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Explicit resolutions for the binary polyhedral groups and for other
central extensions of the triangle groups

Ralph Strebel

Géométrie background and algebraic results

This paper will exhibit two classes of finitely présentée! groups for which
explicit free resolutions can be obtained by direct algebraic calculations. The
resolutions will be either periodic of period 4, or of length 3.

1. The groups of the fîrst class are central extensions of the triangle groups,
admitting a 2-generator 2-relator présentation. Speciflcally, let /, m, n be integers
with min(|l|,|m|,|n|)^2 and define

G G(l, m, ») &lt;«, 0; a1 0m =(a0)n&gt;. (1)

In the sequel the canonical images in G of a, resp. |3, will be denoted by a,

resp. b.

The élément (ab)n of G is central, being a power of either generator, and the
central quotient G(l, m, n)/((ab)n) is the triangle group

T= T0, m, n) &lt;a, 0; a1 0m (aj3)n D

&lt;a, 0, y; a1 0m yn «07 1&gt;. (2)

Every triangle group T can be realized faithfully as a group of isometries of the

sphère S2aM2 when lll^ + lml^ + lwl&quot;^! (or, equivalently, if T is flnite), of the
Euclidean plane if |{|~1-l-|m|&quot;&quot;1 + |n|~1 1, or of the hyperbolic plane if
|/|~1 + |m|~1 + |n|~1&lt;l. This action of T leads in ail three cases to a tesselation of
the space in question by pairs of adjacent triangles - whence the name &quot;triangle

group&quot;. (See, e.g., [10], and the références cited there for proofs and more
détails.)

2. Each of the groups G(l,m,n) occurs as the fundamental group of a suitable

Seifert fiber space. Such a space M is a compact 3-dimensional manifold equipped
with a foliation by circles, called fibers. The set of ail flbers forms the orbit space,
which is a compact surface. The neighbourhoods of a fiber are fibered solid tori
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434 RALPH STREBEL

with the given fiber as their core, and depending on how thèse solid tori are
fibered, the given fiber is called exceptional or ordinary. From the fact that M is

compact it follows that there are only finitely many exceptional fibers.
In the spécial case where the orbit space of M is the 2-sphere and where there

are three exceptional fibers, the fundamental group F of M has a présentation of
the form

F &lt;a, 0, 7, Cl a1 Cl\ |8m Cm\ yn C\ «07 CP and is central).

Hère the pairs (I, V), (m, m&apos;) and (n, ri) are relatively prime, min (|I|, |m|, |n|)^2
and p is an arbitrary integer. For /&apos; m&apos; 1, ri — 1 and p 0, the group F is

isomorphic with G(l, m, n). (See H. Seifert [15], or [13], for more détails and

proofs.)
If the fundamental group F of a Seifert fiber space M is finite, it admits a

faithful représentation p:F&gt;-+ SO4(U) for which the induced action on S3cz[R4 is

fixpoint-free and the quotient space p(F)\S3 is homeomorphic to M (W. Threlfall
and H. Seifert [20, Part II, p. 568, Hauptsatz]). From this fixpoint-free action of F
on S3 one can deduce (see, e.g., [2, p. 154]) that there exists a ZF-free resolution
P-» Z which has period 4 and is finitely generated in each dimension; in
particular, this is true for the finite groups G(f, m, ri).

If the fundamental group F of a Seifert fiber space M is infinité, M is in most
cases aspherical, as can be deduced from the sphère theorem (see [13, p. 56, Satz

5] for a précise statement). In particular, the spaces with an infinité G(l, m, ri) are
aspherical, whence the infinité groups G(f, m, ri) must be Poincaré-duality groups
of dimension 3.

3. Our first resuit describes for each G G(i, m, ri) an explicit ZG-free resolution

of Z. Thèse resolutions will hâve the same form up to dimension 3 for ail

groups, they be finite or infinité, and will permit one to read ofï many properties
known on topological grounds. The proof will be uniform for ail groups.

In order to define the resolution, choose the defining relators

~m and s Oa)na~l (3)

for G(i, m, n); thèse relators do define G(l, m, n), as can be checked speedily. Let
F be the free group on {a, £}, and let Da, resp. D3, dénote the composite of the

partial dérivation d/da:F-*ZF, resp. d/d/3:F—»ZF, and the canonical ring
epimorphism ZF-*&gt; ZG.

THEOREM A. If G G(J, m, n) and r, s are as before, the séquence of left
ZG-modules and ZG-homomorphisms

(l-M-a) __.,-.- -t, „ -, ^ZG_&gt;/ ^Q (4)



Explicit resolutions for the binary polyhedral groups 435

is exact (Hère e :ZG-» Z takes geG to 1 eZ.) Furthermore: (i) If G is finite, the
kernel of the left-most homomorphism is infinité cyclic, generated by the élément
y {g | g € G}; therefore (4) leads by splicing to a periodic resolution with period 4.

