx (J&gt;) stands for the blow-up of X at $. If $ is the idéal of sections vanishing
at a closed subset YçX, we write Blx (Y) for Blx (g) and speak of the blow-up
X at Y.

Concerning local cohomology (s. [11], [12]): Let JR be a noetherian ring and let

/cR be an idéal. Then Fj(M) stands for the J-torsion \Jn»o(fi:Jn)M
lim_&gt;n HomR (R/J71, M) of the R -module M H) stands for the ith local cohomology

functor supported at J which is the ith right derived functor RTj of the
J-torsion and which also may be written as lim_&gt;n ExtR (R/JF, •) • Ds stands for the
functor of J-transform lim_^n Hom (T1, •) • M1 (or M if no confusion is possible)
stands for the J-réduction M/FjiM) of the JR-module M. We frequently shall use
the following well known relations between thèse functors:

(1.10) H°j(WJ) 0, Hlj(NF) Hlj(M) for ail i &gt; 0.

(1.11) Dj(W) Dj(M), RlDj H1/1 for ail i &gt;0.

Moreover we may write

(1.12) Dj(M) \Jn^0(MJ:Jn)s-tMJ&gt; where S is any multiplicatively closed

set of R which consists of non-zerodivisors with respect to
MJ and meets \Tj (such S exist if M is of finite type).

Moreover there is an exact séquence

(1.13) 0-^rJ(M)-&gt;M-^DJ(M)-&gt;H](M)-&gt;0

for each R -module M, which induces in particular

(1.14) HljiDj(M)) 0, if i*U; Hlj(Dj(M)) Hlj(Ml if i&gt;l.

If X is a locally noetherian scheme and if Z c X is stable under specialization,
the corresponding local cohomology functors supported in Z are denoted by Hlz
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(Thèse functors are obtained by globalization of the previous one.) The corres-
ponding transform is denoted by Dz (Dz is the Z-closure introduced in [10]; if Z
is closed and if 9 is a quasicoherent sheaf over X, Dz(9) is the direct image of
the restriction &amp;\x-z)-

Concerning loci: Let X be a locally noetherian scheme. Then by Reg(X),
Sing (X), Nor (X), Fac (X), CM (X) we respectively dénote the set of its regular,
singular, normal, factorial and CM-points. If X Spec(2?), where R is a noetherian

ring, thèse loci are denoted respectively by Reg(JR), SingCR), NorCR),
Fac (JR), CM (R).

As for the unexplained notations and terminology see [13] (algebraic
geometry) and [17] (commutative algebra).

(1.15) Remark: Our results hold in fact over any infinité field k. The adjust-
ment needed to treat this case is the use of double standard séquences, which
hâve this property universally, e.g. under finite extensions of the base field k. We
used this concept in [4]. To keep our arguments less technical we decided only to
présent the case of an algebraically closed field k.

2. Standard-séquences

In this section we présent some notions and results from [4], [5] and [6]. Thèse
will furnish the algebraic background of our proofs.

In the sequel let R be a noetherian ring, let J^R be an idéal and let M be a

finitely generated JR-module. An élément x e R is said to be J-filter- regular (resp.
a /-/-regular élément or a /-/-élément) with respect to M if it belongs to the set

reg (MJ) of regular éléments non-zerodivisors) with respect to MJ. A séquence

Xi,..., Xr e R is called /-/-regular (or a /-/-séquence) with respect to M if x, is /-
/-regular with respect to M/(x1?..., xl_1)M for ail i ^ r. Thèse concepts hâve been
introduced in [21] for the spécial case of a local ring with a maximal idéal /.
x1?..., x,_i is a /-/-séquence with respect M iff it is a regular séquence wîth
respect to Mp for ail peSpecCR)— V(/). /-/-regularity with respect to M is

équivalent to /-/-regularity with respect to MJ and to /-/-regularity with respect
to Dj(M). /-/-regularity with respect to M induces JR&apos;-/-regularity with respect
to R&apos;&lt;8)M, where Rf is a noetherian and fiât R -algebra. The following easy
statements will be used frequently (grade (/) dénotes the common length of ail
i?-regular séquences in /):

(2.1) LEMMA. (I) Assume that Spec (JR)- V(J) is CM and let xl9..., x, e
eyfj be such that ht(xu x,,) r. Then x1?..., x,. is /-/-reguiar with respect to R.
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(ii) Let xl9..., XrEy/j be J-f-regular with respect to JR. Then, if r^ht(J)9 it
holds ht(xly..., x,) r if r^ grade (/) xt,..., x, even constitute a regular séquence
with respect to R,

Now, we define the cohomological J-finiteness-dimension of M:

(2.2) ej(M) : inf {î | H)(M) is not finitely generated over jR}.

Using (1.10) we obtain eJ(M) eJ(M3). If M^Tj(M) it is well known that
ej(M) ^ ht (/ • jR/ann M). In particular we hâve ej(M) oo &lt;~&gt; M F, (M). If x is /-
/-regular with respect to M, there is a short exact séquence 0—&gt;Ap^MJ--&gt;

Ap/xM5-»*), which shows that ej(M/xM)^ej(M)-l.
In [4] we introduced the notion of standard-séquences. In [5] we systematically

studied a certain class of truncated standard-séquences (but only for the case

where J was the maximal idéal of a local ring).

(2.3) DEFINITION. A séquence x1? ...,*,. g JR is called a /-standard-
séquence (/-S-sequence) with with respect to M if

(i) r^ej(M\
(ii) xu Xr is a /-/-séquence with respect to m,
(iii) (xl9..., xr)JFTJ(M/(x1,..., x,)M) 0, for ail i, j with i + jf &lt; r. x^ x,. is

called a truncated J-standard-sequence (J-S+-sequence) with respect to M if
r&lt;ej(M) and if (iii) holds for ail pairs i, j for which i+j&lt;r. It is the same to say
that there is a y g JR such that xl5..., x,., y is a J-S-sequence with respect to M.

xl9..., xr is a /-S-sequence (resp. a /-S+-sequence) with respect to M ifï it is

with respect to MJ. If ej(M)&gt; 1 (which implies in particular that Dj(M) is finitely
generated), the same statement holds for the pair of modules M and Dj(M). If
xl9...,Xr is a /-/-séquence with respect to M, x2,..., x, is a J-S (resp. a

/-S+)-sequence with respect to M/xtM if xl9.. ..x, has the corresponding prop-
erty with respect to M.

The following resuit has been shown in [4]:

(2.4) LEMMA. Let xl9... ,XreRbe a J-f-séquence with respect to M. Then:

ann (HXM/(x1?..., jç)M2 E[ [ann
j=0

If Hlj(M) is finitely generated, it holds Vann (H^M)) 3 /.
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So (2.4) induces

(2.5) COROLLARY. There is an idéal a^R such that Va2/ and such that
each J-f-séquence xl9. ..,x;€o with respect to M (with r^ej(M)) is a J-S-
sequence with respect to M Consequently ifr&lt;es(M), xu x, is a J-S*-séquence
under thèse assumptions. (It suffices to choose û [UJ&lt;ej&lt;M)ann(Hi(M))]2e/M&gt;~1.)

If a séquence keeps having one of thèse properties under ail its permutations, we
express this in using the prefix p. So we shall speak of /-p/-sequences
permutable /-/-séquences permutable /-standard-séquences) and J-pS+-
sequences permutable truncated /-standard-séquences).