(ii) If G is infinité, the left-most homomorphism is injective and (4) is a ZG-free
resolution of Z; moreover, G is an orientable Poincaré-duality group of dimension

3.

4. The groups of the second class are central extensions of 1-relator groups. Let
F be the free group on {au an} and let p be a non-trivial élément of F which
is not a proper power. Define

L &lt;a1,...,an;[pI,a1],...&gt;[pI,aB]&gt;, (5)

where / ^ 1 and [p1, aj : pl • a, p~l • a&apos;1. For i 1,..., n, let al s L dénote the
canonical image of a, g F, and let D^ be the composite of the partial dérivation

t
: F —» ZF and the canonical ring epimorphism ZF -*• ZL.

THEOREM B. If the notation is as before and n^2, the séquence of left
ZL-modules and ZL-homomorphisms

is a ZL-free resolution of Z.

The groups L are only in spécial cases Poincaré-duality groups of dimension 3.

As we shall prove in Theorem 9 this happens if, and only if, F admits either a

basis £i&gt; *h, • •, £g, *ïg such that p [&amp;, v\{\ [£g, Tjg], or a basis
£1» &amp;&gt;•••&gt; £g f°r which p £Î £g. It follows that the Poincaré-duality
groups in the second class of groups are fundamental groups of Seifert fiber spaces
which hâve at most one exceptional fiber and an orientable, or non-orientable,
closed surface of genus g &gt; 0 as their orbit space.

1. Some gênerai facts about the groups G(2, m, n)

Let /, m, n be arbitrary integers and set

G Gtt m, n) (a,p;al pm= (aj3)n).

As before we dénote the canonical images in G of a, P by a, b.
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Normalization of the parameters. The defining relations of G imply that
(ab)n (ba)n and so the assignments a«-&gt;b, /3&gt;-»a induce an isomorphism
G(l,m,n)^&gt;G(m,l,n). Similarly, the assignments a»-»a&quot;1, /3&gt;-»afc lead to an

isomorphism G(l,m,n)-::&gt;G(-lfn,m). Thèse two types of isomorphisms allow
one to make any of f, -l, m, -m, n or ~n the third parameter and so we can
assume that n min (|I|, |m|, |n|). By exchanging l and m, if need be, we arrive at
the normalization

l^m and min (|l|, |m|)^n^0.

The groups G(l, m, 0) are free products (a) * (b), whereas the groups G(i, m, 1) are
ail cyclic; indeed one has

As the results of this paper are of little interest when specialized to cyclic groups
or to free products of cyclic groups, we shall henceforth assume, as we did in the
introduction, that min (|J|, |m|, |n|)^2. The previous normalization can then be

sharpened to

l^m and min (|1|, |m|)^n^2 (7)

Isomorphic groups. Différent triples satisfying this normalization condition
yield in gênerai non-isomorphic groups, as is revealed by our

THEOREM 1. Let (ll9 ml9 n^ and (l2, m2, n2) be ordered triples of integers
satisfying (7). If G(ll9 ml9 nx) and G(l2, m2, n2) are isomorphic, then either both
ordered triples are equal, or the two triples are related to each other as are (Z, n, n)
and (n, -I, n).

For infinité groups Gi^m^n^ the assertion of Theorem 1 can be deduced from
a far more gênerai resuit of P. Orlik et al. on the fundamental groups of Seifert
fiber spaces [13, p. 53, Satz 4]. However, whereas the proof of this more gênerai
resuit is quite complicated, Theorem 1 can be established by merely comparing
the central quotients GCk m,, nI)/^G(tl, m,, n,) and the abelianizations

Gih ml9 nI)ab; for this reason we give an independent proof. Before embarking on
it we détermine the abelianization of the group G(l, m, n).

Computation of the abelianized group. The relators r (a|3)nj3~m and s

(/3a)na~l, which can be used to define G, lead to the relation matrix jR
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of Gah. Put another way, Gab is isomorphic to the cokernel of the

homomorphism Z2-^&gt;Z2 that takes (je, y) to the matrix product (x, y) • R. The
déterminant of JR is

det R (l + m)n -lm lmn{l~x + m&quot;1 - n~l), (8)

and so the theory of elementary divisors implies that

Gab=Z/ZexZ/Zer (9)

where e gcd(l, m, n) and e&apos; det R/e.