(2.6) Remark. We later mainly shall use the concept of truncated standard-

séquence. The situation in which they will corne up is as follows: Let V and W be
as in the introduction. Let $ c Gv be such that V($) is of codimension h in V and
such that WcVC^JIïier^ V-V(J) is CM. JSo if peV-_V(J) it holds
depth («V.P) + codim ({p}9 {p} H V(J)) codim V, {p}) 4- codim ({p}, {p} H V(J)) ^
codim(V, V(#)) h, where for a locally noetherian scheme X and a closed
subscheme Y codim (X, Y) dénotes the codimension of Y with respect to X. If
h &gt;0 and if p is the generic point of V, equality holds in the above estimate. So

by Grothendiecks finiteness theorem for local cohomology [11] the sheaves

HVc?)(Ov) are cohérent for ail i &lt; b. Now, let p e V(J?) and put R - 0VtP and
J $v. Then it follows that ej(R) h if fi&gt;0. Let b be the following idéal of
0&gt;v&apos;ï&gt;=[nj&lt;hann(HJv(^)(&lt;?v))]2hl (h&gt;0) and put a bp. Then a^R is as in (2.5).
Moreover Spec (R)-V(J) is CM. So (2.1) (i) implies that each partial System of
parameters xu X, ea is a /-pS-sequence with respect to R. If r &lt; h, xu xr
is even a J-pS+-sequence with respect to jR.

For the rest of this paragraph we fix the following notations: Let 0&lt;r&lt;ej(M)
and let xl9... ,x,.€&gt;/j be a J-pS*-sequence with respect to M. Let L-
(xt,..., Xr) and put lyP M. In [4] we hâve proved the following results:

(2.7) LEMMA. (i) The canonical maps H)(LnM) -» H^IS^M) vanish for
ail n&gt;0.

(ii) LMnrj(M) 0.

(iii) Dr(LnM) UJ (^MiJ^
(iv) M/LnMJ M/Dj(LnM).

(2.8) LEMMA. Ln

Now, let M&apos; M/xiM, V (x2,..., jç). Then x2,..., Xr is a J-pS+-sequence
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with respect to M&apos;. According to [4] we hâve

(2.9) LEMMA. If x* dénotes the maps induced by multiplication with xl9 we
hâve the following canonical exact séquences

(i) 0 -» Ln-2M/Dj(Ln-lM)-^-&gt;Ln-lMIDj(LnM)

-* L&apos;^IÂ&apos;IDj(VnM&apos;) -* 0

for ail n&gt;\. (Thereby this séquences split).

(ii) 0 -* Dj(Ln-1M)-^-*DJ(LnM) -&gt;Dj(VnM) -&gt; 0,

0 -* Dj(Ln-lm/Dj(LnM)^Dj(LnM)/Dj(Ln+xM)

-* Dj(L&apos;nMf)/Dj(L&apos;n+lM&apos;) -+ 0, for ail n &gt; 0.

(iii) 0^LnlM-^--&gt;LnM-*L&apos;nMf--»0,

0^Ln~1M/LnM--^LnM/Ln+1M-^LmM7Lm+1M&apos;-^0, for ail n&gt;0.

We denoted the above injections with x* by the following reason:

© LnM/Dj(Ln+1Af) 0 LnM/Ln+lMJ9 © Dj(LnM) Dj(© LnM)9
n n n \ n /

© Dj(LnM)/DJ(Ln+1M) Dj(® LnMJ jW© Ln+1JVf\

©LmM and © LnM/Ln+1M
n n

ail are in a canonical way graded modules over the Rees-algebra 9t(L). So the
opération of the one-form x* on thèse modules is exactly the corresponding map
x* of (2.9). The purpose of the above séquences is of merely technical nature, as

they repeatedly corne up to perform différent induction arguments. They corne
close to generalize the fact that the associated graded module with respect to an

M-regular séquence xî9..., x,. is a polynomial extension of M/(xu x^M [18].
The following resuit was shown in [6] for the spécial case where R is local and

/ its maximal idéal. But in fact the proof works in full generality.

(2.10) LEMMA. For ail n&gt;0 it holds LnDj(LAf) Dj(Ln+1Af).
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As a conséquence we get:

(2.11) COROLLARY. Let 0&lt;r&lt;ej(R). Put R =W. Let xl9..._, x,g Vj be a
J-pS*-séquence with respect to R and put L (xu x,.), £ U, (LR :Jj)r. Then
it holds:

(i) Ln Dj(Ln), (n&gt;0),

(ii) Ass (R/Ln) Ass (R/L) Ass (R/L) - V(J).

Proof. By (2.7) (iii) we hâve Ln^Dj(Ln) and £ Dj(L). (2.10) implies
DJ(Ln) LnlDJ(L)ç£nl£ £n. This proves (i).

To show (ii) we first observe that LnlR/Ln Ln~x/Ln is a free module over
R/L R/L (use (2.7) (iii), (2.8) and (2.11) (i)). So we hâve Ass (Ln~1R/Ln)
Ass (R/L). By the short exact séquence 0-^Ln&quot;\R/Ln -^L&quot;&quot;1/!&quot; -&gt;

Ass(.R/£)UAss(Ln-1/Ln-1JR). As L^^U, (L&quot;&quot;1^: Jj)r we hâve JvLnl c
L&quot;&quot;1^ for some k So we hâve Ass (Ln&quot;1/Ln-1jR)c V(J). As Ln-rILn =Ln 1ILn
has no /-torsion it follows that Ass (Ln~V£n) H V(J) 0. So we get
Ass(Ln~1/£n) Ass(jR/L). Now, using the exact séquences 0-*£n~V£n-^
K/£n -&gt; RILn~x -&gt; 0 we conclude by induction on n that Ass (£/£&quot;) Ass (R/L).

Ass (R/L) Ass (R/LJ) Ass (R/L) - V(J) is clear by the définition of the
functor -J.

(2.12) Remark. (2.11) (ii) will be of importance in our later applications as it
states that L is normally torsion-free (An idéal idéal of R is said to be normally
torsion-free, if Gr(J) is torsion-free over R/I or - equivalently - if Ass(JR/In)ç
Ass (R/I), Vn.)

Finally we shall make use of the following resuit, which deals with the spécial
case where R is local and / its maximal idéal.

(2.13) PROPOSITION. Let (R,m) be a local ring of dimension d&gt;l and
assume that em(R) d. Let xl9..., xd-x g m be a m-pS4-séquence with respect to R
and put L (xu xd_x), jR JR&quot;\ £ (J, (LR im1)^ Then:

(i) Dm(9ï(L)) is finitely generated as a dt(L)-module;
(ii) BlK(£) Proj(9l(£)) Proj(Dm(9l(L)) is CM;
(iii) If R is CM, we hâve Dm(R) JR, L £ and dt(L) is CM in this case.

Proof Let n be the homogeneous maximal idéal m©L©L2©- • • of 3t(L).
Let D be the graded 3t(L)-module Dm(9t(L)) ©n Dm(Ln). We know by [6] that
D is finitely generated over JE(L) and that its local cohomology supported in n
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satisfies

if i ^min à! : min (3, d),

for d&apos;&lt;

Thereby-for an jR-module H-[H]} stands for the graded 3t(L)-module whose
tth component is 0 or H, according to whether t^j or t j.

This shows that the X: Proj (3î(X))-sheaf D induced by D is cohérent and
CM (the latter is a conséquence of the weak part of Grothendiecks finiteness
theorem [11]). But-as D and 9î(L) difïer only in degree 0-D also is the
structure-sheaf of B1r(L). This proves the first statement. If jR is CM we hâve
Hlm(R) 0 for i^l. This induces R =Dm(R) (s. (1.13)). Moreover we then hâve
R/Lm R/L, thus L L. This shows that D=di(L). By (*) we hâve Hi(DM) 0

for ail i &lt; d +1 dim Dn. So Dn is CM. So the same is true for D 9%L) by [16].

(2.14) Complément. Let JR, L and L be as in (2.13) and assume moreover that
d^3 and that depth (R)^2 (which latter is the case if R is normal). Then ?R(L) is

CM.

Proof. Our assumptions imply that R Drn(R). So, in the notations of the
previous proof we hâve dt(L) D. Now we conclude as above by (*).

(2.15) Remark. We shall use thèse results mainly in the following context: Let
V and W be as in the introduction, assuming that dim W) 0. Put d dim (V)
and let $ be the idéal of sections vanishing at W. By (2.6) there is an idéal bc Cv
such that V(b) W which has the following property: For each peV and each

partial System of parameters x1?..., xd_! of &lt;?v,p contained in bp, xx,..., xd~i is a

mp-pS+-sequence with respect to OVtP. So, let i?çb be a locally complète
intersection of codimension d — 1 with respect to V (This means that for any point
peV(b) S£p is generated by a partial System of parameters xl9...,xd-i with
respect to OVtP). Let È=\J} {S£\$*)€w. Then, using the previous notations and

putting R OVtP, m mp, L (xl9..., xd_1) i^, and L {Jj(L:m&apos;)R we hâve

L ÉP. So by (2.13) £v is a normally torsion-free idéal of OVtP for ail peV(££)
and Blv (J£) is CM. If d ^3 and if V is normal (It suffices that V is S2) we see by
(2.14) that Blv (É) is even arithmetically CM.

3. Double standard-séquences

Let /, TçJR be ideals of the noetherian ring R such that J^T and such that
there is an élément t e T with VT= V(J, 0- In this section we consider double
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standard-séquences and truncated double standard-séquences with respect to /
and T. Thèse are J-S-sequences (resp. J-S+-sequences) subject to another
condition, involving local cohomology supported in T. In [4] we developed this

concept in a slightly différent way, without assuming the existence of an élément t
as above. Note that the existence of such an élément induces H&apos;jiH&apos;jiM)) 0 for
ail î&gt;l, ail j&apos;^0 and ail .R-modules M (s. for example [7]).

(3.1) LEMMA. Let xu x, R be a J-f-séquence with respect to M Then it
holds ann (H^M/Od,..., xr)MJ)) 3ll[=o [ann (H^CÂF))]^

Proof. (Induction on r). If r 0 or i 0, ail is clear. So let r, i&gt;0. As x,. is

/-/-regular with respect to M/(xu xr_1)M we hâve an exact séquence

The corresponding HT-sequence furnishes the relation

ann {HlT(MI{xu..., xr_1)MJ/(xr)))

3 ann (HlT(M/(xu xr_1)MJ)) • ann (HV+1(M/(x1?..., xr)MJ)).

By the exact séquence

we also obtain an exact séquence

xr_1)MJ/(xr)) ^HkiM/ix,,..., xr)MJ) ^ HV+1(rj(- • •)) 0,

which shows that

ann (H^MKx,,..., x,)MJ)) 2 ann
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So, using induction, we get

ann (H&apos;^M/ix^ xr)MJ)) 2 ann (HW(xb. ..x^M7))

x ann (HV+1(M/(x1;..., xr_1)MJ)) 2 fi [a&quot;&quot; (HV+&apos;(MJ))](&apos;&apos;&apos;)

O«£l*sr-1

ann (H^ÂF))[ II [ann (H^&apos;XM7))]*&apos; ¦&quot;&gt;

• [ann (H&apos;T+&gt;(hF))T&gt; !)]
L0&lt;j &lt;r

Xann(HV+r(M7))= FI [ann (HV+&apos;(ÂF))]&lt;;).

O*£js£r

For a finitely generated R -module M let us introduce the following notations

(3.2) (i) Àj,T(M) sup {n | Vann (H\(M)) 2 J, for ail î ^ n},
(ii) cJ&gt;T (M) min{AJ&gt;T (M), e, (M)}.

We call eJT(M) the J, T-finiteness-dimension of the i?-module M.

(3.3) DEFINITION. Let M be a finitely generated K-module. A séquence

xl9..., \ e R is called a /, T-standard-séquence /, T-S-sequence) wir/i respect
to M if

(i) r^eJ&gt;T(M)

(ii) xly..., x, is a J-S -séquence with respect to M
(iii) (xi,..., xJHjiMKxi,..., x,)MJ) 0 for ail i, 7 with î +7 ^ r.

Xj,..., xr is said to be a truncated J, T-standard-sequence /, T-S+-sequence)
with respect to M if r&lt;eJT(M), if xl5..., xr is a /-S+-sequence with respect to M
and if (iii) holds for ail pairs i,j for which i+j^r+1. So x1?..., x, is a

/, T-S+-sequence with respect to M iflf there is an élément yeR such that

x1?..., Xr, y is a /, T-S+-séquence with respect to M.

This is the concept of the previously announced (truncated) double-standard-

sequences.
Using (2.5) and (3.1) we obtain:

(3.4) LEMMA. Let Mbe a finitely generated R-module. Then there is an idéal

ûç]? such that y/â^J and such that each J-f-séquence xl9..., x,. € a with respect to

M of length r^eJ&gt;T(M) is a J, T-S-sequence with respect to M. If r&lt;eJiT(M),
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xu xr will be a J, T-S+-sequence with respect to M under the above assump-
tions. (It suffices to choose a as the idéal

\ fi
Lj&lt;eJT(M)

If a séquence xu xr is a /, T-S-sequence under ail its permutations we speak
again of a /, T-pS-séquence. Similarly we use the notation of J, T-pS+-séquence
in case of a permutable truncated J, T-standard-sequence.

(3.5) Remark. We shall apply the above concept in the following context: Let
V and W be as in the introduction and put dim V) d. Assume that dim W) ^ 1

and let $ c€ be an idéal such that V(J) 2 W. Let ZçVbe the set of ail closed

points of V. Z is stable under specialization. So the local cohomology functors Hlz
are deflned in the category of quasicoherent GV-sheaves. As V- V(£) is CM [7]
guarantees that Vâïïn (H^COV))^ and Vaîîn (H]v(^}(€v)) 3 $ for ail j&lt;d-l
(The second statement also follows by (2.6)). Now, put

f fi
Lj&lt;d-1

b f fi ann (HJV^(ÛV)) ¦ ann (H£\OV))

Let peZ,R 6v,p, J $p,a bp, m mv,p. Then we hâve HJV(^)(€V)P
H&gt;z(€v)p H&apos;JR), ej,m(R) d -1 and a [FU-i ann (HJ(R)) • ann (tf
By (2.1) (i) each partial System of parameters xl9..., xd_2ea for the local ring R
is a /-/-séquence with respect to R, thus a J, m-pS+-sequence with respect to R
(3.4). So, let «S£çb be a locally complète intersection-ideal of codimension d-2.
This means in particular, that ££p is generated by a partial System of parameters
xu xd_2 for the local ring 6VtP for each closed p g V(^). If p g V{$) this
System is a ^p, mp-pS+-sequence by the previous remark. If p^ V(J) the same is

true as x1?..., xd_2 is a regular séquence in the CM-ring ©v,p- So i£p is generated
by a /p,mp-pS+-sequence of length d-2 for ail closed peV(if). Let ^
U, (&amp;:£%v. Then, by (2.13) Èp is a normally torsion-free idéal of the local ring
€VjP for each closed pe V(J£).

The following resuit is an extension of (2.7)(i) to double-standard-sequences.
Similar to (2.7)(i), which is of fundamental significance for the treatment of
standard-séquences, the resuit to corne is a strong tool to treat double-standard-

sequences.
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(3.6) LEMMA. Let xu x, (r&lt;eJT(M)) be a J, T-pS*-séquence with respect
to M (which is assumed to be finitely generated). Put L (xu je,)!?. Then the
canonical maps

Hl(Dj(LnM)) -&gt; HKL^W) (n &gt; 0)

(induced by the injections Dj(LnM) c-^Ln~1Af7 (2.7) (iii)) vanish.

Proof. The case r 0 is trivial. First we treat the case r= 1. Clearly we may
assume Fj(M) 0. By the commutative diagram

L&quot;M c—&gt; LnlM
J iiî we get the situation

M -T7* M

As xt forms a /, T-pS+-sequence with respect to M we hâve XxH^M) 0. This
shows that a vanishes. By the séquence 0-&gt;LnM-»Dj(LnM)-&gt;H](LnM)-&gt;0
we obtain exact séquence H^(LnM)-^H|-(DJ(LnM))-&gt;H^(H](LnM))-0,
which shows that |3 is onto. Now the diagram

allows to conclude.
Next we treat the case n 1. By the above we know the resuit if r 1. Let

r &gt; 1. Using (2.9) (ii) (iii) and putting L&apos; (x2,..., ^)JR and M&apos; MjxxM we hâve
the following diagram with exact rows and columns

0 0

i i
DAM)

-1 I
0 &gt; Dj(LM) iDj(L&apos;M&apos;) &gt; M&apos;J &gt; M&apos;JIL&apos;M&apos;Jt

I I
0 0



402 MARKUS BRODMANN

Applying HT(-) to this diagram we obtain the following situation

(rows exact!)