Proof of Theorem 1. Set G, G(4, m,, n,) for i 1 or 2. We contend the
élément (ab)n* générâtes the centre of G,. To see this, let (/, m, n) be a triple
satisfying (7) and let T= T(l, m, n) be the corresponding triangle group. If T is

infinité, its centre is trivial (see, e.g., [22, p. 126, 4.8.1]). If T is finite, it is either
dihedral, or it is polyhedral, i.e. isomorphic to 5ï4, ©4 or Sï5, and £T will be trivial
except in case T is a dihedral group the order of which is divisible by 4. It follows
that (G(l, m, n) ((ab)n), except possibly if G is isomorphic to G(fc, ±2, 2) where
|fc|^2 is even. Thèse exceptional groups hâve the alternative présentation

G(fc, 2, 2) (a, 0; ak 02, pa^&quot;1 a&quot;1)

(feS2)

and

G(k, -2, 2) - (a, (3 ; ak /3~2, Pa^&quot;1 a&apos;1 fi&apos;4)

Every élément g eG(k, ±2,2) is of one of the forms ah or ahb; the centrality
condition bgb~l g implies that a2h 1 in the first and that a2hik~l)=l in the
second case. Now the order of a in G(fc, 2, 2) is 2fc, while the order of a in

G(k, -2, 2) is 2fc(fc -1); see, e.g., [5, §6.5, pp. 68-70], or the discussion below. So

h is a multiple of k in either case. Since b is not central, we conclude that

Assume now that Gi G(lumi,n1) and G2= G(i2, m2, n2) are isomorphic.
Then so are 7\ T(/x, m1? nO Gx/^Gx and T2 T(l2, m2, n2). But Tx and T2 can

only be isomorphic if the unordered triples fl/J, \nii\, \rii\} and {|Î2|, |m2|, |n2|}

coincide; this assertion is obvious if the Tt are finite and it follows for the infinité
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triangle groups from the fact that the éléments of finite order of Tt hâve order
dividing M, \mt\, K| and that the orders M, \mt\ and |nj occur (cf. [22, p. 126,
Thm. 4.8.l.a)]). The normalization (7) now implies that nt n2 n. In addition,
we hâve that

{|M,|m1|} {|y,|m2|}. (10)

Next we exploit the fact that (G^ and (G2)ab are isomorphic. In view of (8), (9)
and (10) this fact leads to the équation

where e ±1. Suppose first that 8 1 and set \i: lï1 + mï1 l21 + m2\ Clearly

&gt;0, or ll&gt;0,ml&lt;0 and J,&lt;|m,|

ml, or ll&gt;0,ml&lt;0 and t^mj
Making use of thèse case distinctions and of (7), (10) one vérifies quickly that
lï14-mï1 l2l + m21 implies that lx l2 and m! m2.

Finally let e -1. Then

If ail four summands of the left hand side are positive, (7) and (10) imply that
lx - l2 and m1 m2. If one summand of the left hand side is négative, it follows
from (10) and (7) that two summands must be the négative of each other, whence

(7) implies that the two remaining summands are equal to n~l. So we are in the

spécial case where the two ordered triples are of the form (l, n, n) and

(n,-l,n). D

We proceed to détermine when the abelianized group G^ is infinité and when it
is trivial.

Groups with infinité abelianization. Assume the parameters are normalized as

in (7) and G^ is infinité. Then I&quot;1 + m&quot;1 n~x by (8) and (9), and l and m will be

positive. Set d gcd(l, m)&gt;0 and /= l/d, resp. g m/d. From n&quot;1 l~l + m~l

(/+ fÙldfg one sees that n is a multiple of /g, say n e • /g, and so d becomes

e(/+g). This shows that I, m, n are given by

n e-/g,
[where e ^ 1 and /, g are relatively prime positive integers.
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Conversely, every triple (1, m, n) given by (11) satisfies l~l + m&quot;1 n&quot;1. Therefore
(11) characterizes the normalized triples leading to an infinité abelianization Gab.

Note that Gab Z/Ze xZ by (9).
Perfect groups. If Gab is trivial, i.e. if G is perfect, the parameters l, m, n satisfy

by (8) the équation (l + m)n-lm ±l, which can be rewritten as

(l-n)(m-n) n2Tl. (12)

The intégral solutions of (12) are easily surveyed; an infinité séquence of solutions
is, e.g., given by the formula

(J, m, n) (2n + l,2n-l, n) where n^2.

For rc 2 équation (12) has the normalized solutions (5,3,2) and (7,3,2). The
first gives the binary icosahedral group, the second the infinité group

discussed in [7].
Analysis of the finite groups G(l, m, n). We begin with the question which

triangle groups T(Z, m, n) are finite. The answer is that this happens if, and only if,
|î|&quot;1 + |m|~1 + |n|~1&gt;l. This answer is usually justified by letting T act on a

suitable space in the way indicated in 1 of the introduction. There is also a

little-known algebraic argument due to P. M. Curran [6]; it is in the spirit of the

proofs of this paper and runs briefly like this: Verify first that the canonical
images of a, |3, y in

T(I, m, n) &lt;a, ft y ; a1 pm yn aj37 1&gt; (14)

hâve orders I, m and n by constructing suitable quotient groups in which the
canonical images of a, f$, y hâve the desired order (see, e.g. [22, p. 135]). Then
use the following