By the case r 1 the first map in the second row vanishes, so that the second map
in this row is mono. By induction the last vertical map vanishes. So the vertical
arrow in the middle is trivial. But this proves our claim.

Finally we treat the case r, n &gt; 1 by double induction, starting with the
following commutative diagram with exact rows and columns and splitting last
column (s. (2.9))

0 0 0

i i i
0 Dj(Ln-xM) &gt; Ln2M &gt; Ln-2M/DJ(Ln&quot;1Af) &gt; 0

0 » DALnM) &gt; Ln~xM &gt; Ln-lMIDALnM) * 0 (*)

I I i
0 * Dj(L&apos;nM&apos;) &gt; L&apos;n-lM&apos; Lm-1M7DJ(LmM&apos;) &gt; 0

I I I
0 0 0

Applying HT(*) to (*) we get the following diagram with exact rows and columns:

0

i
H$(DALn-yM)) * H|&lt;L&quot;-2M) * H^Ln

i J i

ï I 1
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By induction the second map in the first row and the second map in the last row
are injective. So the second map in the middle row is injective too, which proves
our claim.

(3.7) COROLLARY: In the notations and under the hypothèses of (3.6)
(and setting L&apos; (x2,... ,*,,), M&apos; M/x1M) the natural maps DT(Dj(LnM)l
Dj(Ln+hM)) -^ DT(Pj(L&apos;nM&apos;)IDj(Lln+hMf)) are onto for ail n, h &gt;0 and ail r &gt;0.

Proof. By the séquence (1.13) it suffices to show that the maps Hr{Dj(LnM)l
Dj(Ln+hM))-^HÏ(Dj(L&apos;nM&apos;)IDALm+hM&apos;)) are onto. For r l the right hand

term vanishes. So we also may assume that r&gt; 1. Clearly we only hâve to consider
the case Fj(M) 0.

Consider the diagram (*) of the proof of (3.6) (whose last column splits) and

apply HT. So, making use of (3.6) we obtain the following diagram (for each

H#Ln-1M/DJ{LnM))

i
H\(L&quot;&apos;-1M&apos;IDJ(L&apos;nM&apos;))

I
0

Thèse diagrams show that the induced map HÎ(Dj(L&quot;+hM)) -^ HUDj(L&apos;n+hM&apos;))

is surjective for ail n, h &gt; 0.

Consider the diagram

0 -* Dj(Ln+hM)-±-*Dj(LnM) -» Dj(L&quot;M)/D,(LB+llM) -»¦ 0

l i i (**)

0 -* Dj(Lm+hM&apos;)-±+DAL&apos;nM&apos;) -+ D}(L&quot;lM&apos;)IDJ(L&apos;n+hM&apos;) -» 0

Making use of the diagram

LnH
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and of (3.6) we see that H|(i) 0. Clearly it also holds H£(i&apos;) 0. By (1.12) it
holds DT(Dj(LnM)) Dj(LnM), so that (1.13) induces H^(Dj(LnM))-0. By the
same argument we hâve H\(Pj(LtnM&apos;)) 0. So, applying HT to (**) we obtain
finally the situation:

Hl(Dj(LnM)/(Dj(Ln+hM)) -^ H$(Dj(Ln+hM))
(3.8)

H4&lt;DJ(LmAf)/DJ(Lm+fcAf)) ¦=*&gt; H^Dja&apos;^M&apos;))

So 7rn is an epimorphism.

(3.9) COROLLARY. In the notations and under the hypothèses of (3.6) it
holds

(i) H\(Dj(LnM)) 0 /or a» n&gt;0,

(ii) ann (H\(MILM3)) • Hl(Dj(LnM)) 0 /or ail m &gt;0,

(iii) Dj(L) • H^(Dj(LnM)) 0 /or ail n &gt;0.

Proof. Using the séquences 0 -&gt; Dj(LnM) -? L^M3-&gt; Ln-lM/Dj(LnM) -&gt; 0

and (3.6) we get epimorphism Hl(DJ(LnM))-^H^(DJ(LnM))-^0. So (2.8)
shows that Hx(£&gt;j(LnM)) is a homomorphic image of copies of H\{MILMJ). This

proves (ii). (iii) is implied by the obvious fact Dj(L) • M/LMJ=0. (i) has been
observed in the proof of (3.7).

(3.10) PROPOSITION. Let (JR,m) be local, universally catenary, of pure
dimension d^2 and such that JR/m is algebraically closed. Let J^R be an idéal
such that dim(R/J)=l and such that Spec (R) - V(J) is CM. Assume that
eJtm(R) d -1 and choose agi? according to (3.4). Let xl5..., xd_2 g a be a partial
system of parameters and put L (xu xd_2)JR and L Dj(L)
(=\Jj(LRj:J1)rï). Then Dm(Gr(L)) is /inifely generated as a Gr(L)-module and
Proj (Dm(Gr (£))) is a CM-scheme.

Proof. By our hypothèses x1?..., xd_2 form a /, m-pS+-séquence with respect
to JR (s. (2.1) (i) and (3.4)). Clearly we may replace R by RJ thus assuming that
rAR) 0. Gr(L) is given by 9l(L)/Dj(L9KL)) (see (2.11)(i)). 3t(L) is a 9l(L)-
submodule of Dj(9î(L)) ©MDj(Ln). But Dj(9t(L)) is known to be a finitely
generated module over dl(L) in our situation [4]. So Gr(L) is finite over Gr(L).
Therefore, to show that Dm(Gr(L)) is a finitely generated module over Gr (L) it
suffices to find an élément aeR, which is regular with respect to Gr(L) (thus with
respect to Dm(Gr(L))) and which satisfies a • Dm(Or(L)) s Gr(L). As xl9..., ocd_2

form a J, m-pS+-sequence with respect to 1? we hâve Vann(H^(.R/LJ) 3 /.
Moreover it holds Ass (K/LJ) n V(J) 0. Thèse facts allow to find an élément
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a e R which is regular with respect to RIL3 (thus with respect to Gr (£)) and
which belongs to ann (H^(R/LJ)). By (3.9)(ii) we therefore aHl(Dj(Ln+1)) 0 for
ail n&gt;0. By the isomorphism H^(DJ(Ln)/DJ(Ln+1)) H|(DJ(Ln+1)), (3.8), we
now may conclude that a • H^(Gr (£)) a • [Hl(R/LJ)®n^ Hlm(Dj(Ln)f
Dj(Ln+1))] 0. By (1.13) we see that a is of the requested type. It remains to
show that Proj (Dm(Gr (£))) is a CM-scheme. We do this by induction on d. First
let d 2. Then (as L 0) we hâve Proj (Dm(Gr (£))) Spec (Dm(R)). By the
above arguments the morphism Spec (Dm(R))—* Spec (R) Proj (Gr (L)) is finite.
So it sufRces to proof that Dm(R) (which is a finitely generated .R-module) is a

CM-module over R. But this is clear as Hlm(Dm(R)) 0 for i&lt;2 (1.14).
Now let d &gt;2. Put X Proj (Dm(Gr (L))) and let q e X be a closed point. We

want to show that Cx,q is a CM-ring. Let q g Spec (Dm(Gr (L))) be the (homogene-
ous) prime idéal which corresponds to the point q (q is essential and satisfied
dim (Dm(Gr (L))/q) 1). Let pçGr(L) be the retraction of q. By the previously
proved finiteness of X—&gt;Proj (Gr(L)), p corresponds to a closed point p of the
latter scheme. As pfli?=m and as R/m is algebraically closed, the homogeneous
Nullstellensatz guarantees the existence of an élément y of L-xnL such that the
induced one-form y e Gr (L) is contained in p. y clearly is a parameter. So we may
assume without loss of generality that y x1. Let R&apos; R/xiR and L&apos;

(x2,..., xd-2)R&apos;- Then JR&apos; and x[ x1- lR&gt;,..., x&apos;d-2 *d-2 &apos; 1r&apos; satisfy again our
hypothèses with d-\ instead of d. Let L&apos; Dj(L&apos;). We may write L&apos;

U, (L&apos;W*:JP)rS. According to (2.9) the canonical map £ Dj(L)-* DS(L&apos;) V is

onto. So V is the image of £ under the canonical map R —» JR&apos;J. So we hâve a

canonical projection i/r : Gr(£) —&gt; Gr (L&apos;) which is given in positive degrees by the

maps DJ(Ln)/DJ(Ln+1)-&gt; DJ(Lm)/DJ(L/n+1) which occur in (2.9)(ii). Using
(2.9)(ii), (3.7) and the left-exactness of Dm we obtain an exact séquence of graded
9î(L)-modules: 0-^Dm(Gr (LJ^-XDJGr (£))&gt;i~&gt; Dm(Gr (L&apos;))&gt;! -&gt;0. So
X&apos; : Proj (Dm(Gr (L&apos;)) is a closed subscheme of X, which contains q and whose
idéal of vanishing sections in Cx is the invertible idéal defined by the (non-
degenerate) one-form xlm By induction &lt;?Xq is a CM-ring. So the same holds for

(3.11) COROLLARY. Keep the notations and hypothèses of (3.10), assuming
moreover that d^3. Let Xo Proj (9Î(£)) and letyem be such that ht(L, y) d -1
and yHULOxJLOxJ 0. Let ïï0c 0^ be the idéal U, [(£ y)^ :m&apos;]GXo. Then (i) %0

is normally torsion-free and without embedded component (ii) The blow up
Yo Proj (9î(^o)) Blx^o) of Xo at 9CQ is a CM-scheme.

Proof. Let p € Xo be a closed point and put B C^. Then m£ ^ J3. As £(7^ is

invertible (being the exceptional divisor of the blow-up Xo--» Spec (R)), there is a
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regular élément t e mB such that LOj^p tB. Gr (L) is a finite and torsion-free
extension of the ring Gr (L)/Fj(Gr (L)), which is canonically isomorphic to the
polynomial ring R/L[Xl9... ,Xd_2] (for the finiteness statement see (3.10), for
the shape of Gr (L)/Fj(Gr (L)) see (2.7) and (2.8)). As L is generated by a partial
System of parameters the embedded members of Ass (R/L) may not belong to
CM(R) and so must belong to V(J). Therefore we get by (2.11)(ii) that
Ass (R/L) Min (R/L). This shows that y is regular with respect to R/L, thus with
respect to Gr (L)/Fj(Gr (L)), thus with respect to Gr (L). This shows in particular
that t, y form a regular séquence with respect to B. Moreover it holds (3ifo)P

We hâve to show that K is normally torsion-free, without embedded compo-
nent and that Yx : Proj (dt(K)) is a CM-scheme.

To prove the first claim, observe that H^b(B) H^b(B) 0, as t, y is a regular
séquence contained in mB. Note also, that Dm(B/tB) is the semilocal ring of the
(finitely rnany and closed) preimage points of p under the finite morphism
Proj (Dm(Gr(L))-*X0: Proj (Gr(£)). So-by (3.10)-Dm(B/tB) is a CM-
module over B/tB which is of finite type. In particular we see that H^nB(B/tB)
H^XB/tB) is finitely generated (1.13). On the other side the isomorphisms
Hi(Ln/Ln+1)^H^(Ln+1) (s. (3.8)) give rise to an isomorphism
H^(m(L)ILdt(L))^Hi(Lm(L)), thus to an isomorphism HtnB(B/tB) HlB(tB)
H%xb(B). So H^b(B) is finitely generated and we obtain cmB(B)^3. Moreover, by
our choice of y, we hâve yH^tB(B/tB) 0. So t, y form a mB-S+-sequence with
respect to B. As tH^B(BltB) 0 we get by the above isomorphism, that
tH^B(B) 0. Applying H^ to the exact séquence 0-&gt;B^B-^B/yB -&gt;0 we
moreover obtain an injection JFf^^B/yB) &lt;—+H%lB(B) which induces
tH^nB(B/yB) 0. So y, t form a mB-S+-sequence with respect to B. This shows

that t, y forms a mB-pS+-sequence with respect to B. By (2.12) we now get that K
is normally torsion-free. Note that there is a canonical embedding B/K-
(B/tB)/y(B/tB)m (B/tB)/(B/tB) H yDm(B/tB) c DjB/tB)lyDjB/tB) :U. As
Dm(B/tB) is a CM-module, Ass (U) has no embedded members. So the same is

true for Ass (B/K).
It remains to show that Yt is CM. This is done by induction on d. If d 3, we

hâve L XlDJ(R), hence Xo Proj (StfoD, (R)) Proj (0n5M) xïDs(R))
Proj (Dj(R)[X]) Spec (Dj(R)). As Dj(R) is a finitely generated R -module
(observe that H}(R) is, finitely generated and use (1.13)) and as B is a localization of
DjJ(R) in one of its maximal ideals, mB is primary to the maximal idéal n of B.
So r, y is a n-pS+-sequence with respect to the 3-dimensional ring B. Therefore
we see by (2.13) that Yx is CM.

Finally let d &gt; 3. Using the homogeneous Nullstellensatz we may assume as in
the proof of (3.10) that the one-form x*edl(L) defines a closed subscheme of
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Proj (9t(L)), which contains the image point of p. Put R&apos; JR/x^, x[ x, • 1R&apos;, y&apos;

y-1RS L&apos; (x^...,x^2)Rf, L&apos;-Dj(L&apos;) and Xi Proj (9t(L&apos;)) and X&apos;o

U, (CL&apos;, yOC&apos;xo-^^Xo- The epimorphisms 7rn in the proof of (3.7) give rise to an
epimorphism HUPxjLO^^H^OxJVO^ which gives y&apos; • H^OxJL&apos;O^.

This shows that the dashed objects satisfy again our hypothèses with d — 1 instead
of d. The exact séquence 0^^(£)&gt;0-^-»9l(L)&gt;1-^9ï(L)&gt;1-&gt;0 (2.9) (ii) shows

that Xq is a closed subscheme of Xo which contains p and that the idéal sections

of vanishing at Xo is the invertible idéal of 6^ induced by x*. Let weBbea
generator of this latter idéal in the point p (wB stalk at p) and set B&apos; Cx^,p&gt;

Then the above séquence gives rise to an exact séquence 0—*B-^B—»B&apos;-*0

and shows that L&apos;©*^ - tBf. Clearly we hâve (3QP U, ((*, y)B&apos; :mJ)B&apos; := K&apos;. We

now want to verify two properties of K The first of them is that K&apos; — K-B&apos;. As
t, y form a B-pS+-sequence with respect to B we may write K DmB((f, y)B) by
(2.7) (iii). Similarly we may write K&apos; DmB.((t,y)Br). By (2.9)(ii) there is a

canonical epimorphism K DmB ((r, ^y)B) •*» DmB (y • (B/tB)) yDm(B/tB).
Similarly there is a canonical epimorphism Kf -&gt; yDm(B&apos;/tB&apos;). The epimorphisms
Dm(Ln/Ln+1)-^Dm(I/7Lïn+1) (3.7) give rise to an epimorphism Dm(Gr (£))-»
Dm(Gr (1/)) hence to an epimorphism DJBjtB) -^ Dm(B&apos;/tB&apos;), thus finally to a

surjection K/rB -* K&apos;/tB&apos;. As tB&apos;czK- B\ the canonical map B-+B&apos; gives rise

to an epimorphism K—»K&apos;, which is our claim. The second property of K in
which we are interested is that w is regular with respect to B/Kn for ail n &gt;0. We
hâve seen above that r, y form a regular séquence with respect to B. By the same

argument applied to the dashed objects we see that they are a regular séquence
for B&apos;. As w is regular this shows that w is regular with respect to B/(t, y), thus
with respect to B/K. As K is normally torsion-free, this gives our claim. The
second property of K means that wB DKn wKn for ail n &gt;0. So, together with
the first property we obtain an exact séquence 0 -&gt; 9ft(K)&gt;0 -^ 9t(K)&gt;0 —*

9t(K&apos;)&gt;o —» 0, which induces another exact séquence: 0-^OYij^OYi-^&apos;Oy[&quot;^09

where Yl Proj &amp;i(K&apos;)). 6Y{ is CM. So the same holds for CYl. This complètes
our proof.