LEMMA 2 (P. M. Curran [6, p. 620]). Lef I, m, n be positive integers and set

S &lt;a,(3,7;a&apos; 0m 7n P l&gt;, (15)

where p is an arbitrary élément of the free group on a, ft y. Dénote the canonical
images of a, fi, y by a, b, c, and let F, m, n be their orders. If S is finite then
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Proof. Since S is finite, H\S,ZS) 0. On the other hand, H\S,ZS)
kerdf/imd* can be computed by means of the exact complex of
left ZS-modules and ZS-homomorphisms associated with the presenta-

(D«&lt;*
0 0 \ * v

0 0 Dyyn\ (\~b\

tion (15); cf. [2, p. 45, Ex. 3(d), or p. 90, Ex. 4(c) and (d)]). Clearly
• ZS and so rank (im d*) \S\ — 1. Next ker
(1 — a) • ZS and hence rank ((1— a) • ZS) |S|(1 — 1/T);

similar statements hold for the two other, analogous maps. It follows that ker d*
equals the kernel of

ZS&lt;(Pqp&apos;PpP&gt;IV)((l-a) • ZS0(1-5) • ZS0(1-c) • ZS)transposed

and thus rank (kerd*) |S] ((1 —1/T) + (1 —l/m) + (l + l/n) —1). The claim then
follows from |S| -1 rank (im d?) rank (ker d*).

To complète the détermination of the finite triangle groups T(l, m, n), use that
a change of the order or the signs of the parameters /, m, n does not influence the
isomorphism type of the group; so one can assume that l^m^n 2. The
solutions (J, 2, 2) of l&apos;1 + m&quot;1 + n~~l &gt; 1 yield the dihedral groups of order 21; the

remaining three solutions (i, 3, 2), where Z 3, 4, 5, give the polyhedral groups
«4, ©4 and «5 (cf. [5, p. 7 and p. 67]).

We now pass to the finite groups G(l, m, n) and begin with the simple

LEMMA 3. If min(|/|,|m|,|n|)^2 and T=T(lm,n) is finite then G
G(l, m, n) is likewise finite.

Proof. Assume the parameters are normalized as in (7). As T is finite one has

n 2 and |t|~1 + |m|~1&gt;l/2; a comparison with (11) discloses that Gab is finite
The central extension (al)&lt;G-*&gt; T gives rise to the exact séquence

H2G —» H2T —» (a1) —» Gab—&gt; T^ —»0. (16)

Since T is finite, H2T is so, and then (16) shows that (a1) and hence G are
finite. D

The détermination of the finite groups G(l, m, n) can be completed as follows:
By (7) and the previous reasonings n can be assumed to be 2. Since G is a finite
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2-generator, 2-relator group, its multiplicator H2G is trivial (see, e.g., [2, p. 46,
Ex. 5]). The central extension (al)&lt;\G -» T gives rise to the exact séquence (16),
the exactness of which implies that

\(al)\ \Gab\&apos;\H2T\-\Tab\-\ (17)

The quotient \H2T\ • \Tab\~x can be shown to be 2/4, resp. 2/3, 2/2 or 2/1 for
TU 2, 2), resp. T(l, 3, 2). On the other hand, Gab is by (8) and (9) equal to 4,

resp. 3, 2 or 1 for the spécial cases G(i, 2, 2), resp. G(J, 3, 2), the parameter l

being positive.
It follows that |(aI)| 2 in ail thèse spécial cases and so thèse groups are the

binary dihedral, resp. polyhedral groups (cf. [5, §6.5]).
Now let G(l,m, 2) be an arbitrary finite group and set

Because a^ b]™^ (ciobo)2 has order 2, the assignments a«-&gt;a0, |3&gt;—»b0 extend to
an epimorphism G-*&gt; Go and give rise to a central extension

Go. (18)

By (17) and (8), (9) the kernel (a21) has order

The séquence (18) will split whenever u{l, m) and the order of Go= G(\l\, |m|, 2)

are relatively prime. Upon computation one finds that the values of u(l, m)
corresponding to the séquence of signs + -, - +, 4-+ are

31,19,11 and 1 for the triple (5, 3, 2) with \G0\ 120

13, 7, 5 and 1 for the triple (4, 3, 2) with |G0| =48

7, 3, 3 and 1 for the triple (3, 3, 2) with \G0\ 24

f -f 1, l -1, 1 and 1 for the triples (ï, 2, 2) with \G0\ 4.1

Hence the only extensions (18) which may not split correspond to the groups
G(-3, 3,2) G(3,-3,2) and G(l, -2,2) for odd 1^3. Thèse extensions do in
fact not split, as can be seen from the 5-term séquence

0 -* 0 -&gt; (a21) -» G^ -+ (GoU -&gt; 0

induced by (18) and the facts that Gab is cyclic in ail thèse cases, while |(a2I)| and

l(G0)abl are not relatively prime.
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2. Proof of Tfceorem A

The proof relies on two auxiliary results. The first of them asserts that
séquence (4), occurring in the statement of Thm. A is always a complex and that it
is exact if Hl(G, ZG) is trivial; it can be established by an easy calculation. The
second resuit shows that H1(G, ZG) is trivial for our groups G; its proof makes
use of an argument of Serre&apos;s and Stallings&apos; characterization of finitely generated
groups with infinitely many ends.