4. The Globalization

In this section we shall use the following notations: If A fc©A1©A2©# • • is

a graded algebra over a field fc, we write Reg+(A), Nor+ (A), CM+ (A), Fac+ (A),
Sing+ (A) for the corresponding loci of Proj (A). If R is noetherian and if ûçR is

an idéal V(a) dénotes the closed subset {peSpectR) |p2a}, U(a) the open set

Spec (R)- V(a). If A is as above and if ûç A is a homogeneous idéal, V+(û) and
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U+(a) stand for the closed respectively open subset of Proj (A) which are induced
by V(o) resp. U(a).

We begin with the following resuit, which is of Bertini-type:

(4.1) LEMMA. Let k be an infinité field and let A fc©A1©A20- • • be a

graded k-algebra which is generated over k by finitely many of its one-forms (as an
algebra). Let a^Abe a homogeneous idéal and let p1?..., ps g U(a) Then there is

a form fe a - px U • • • U ps such that (i) Régi (A/fA) 3 Proj (A/fA) H Reg+ (A) H

U+(a), (ii) Nor+ (A/fA) =&gt; Proj (A//A) HNor+ (A) H U+(a).

Proof. We find forms /0,...,/n€o of some degree N such that Va

v(/o,... ,/n). So we may replace a by (f0, ...,/n). Assume first that k is of
n

characteristic 0. Then for gênerai a (al9..., an)e kn+1 we hâve /„:= £
t=0

(/ 1,..., s). Hère, gênerai means for ail a outside the union of finitely many
proper linear subspaces. Combining this with [9, (5.4)] we get the requested
statement. So let k be of characteristic p&gt;0. Then we hâve Va V(/g,... ,/£).
Therefore we may replace a by (/g,..., /£), thus assuming additionally that the

generators /j are pth powers of the same degree. Now consider the local ring
B:= AA+, where A+ dénotes the homogeneous maximal idéal A&gt;0 of A. Embed k

into the completion Ê of B and let Ê -4 jQ^/k : /î be the corresponding universal
finite difïerential [19]. Let x0,..., ^ be a fc-basis of Ax. Then, as d(x0),..., d(Xt)

generate Ô, â(fo)y â(fn), d(foxo), â{fox^9..., d^x,),..., d(/nxt) generate ^
for each pe l/(aB). As /, is a pth power, we hâve d(ft) 0 for i 0,..., n. So

^(/i*,) (O^i^n; 0=^/^0 generate ^ for ail p as above.

Let p,eSpec(B) such that p,nA=p,. Let {q1? ...,qh) be the set of those

primes p of U(aB) for which Bp satisfies the second Serre-property S2 and for
which depth(Bp) 2&lt;dim(Bp) (as B is excellent, we hâve in fact only finitely
many such primes [9, (3.2)]). Let q, eSpec (B) be such that ^DB =qr Finally let

xt,..., xx be the minimal primes of Nor (B) H U(aB) H Sing (B) (which is closed in
Nor (B)H U(aB) as B is excellent). Let rt eSpec (B) such that r,nfî= rr Apply-
ing [9, (1.5)] to B with S k, M Ô, U= U(aé) and observing the complément
to the quoted resuit we find éléments atJek (O^i^n; 0^/^f) such that

/•= Zi,j &lt;Xijfi*i does not belong to the symbolic square p(2) for any of the primes

pe U(aÊ) and such that /$ÉPi,..., ps, qx,..., qH, tl5..., xb By our choice of the
éléments /„ / clearly is a form. According to [9] (pg. 103, proof of (2.1) and pg.
105, proof of (3.3)) / satisfies the properties: Reg (B//B) 2 Spec (B//B) H

Reg (B) H U(aB), Nor (B/fB) 3 Spec (B//B) H Nor (B) n U(aB). Noticing that the
canonical morphism Spec (B) - {m : A+ • B} —&gt; Proj (A) transforms Reg (Spec
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(B)-{m}) to Reg+(A), Nor (Spec(B)-{m}) to Nor+ (A) etc. [9,(5.1)], we are

done.

(4.2) COROLLARY. Let Xbe a projective variety over the algebraically closed

field k. Let ZçX be a closed subset of codimension h&gt;0. Let $ ^€x be any
cohérent idéal such that Z=V(£). Then there is a complète intersection idéal
!£&lt;^$ of codimension h-1 such that:

(i) &lt;£v &lt;= &lt;9X,P is reduced for ail p e (X- Z) H CM (X),
(ii) Reg(V(«SÇ))3Reg(X)nV(if)n(X-Z),
(iii) Nor V(«S?)) 2 Nor (X) Pi V(&amp;) D (X - Z).

Proof. Let A be the homogeneous coordinate ring of X and let a c A be the
homogeneous idéal which corresponds to $. We hâve to find forms fu fh^x ea
such that:

(i) (/i,..., /h-i)A is reduced for any homogeneous prime pe U(a) for which
Ap is CM,

(ii) Reg+ (A/(/i, • • •, /h-i)) 2 Reg+ (A) HProj (A/(/i,..., A-i)) H l/+(a),
(iii) Nor+ (A/(/l5..., /h.!» 2 Nor+ (A) HProj (A/(A,..., fh_x)) H l/+(a).
(iv) fit(/1,...,/h.1) h-l.

We construct thèse forms by induction on h. Thereby we only assume that
A fe©A1©A2©* • • is a graded finitely generated algebra over an infinité field
k, that A fe[Aj and that Ap is reduced whenver p belongs to CM (A) H U(a).

The case h 1 is trivial. So let h &gt; 1. Sing (A) is closed. So there is an idéal
bçA such that Reg (A) U(b). Let p1?..., pt be the minimal primes of A. As
ht(a) h &gt;0, they ail belong to [/(û). Clearly they also belong to CM (A). So Ap
is reduced for i 1,..., f. This shows that p1?..., pt belong to Reg (A) U(b). So

there is an élément ceb-|J!=iPi- In particular U(cA) belong to Reg (A). Now
let pt+1,..., ps be those minimal prime divisors of cA which are homogeneous
(We do not exclude the case s^f in which there are no such primes). Clearly
ht(pt)= 1 for t&lt;i^s. This shows that pt+1,... ,ps belong to U(a). So, according
to (4.1) there is a form fea-piU- • • Ups such that:

fReg+ (A/fA)2Reg+ (A)HProj (A/fA)nU+(a),
[Nor+ (A//A) 2 Nor+ (A) HProj (A//A) H l/+(a).

Let q be a minimal prime divisor of /A. q is homogeneous and of height one.
This implies that qe U(a) and that qe U(cA) (as£ U(cA) would imply q pt for
some i € {t +1,..., s}). So q belongs to Reg (A) H V(/A) H l/(a), thus corresponds
to a generic point p of Proj (A/fA) which belongs to Reg+ (A) H l/+(a). By (*) we
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have p € Reg+ (A/fA), thus qe Reg (A/fA). This shows that the minimal primes of
A/fA belong to Reg (A/fA).

Put Â A/fA, ô a-Â. As /eo-piU- • -Upt we clearly have ht(a) h-l.
Let p€l/(p) be a homogeneous prime such that Âp is CM. By the previous
remark the minimal primary components of Âp are in fact ail prime. As Âp is CM,
it is unmixed. So Â# is reduced. Therefore we may apply induction to the pair
Â, a to find form /2,..., fh-\ e À such that:

(i) (/2,..., fh-ù is reduced for any homogeneous prime pe U(a) such that
Âp is CM.

(ii) Reg+ (Â/(/2,..., /h-O) 3 Reg+ (A) HProj (Â/(/2,..., /H-i)) H U+(ô),
(iii) Nor+ (A/(/2,..., /h-x)) 2Nor+ (A) HProj (A/(/2,..., fh^)) H l/+(g).
(iv) hr(/2,...,/h_1) h-2.
Now, put /i / and let /2,... ,/h_!€A be forms which respectively lift

f2,..., fh-\. Let peU(a) be a homogeneous prime such that Ap is CM. If fi^p,
we have (fu /h-i)Ap Ap, thus statement (i). If fx e p, p pÂ belongs to U(a).
As Ap is reduced fx£pt U • • • Upt implies that /x is regular with respect to A. So

Âj Ap//Ap
_

is a CM-ring. Therefore by (i) (fu /h_x)AJfxAp
(/2» • • • &gt;/h-i)Aï is reduced. So (/j,... ,/h_!)A is reduced, which proves (i). (iv)
follows by (iv), whereas (ii) and (iii) are induced by (ii), (iii) and (*).

(4.3) COROLLARY. Let X be a quasiprojective variety over the algebraically
closed field k. Let ZçX be a closed subset of codimension h&gt;0 and such that

X-Zis CM. Let §^€xbe a cohérent idéal such that Z V(J). Then there is a

locally complète intersection idéal SE&lt;^$ of codimension h~\ such that
(i) S£p cOXtP is reduced for ail peX~Z,
(ii) Reg(V(&gt;))2Reg(X)nV(i?)n(X-Z),
(iii) Nor(V(i?))3Nor(X)nV(^)n(X-Z).

Proof. X may be written as an open dense subset of a projective variety X. Let
ZçXbe the closure of Z. Then Z also is of codimension h with^respect to X (as

X is dense in X). As ZHX Z there is a cohérent idéal $^6X such that
V(J) Z and such that J|x J. Now apply (4.2) to X, J and Z to get a complète
intersection 3îÇz$ of codimension h-\ such that:

(i) «^ is reduced for ail pe(X-Z)HCM(X),
(ii) Reg(V(^))2Reg^
(iii) Nor (V(iÇ))2Nor(X)n

_
Setting «S? .Se|x our statement follows as (X-Z)nX X-Z, CM(X)HX
CM(X)2X-Z.

(4.4) COMPLEMENT. 1/ in (4.3) X-Z CM(X), (ii) may be replaced by
(ii)&apos; Reg(V{&lt;£))2Reg(X)H
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Proof. In this case we clearly hâve Reg(X)cX-Z.

Let Y be a closed subset of a locally noetherian scheme X and let $ c Çx be
the idéal of sections vanishing at Y. We say that Y is normally torsion-free with
respect to X if $ is normally torsion-free in 0x-

Let M^€x be a cohérent idéal. We say that M is generically a complète
intersection idéal if ipÇÇXp is a complète intersection-ideal for each generic
point p of V(M) (which means that M^ may be generated by h éléments, where
h ht(Mp)). We say that Y is generically a complète intersection with respect to
X if its idéal $ of vanishing sections is generically a complète intersection. If X is

an algebraic variety (or generally an excellent scheme) this is équivalent to saying
that each irreducible component of Y leaves the singular locus Sing (X) of X.

(4.5) LEMMA. &quot;Let Xbe a noetherian scheme and let Y^Xbe a closed subset

of pure codimension h which generically is a complète intersection with respect to X.
Consider the blow-up Blx (Y) Proj (9t(/))-^X, where ^c(?x is the idéal of
sections vanishing at Y. Then it holds

(i) Reg(Blx (Y))27r-1((Reg(X)nReg(Y))UReg(X-Y)).
If Y is normally torsion-free with respect to X it holds

(ii) Nor (Blx (Y)) 2 TT^Nor (X)).
(iii) If Y is moreover irreducible we also hâve
Fac (Blx (Y)) 2 7T-1 Fac (X)).

Proof. The resuit is of local nature. So let X= Spec (i?), I^R, where R is a

noetherian local ring and where I is a reduced idéal, which is of pure codimension
and generically a complète intersection. Now (i) is clear, as Proj (9t(J)) is regular if
R and R/I are. To show (ii) assume that R is normal and that I is normally
torsion-free. It suffices to show that Proj (91(1)) is normal under thèse assump-
tions. In fact it holds even more, namely 91(1) is normal [6, (6.10)], so that
Proj (91(1)) is arithmetically normal. To prove (iii) we may assume that JR is

factorial, that I is prime and restrict ourselves to show that Proj (91(1)) is locally
factorial. Let xu..., x, be a System of generators of I, which are ^ 0. Then Proj (91(1))

has an affine open covering by the sets Spec A, : R ~,..., — 1 (i 1, 0&lt;

So it suffices to verify that the rings A, are factorial. As I is normally torsion-free
the prime divisors of the idéal xlAl retract ail to the prime I in R (observe that

xA HSpec (A,), lïWjcmi))))- As Rt is regular Proj (91(1 • R^/EUil • Rt)) is a

projective space over the field K(I) : RJI • Rt. So xl(Al)I is a prime idéal of
(At)r. In view of the above remark on the prime divisors of xlAl this latter idéal is
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prime. Qearly AxI — JR^. So At\— is factorial. Thus it is well known that A. is

factorial, too, [17].

(4.6) Remark. The previous proof shows that (ii) may be sharpened to
Nor &amp;t(J)) 2 A&quot;1 Nor (X), where A : Spec (dt(£)) ^ X is defined canonically. So, if
YgXis normally torsion-free, of pure codimension and generically a complète
intersection, Blx (Y) is arithemtically normal, if X is normal.

Proof of Theorem (1.1). We use the notations of the introduction and of (2.6),
(2.15), assuming that dim(W)^0. Choose ^,bç&lt;9v according to (2.15). Observe
that V(b) W is of pure codimension d (or empty). According to (4.3) there is a

locally complète intersection idéal 5£ c fc of codimension d -1 such that ££p c (7V p

is reduced for ail p e V- W and such that Reg (VOS?) 3 Reg V) H V(«S?) (choose

§ — b and observe (4.4)). In particular C:= V(«S?) is a (reduced) curve. Define É
as in (2.15). We claim that É is the idéal of sections vanishing at C, thus that
&gt;/]?= j£ As C is of pure dimension one (as 5£ is of pure codimension d — 1) we
hâve «S?p =«3?p V££P, for ail generic points p of C ((4.3)(i)), for thèse points are

not closed, thus outside W. As ^çV^this shows that Jlt=È (as both of thèse

ideals hâve no embedded component and are of pure dimension 1). So our claim
is shown. According to (2.15) it follows that C is normally torsion-free with
respect to V and that Blv (C) Proj (dl(Ê)) is CM. As £p i?p for ail generic
points we also see that C is a generic complète intersection. Let p any point in

Cn Reg (V). Then we hâve SEV Ép (as £v is reduced), thus €CfP GvJ£ep. This
shows that peReg(C), and it follows Reg(C)2Reg(V)nC So the canonical

map tt:B1v (C) —&gt; V préserves regularity and normality (this latter even arithmet-
ically) (4.5), (4.6). This proves (1.1).

(4.7) Remark, (i) If we may choose C irreducible in addition, it follows by
(4.5) (iii) that ir even préserves local factoriality. (ii) If dim(V)^3 and if V is

normal we know that Blv (C) is arithemtically CM (see (2.15)). We already hâve

remarked above (4.6) that B1V(C) is arithemtically normal. This proves (1.4).
(1.3) is also clear by the previous remark.