Let F F({a, ^}) be the free group on a and j3. As in the introduction set

r (ap)np~m and s (/3a)na~l, and define G G(I, m, n) : (a, j8; r, s). Assume
imn^O.

LEMMA 4. Let d3:ZG^&gt;ZG2 and d2:ZG2-*ZG2 be the homomorphisms of
left ZG-modules given by multiplying on the right by the matrices

-6,1-a) and (%&apos; %*).

Then imd3ckerd2 and the homology group kerd2/imd3 is Z-isomorphic with the

first cohomology group HX(G,ZG). Moreover, if H1(G,ZG) is trivial so is

H2(G, ZG).

Proof. We shall compute H1(G, ZG) by means of the well-known exact

séquence

ZG2-^ZG2-^-*ZG--^-»Z &gt;0, (19)

where d2 is as above, d^À, /ui) À(l-a)4-jx(l-b) and e:ZG—&gt;Z is the unit
augumentation (cf. [2, p. 90, Ex. 4]). For reasons that will become clear at a later
stage of the proof we extend (19) by adding d3 to the left ending up with the

séquence

(l-b, 1-a) AD s Dos) \l-b/ eZG2^tUZG2±^&gt;ZG &gt;Z-»0. (20)

Note that at this stage the séquence P is not known to be a complex.
The dual séquence P* HomZG (P, ZG) can be described in dual bases as

(Uar DBr\ (l-a\
(l-b, 1-a) „ iDi O_sl _ \l-bl

ZG&lt; ZG2^-= ^-ZG2&lt; V ; ZG, (21)
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where ail modules are right ZG-modules and the matrices describe ZG-linear
homomorphisms by multiplication on the left. In order to revert to left ZG-
modules we use the ring antiautomorphism t:ZG^»ZG, obtained by extending
the inversion g^g&quot;1 in the group Z-additively. This transforms (21) into the

séquence of left ZG-modules

/t(O r) t(D s)\ A-fc&quot;^

ZG &gt;ZG2±—- ^&gt;ZG2 ^ 1 &gt;ZG. (22)

Also HX(G, ZG) ker af/im d% is Z-isomorphic to the homology of (22) at the left
middle module ZG2.

So far only the fact that G is given by a 2-generator 2-relator présentation has

been used. We now bring into play the pecularity of G that the assignments
a*-+a~1, p*-^b~x induce an automorphism a.G^G; indeed

(a-1b-1)n • (b-ym (fca)-nbm bm(abYn {{abTb^Y1 1

and, similarly, (6~1a~1)n • (a&quot;1)&quot;1 1. By means of this isomorphism cr and by
exchanging the two summands of both middle modules ZG2 in (22) we arrive at
the isomorphic séquence

/crr(D s) crr(D r)\
(1-b.l-a) {ar(Das) crr(E&gt;ar)

ZG &gt;ZG -*ZG —-——+ZG (23)

Observe that we know at this stage that the homology is defined at the middle left
term and that it is isomorphic to Hl(G,ZG). Our aim is to verify that the
(2 x 2)-matrix displayed in (23) is identical with the (2 x 2)-matrix of the séquence
P defined in (20). Once this is known, P-*» Z must be a complex and its homology
in dimension 2 equals H\G,ZG). In addition, if H1(G,ZG) 0 the complex
P-» Z is exact and can be used to compute H2(G9 ZG). If this is done, the above

manipulations show that H2(G, ZG) is isomorphic to the homology of (23) at the

right middle term, i.e. to the homology of P-» Z in dimension 1. As this
homology is a priori known to be trivial, H2(G, ZG) must be trivial and ail
assertions of Lemma 4 will be established.

The entries D^r and D^r of the (2x2)-matrix displayed in (20) are:

Dar DJ(ap)np-m) (sign n) - (1 + ab + • • • + (a&amp;)|nM) • (afc)(n&quot;|n|)/2
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and

D&amp;r D3((aj3)n/3-m) (sign h) • (a + afca + • • • + (ab)|nMa) • (afr)(nHn|)/2

- (sign m) • (1 + b + • • • + b1™1&quot;1) • 6(m-|m|)/2.

The entry D^s arises from D^r by exchanging throughout a and 6, while Das
arises from D&amp;r by exchanging a and b, and replacing m by i. The composite cr ° t
transforms a product xxx2 • • • xfc, where each factor is one of a, a&quot;1, b or b~\ into
the reversed product xk • • • x2xl5 and it is Z-linear. Using thèse facts one checks

easily that a ° r exchanges Dar and Das, while it fixes D&amp;r and Das, thèse group
ring éléments being Z-linear combinations of palindroms. It follows that the
(2 x 2)-matrices displayed in (20) and (23) are identical.