Proof of Theorem (1.2). We use the notations of the introduction and of (3.5),
assuming moreover that dim(W) l. This latter implies in particular that d

dim(V)5*3. Let $ be the idéal of sections vanishing at W. Choose bç(9v
according to (3.5). b is of codimension d-1. Now apply (4.3) (with b JO to
obtain a locally complète intersection idéal «Sfçb of codimension d-2 such that
i?pc(?ViP is reduced for ail peV-W and such that Reg(V(J?»2
Reg(V)nVCSP). Define É as in (3.5). Clearly S:= V(ï£) is a pure surface. In
literaUy the same way as in the proof of (1.1) we may verify that É is the idéal of
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sections vanishing at S and that S is a generic complète intersection. So, observing
(3.5) and arguing as in the proof of (1.1) we see that the blow-up X: Blv (S)
Proj (dt(É)) -^&gt; Vpréserves regularity and normality. So it remains to define TgX
in the appropriate way. Let Z be the set of closed points of S. €X/ÊÛX is the
structure-sheaf of the exceptional fiber &lt;p~x(S) of &lt;p. Let peZ. We claim that the
idéal mp • GXIÈ€X is of codimension 2. As &lt;p~l(S) is of pure dimension d-1, it
suffices to show that &lt;p~~x{p) is of dimension d-3. But this is a local resuit, which
follows by (2.10) (applied with M &lt;9V,P, L l£p), as this latter shows that «S?p is a

minimal réduction of ££p (in the sensé of Northcott-Rees). This proves our claim.
Our next claim is that Ass (ÛX/ÊÛX) has no embedded member. So let q be

any of the points associated to ÛXIÊOX. As T is normally torsion-free we must
hâve ç(q)eAss(6v/É). So q&apos;:=&lt;p(q) must be a generic point of S. As S is a

generic complète intersection we see that q&apos;€Reg(V). As &lt;p préserves regularity
we hâve q e Reg (X). As (ÉXJx)q is a principal idéal in OX,Q {ÈOX is invertible), q

may not be embedded. This proves the second claim.
Both claims together imply that Hz(GxIÈ€x) is a cohérent sheaf over €XIÈ€X

(s. for example [3, (3.1)] and use an affine open covering of &lt;p&quot;1(S)). This shows
that dim(V(b))^0, where b ann^ (H^(€X/ÊÛX)). Therefore clearly b is of
codimension 3* 2 in 6S. Applying (4.3) to S and b we obtain an invertible ^çb
such that ipÇ0SiP is reduced for ail peS-V(h) and such that Reg(V(J{))2
Reg(S)Pl V(M). Finally let T= V(M • ÛXIÉÛX=M • ^-t^çç-^S). We claim
that the closed subset TçX is of the requested type. As ç~x(S) is of pure
dimension d-1 and as T is a hypersurface in &lt;p~1(S), T is of codimension 2 with
respect to X. It remains to show that the blow-up ifs: Blx (T) —&gt; X is a Macaulayfi-
cation which préserves normality and that &lt;p ° iff préserves regularity. To prove
this we choose a point peZ and put J^ (?v,p,m mp, L ifp, £ Ép, Xo
Proj (9t(£)) and define No ç û^ as the idéal of sections vanishing at the closed set

To:=TnXoçXo (p~1 (Spec (R)) {qeX| p€{&lt;p(q)}}. Consider the canonical
morphisms &lt;p0 : Xq -&gt; Spec (R) and Yo BlXo(T0) Proj (SR(jV0))—^Xo. It suffices

to show that Yo is CM, that ifj0 préserves normality and that &lt;p0 ° i^0 préserves
regularity.

Note that R, m, L, L satisfy the hypothèses of (3.10) and that &lt;p0 préserves
normality and regularity. Assume first that p^ V(M). Then clearly TC\Xo 0, so
that Yo Xo. As &lt;p0 préserves regularity and normality, it remains to prove that Xo
is CM in this case. By our choice of p we hâve bp 6SjP so that H^(&lt;?Xo/L&lt;?Xo)

^ 0. So we have €Xo/LeXo Dm(€Xo!LeXo) (observe that
0 by the normal torsion-freeness of L). But the righthand term

equals Proj (Dm(Gr (£))), which latter is CM by (3.10). Therefore the exceptional
fiber &lt;p~l(S) is CM, which induces that Xo is CM.

Finally let pe V(M). Then we find an élément yem such that Jtp y • R/L
(note that 6StP R(L). By our choice of M we have yH^(0Xo/£(?xo) 0, ht(L, y)
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d-1. Clearly it holds Jf0 V(L, y)©^ C^o^^Xo *s the idéal of sections vanishing
at To). We claim that Jf0 also may be written as Uj (OÙ y)0Xo&apos;rvf)0Xo-:3C0: As
&lt;p~l(p) is of dimension d -3 and as T is of dimension d - 2, no generic point of T
is mapped to p. This shows that X0^Jf0, thus VX^ Jf0. So it remains to show
that Xo is reduced. By (3.11) 3Sf0 has no embedded component. So we only hâve
to proof that (X0)q £ Ox^q is reduced for any generic point q of To. Let p e
Spec(1?) be the image of such a point q. As s^p, se V(y • JR/L), dim(R/L) 2, p
corresponds to a point of codimension one in S. In particular p corresponds to a

point s€S-V(b) so that Ms is reduced. This means that (L,y)Rp pRp. In
particular we see that (R/L)p is a discrète valuation ring. Clearly xl9..., xd-2
(minimal System of generators of L) form a pJRp-S+-sequence with respect to JRP

and it holds Lp DpRv(Lp). So (Gr (L)\ Gr (LRp)pRp is a polynomial algebra
over RJLP (R/L)p, thus regular. Moreover Gr (L)p Gr (LRP) is a finite bira-
tional extension ring of Gr (Lp)pR* (use (2.13)(i)). So both rings coincide. This
shows that Gr (L)p is a polynomial algebra over (R/L)p. Therefore y • Gr (L)p
p(R/L)p - Gr (L)p is a prime idéal of Gr (L)p • Oxq/LOxo is the structure sheaf of
Proj (Gr (L)); this shows that ((£, y)©^ is a reduced idéal of O^. This clearly
proves our claim.

The last argument shows that (3£0)q — ((£&gt; y)^Xo)q f°r a^ generic points q of
To. As LÇxo îs invertible and as T is of pure codimension 2, it follows that T is a

generic complète intersection of pure codimension. Xo is the idéal of sections

vanishing at T. So-by (3.11) - T is also normally torsion-free with respect to Xo.

Applying (3.11)(ii) and (4.5)(ii) we see that Y0 Proj ($R(aro))-^L&gt;Xo is a

Macaulayfication which préserves normality (even arithmetically).
It remains to show that &lt;po^o préserves regularity. So let re Yo be such that

pi^cpo&apos; tlfo(r)eRcg(R). p corresponds to a regular point s of V, and therefore
specializes to a closed point p&apos; of V which is regular. Replace p by p&apos;. This allows
to assume that R is regular. Then, by our choice of SB we hâve R/L R/L and
this ring is regular too. In particular Gr (L) is a polynomial ring over R/L and Xo
is regular, as &lt;p0 préserves regularity. Moreover - by our choice of M - we
either hâve p$É V(M) or we may assume that y is a regular parameter with respect
to JR/L. In the first case we are done by the above. In the second case

Gr (£)/y Gr (L) is regular. So To is regular (observe that in particular JCQ

(L, y)€xo&gt; as this latter is a complète intersection in the regular scheme Xo and so
has no embedded component). Now we see by (4.5)(i) that Yo BlXo(To) is

regular.

Conclusive remark, The Macaulayfications we give in (1.1) and (1.2) clearly
also préserve the property of being a complète intersection point or a Gorenstein
point. To see this notice that the occurring centers C, S and T of our blow up are
sçheme-theoretically complète intersections in those points of the ambient variety
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which are complète intersection points or of Gorenstein type. But blowmg up a

local scheme at a complète intersection idéal clearly préserves the two properties
m question. More generally, any propery P (of local nature) is préservée under
our birational models if only it satisfies the following axioms:

If a local ring satisfies P, it is CM.
If a local ring R satisfies P, R/xR does for any regular xeR.
If, for a local ring R and a regular élément xeR, R/xR satisfies P then JR

does too.
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