LEMMA 5. I/min(|J|,|m|,|n|)^2 then H\G, ZG) 0.

Proof. The claim is true for finite groups on gênerai grounds; but the following
argument takes care of them at no extra expense.

Let ll9 m1? n1 be integers greater than 1 and let T(Il9 m1? rii) be the corres-
ponding triangle group. By a resuit of Serre&apos;s [16, p. 85, 6.3.5] every inversion-
free action of T(ll9 ml9 n^ on a tree has a fixed point; in particular, no
homomorphic image of T(lu ml5 n^) can be a non-trivial amalgam A*CB.

Let us go back to the given group G. If a1 bm has finite order, say fe, then G
is a homomorphic image of T(lt, m1} itx), where lx k \l\, m1 k \m\ and n1
k \n\, and so it is not a non-trivial amalgam. Moreover, Gab is finite. Stallings&apos;

structure theorem (e.g. [17, p. 38, 4.A.6.5 and p. 57, 5.A.10]) therefore implies
that H\G, ZG) is trivial.

If a1 bm has infinité order, consider the central extension rL — {al)&lt;\G -» T.

It leads in cohomology to the exact séquence

H\T, H°(Z, ZG)) &gt;^ H\G, ZG) -* H°(T, Hl(Z, ZG)) -&gt; H2(T9 H°(Z, ZG))
-&gt;•••. (24)

Since Z is infinité, H°(Z, ZG) (ZG)Z is trivial; because Z is an orientable
Poincare-duality group of dimension one, H1(Z,ZG) Z®ZZZG=ZT. Finally,
since T is infinité by Lemma 3, the exactness of (24) and the previous reasoning
imply that H\G, ZG) -=» H°(T, ZT) 0, as asserted.

The proof of Theorem A is now quickly completed. By assumption
min(|l|, |m|, |n|)^2 and so Lemmata 3,4 and 5 apply. They show that the

séquence (4), which is identical with (20), is an exact complex and that HX{G, ZG)
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and H2(G,ZG) are both trivial. The kernel of d3:ZG-*ZG2, taking keZG to
(A(l - b), A(l - a)), consists of ail A e ZG which are fixed by the generators b and

a, hence by ail of G.

If G is finite, ker d3 is therefore generated by £ {g I g e G} and the séquence

ZG2 *-* &gt;ZGI{gl8€G}&gt;ZG—^ &gt;ZG2

is exact. This proves that (4) leads by splicing to a periodic ZG-free resolution of
Z having period 4.

If, on the other hand, G is infinité, ker d3 is trivial and (4) is a finite ZG-free
resolution of Z. Moreover, G is an orientable Poincaré-duality group of dimension

3. Indeed, H\G, ZG) and H2(G, ZG) are trivial by the previous remarks.

Next, if H3(G, ZG) is computed by means of (4), one obtains the following chain
of isomorphisms of right ZG-modules:

H3(G, ZG) ZG/(1 - b)ZG + (1 - a)ZG ZG/IG-^-&gt;Z.

The claim then follows from well-known results about duality groups (see, e.g.,

[l,p. 140, Thm. 9.2 and p. 173], or [2, p. 220, Thm. 10.1, and définition on

p. 221]).

Remark 6. If G is a binary dihedral group G(i, 2, 2), the periodic resolution

P-» Z obtained from séquence (20) by splicing, is isomorphic to the resolution

F -» Z described by Cartan-Eilenberg [3, p. 252]. In order to see this, identify
G(J, 2, 2) and tt (x, y ; xl y2 (xy)2) in the obvious way, and note that

The function 0: P-» P&apos; which respects the dimensions of the chain groups, is the

identity in dimensions différent from 2 + 4p and sends (A, /x)eP2+4p to
(-jUL, A + ixb) e P2+4P, can then easily be verified to be a chain isomorphism.

3. Proof of Theorem B

Let F be free on {au c^}, let p be a non-trivial élément of F which is not
a proper power, let l ^ 1 and set

L=(al9. a,,; [p!, aj,..., [p1,
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where [p1, &lt;*,]: p* * ai &apos; Pl * ai *• K n 1, the group L is infinité cyclic and

ZL^zZi+ZL-L^. i is an explicit ZL-free resolution of Z. So assume n^2.
Dénote the canonical image in L of a, by a,, that of p by r and write D^
for the composite F—88&quot;&apos; » /j7 can

» 2G. We aim at verifying that the

séquence of left ZL-modules and ZL-homomorphisms

ZL -l^z (25)

is an exact complex. Our vérification will be based on Lemma 7 below and
Lyndon&apos;s Identity Theorem (cf. [9, pp. 158 + 161]) which asserts that

p1, ,D p«) _ l1»/ - e^ &gt;ZL
V 7 &gt;1L^-^ Z (26)

is exact; hère L dénotes the 1-relator group (al9..., o^; p1).

LEMMA 7. The canonical image reL of peF\{l} has infinité order.

Proof. Since free groups are residually nilpotent there exists c ^ 1 such that
peycF\yc+iF. The obvious epimorphism L-» F/yc+1F sends r to a non-trivial
élément of the central subgroup ycFlyc+1Fy which is known to be free abelian (cf.
[11, p. 341, Cor. 5.12(iv)]).

We are now ready to prove that (25) is an exact complex. We begin by
verifying that the left-most homomorphism d3:ZL-&gt;ZLn is injective. If ÀeZL
and À * D^p 0 for ail /, then

As r has infinité order by Lemma 7, (1 — r) is not a zero-divisor and hence À 0.
Let d2:ZLn -»ZLn be the differential of (25) given by the (n x n)-matrix with

entries A^p1, aj. Thèse entries can be described more explicitly; indeed:

Djp&apos;, a,] D^tf • a, • p~( • a,-1) A^p&apos; + r1 • D^a, - a^p1 -D^a,
(l-a,)-Daipl + (r&apos;-l)-ô,,.

Hère 8H is the Kronecker symbol. A row vector (X.u ÀjeZL&quot; lies in the
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kernel of d2 if, and only if,

or, equivalently, if

A, • (1-r1) (lA,(l-a,)) ¦ D^p1 (27)

for every i 1, 2, n.
Assume (Al5 An) e ker d2 and set jll * £, A,(1 - a,). By applying the canoni-

cal ring epimorphism

~*ZL-» ZL- Z(al, ,an;p&apos;&gt;

to (27) one obtains the équations 0 jd • D^p1, where i ranges over 1, 2,. n;
they show that fi is in the kernel of the second difïerential d2 of the exact

séquence (26). There exists therefore veZL with fL v(l-r). The kernel of the
canonical projection L-» L is the cyclic, central subgroup generated by r\
whence ker (ZL -» ZL) is the idéal generated by the central élément 1 - rl So

there will exist vxeZL with /ul i^^l-r) The équations (27) now imply that

r^D^p vx • D^p • (1 - rl) (28)

for i l,2, n. Since rl has infinité order by Lemma 7, 1-r1 is not a zero-
divisor of ZL. Therefore (28) implies that A, vx • D^p for ail i, i e. that
(A1? .,An) belongs to imd3 Conversely, if (Al9 An) is in ima3, i e, if
At vxDctfi for some vx e ZL, one sees by reversing part of (28) that

while it is quite generally true that

Vl ¦ (1 - r) Vi I (D^pd - a,)) I (i/iD^pXl - a,)
J J

Put together, thèse équations give
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for every i; they show that the row vector 53(^i) satisfies the équations (27) or,
equivalently, that ^2(^3(^1)) 0. The vérification that (25) is exact at the left
middle module ULn is now complète.

As the right half of (25) is exact on gênerai grounds, the exactness of the
entire séquence (25) is established.

4. Poincaré-duality groups among the groups L

In this section we shall détermine which of the groups

L (au «n ; [p1, aj,.. [p1, aj&gt;

are 2-dimensional and which of them are Poincaré-duality-groups of dimension 3.

The notation will be as in Section 3; in particular, peF F({al9..., c^}) is a

non-trivial élément which is not a proper power, l i^ 1 and n i? 2. Let L and L
designate the 1-relator groups

L (al,...,an;pl) and L (aly. an ; p).

We begin with the easy

LEMMA 8. (i) H\L, ZL) 0.

(ii) HJ+1(L,ZL) and HJ(L,ZL) are Z-isomorphic for ail j^l.
(iii) H2(L, ZL) is a ZL-homomorphic image of H3(L, ZL).

Proof. Spectral séquences, applied to the central extension (rl)&lt;lL-» L, and
the fact that (rl) is infinité cyclic by Lemma 7, imply that

H&apos;+1(L, ZL) Hl(Û H\(rl), ZL)) HJ(L, ZL)

for ail j^O. Thèse isomorphisms, together with the fact that L is infinité and
hence H°(L, ZL) 0, establish (i) and (ii}. Claim (iii) is a conséquence of the facts
that the second cohomology group H2(L, ZL) of the torsion-free 1-relator group
L is by Lyndon&apos;s Identity Theorem isomorphic with ZL/Yj (5a,P * %-L), whereas

H3(L, ZL), when computed by the resolution (25), is given by
ZL/X, (D^p • ZL).

2-dimensional groups. Assume the cohomological dimension of L is less than
3. Then H3(L, ZL) 0 and so H2(L, ZL) will be trivial by Lemma 8(iii). But L is
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a torsion-free 1-relator group, hence of cohomolojical dimension at most 2; it is
also of type (FP). Therefore the vanishing of H2{L,I.L) implies that L is at most
1-dimensional (cf. [1, p. 137, Lemma 9.1]), and so L is free by Stallings&apos; theorem.
By a resuit of J. H. C. Whitehead&apos;s (see, e.g., [9, p. 106, Prop. 5.10]) a 1-relator
group can only be free if the defining relator is either trivial or primitive. Since

p^ 1, we conclude that p must be a member of some basis of F F({al5..., o^}).
After a change of notation, we will hâve p al and

L - (ab an ; [ai, aj,. [ai, aj). (29)

Ihis group can ve viewed as an HNN-extension with base group (ax), associated

subgroups both equal to (a[) and stable letters a2,.^,otn;it can also be obtained
from the direct product ZxF({a2,..., an}) by adjoining an i-th root. Both
descriptions allow to infer that every group of the form (29) has cohomological
dimension precisely 2 (recall that n^2). Incidentally, the second description of L
reveals also that if l &gt; 1 or n &gt; 2, the group L has a subgroup of infinité index
which is free abelian of rank 2, hence, in particular, 2-dimensional, and therefore
L cannnot be a Poincaré-duality group of dimension 2 (by [18]). So the only
Poincaré-duality group of the form (29) is L (au a2\ [c*i, ex2])-

3-dimensional Poincaré-duality groups. A second application of Lemma 8 will
be made in the proof of

THEOREM 9. The following statements are équivalent:
(i) There exists either a basis fi, Th,..., £g, Tfe of F({au ...,«„}) with p -

lèu Vil • * • &apos; [£g&gt; ^gl or a basis Çu &amp;&gt;..•&gt;&amp; with p £? • £| £g.

(ii) H3(L, ZL) is infinité cyclic.
(II) L is a 3-dimensional Poincaré-duality group.

Proof. If (i) is true L has a présentation

\èi, Vu--, fg, Vg; (il [£&gt; &apos;nJ] commutes with ail |,, tj^ (30)

or a présentation

&lt;&amp;, ...,&amp;;(£?&apos;£! ïDl commutes with ail £&gt;. (31)

If H3(L, ZL) is computed by means of the resolution (25) one finds that

H3(L, ZL) ZL/£e (D^p • ZL), where 0 ranges over the basis displayed in (30) or
(31).



450 RALPH STREBEL

Assume first L has a présentation of the form (30); we contend that
£3 (Dpp - IL) is the augmentation idéal IL of ZJL In order to verify this we shall

prove more, namely that

£ TLF

is the augmentation idéal IF of ZF The key to this is the fact that the partial
derivatives of p&apos;: {(u îïJ • • • [£g_i, t^-J with respect to eu Vu • - &gt; 4-i and

Tîg.x agrée with those of p. Hence we can assume inductively that

i=,d§ i=j d&apos;il, i=, 1=,

In particular, (1 —p&apos;) belongs to /. Let £, resp 17 be short for gg, resp. rjg. From

1) and

one deduces that JcJF, and that (1-frrêT1) and ({-[è 17]) belong to I Hence so
do

and thus I JDF, as contended.
Assume next L is of the form (31). We assert that £j (d/d£(p)) *ZL

X, (1 + x,) • ZL; it will suffice to establish the corresponding statement for ZF. Set
p&apos; := Û Ig-i- Then d/d^ip&apos;) d/d$(p) for / 1, g -1 and thus

Since l~p&apos; Ii^&lt;gO/a^(p)) (1-6) is in J and as (d/d&amp;(p)) p&apos;« (1 + &amp;), the
assertion is established. Finally the quotients ZF/X, (1 + ^) *ZF and ZL/X, (1 +
oc,) • ZL are infinité cyclic, as can easily be verified and so (ii) holds also for the

groups of the form (31).
Conversely, assume (ii) is true. Then I: £jD^p -IL contains the élément

1 — r and I is a two-sided idéal. Therefore

H2(f,ZL)=ZL/X (A,P) • ÏL sZL/(I+ZL(l- r)ZL) ZL/I
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is infinité cyclic. As in [1, p. 155, Remark] one sees next that L is actually a

Poincaré-duality group of dimension 2, and hence a surface group by a resuit of
B. Eckmann and H. Mûller [8, Thm. 1]. Work of H. Zieschang and N. Peczynski
([21], [12], cf. [22, p. 58, 2.11.9]) now guarantees the existence of a basis of
F^a^ aj) with either p flj [£„ Vj] or p FI, f?•

Finally, we establish that (ii) implies (iii), the converse being évident It suffices

to show that (ii) implies that H\L, ZL) 0 H2(L, ZL). From Lemma 8 one sees

that H\L, ZL) 0, and that

H2(L,ZL) H3(L,ZL)^Z and that

Much as m [1, p. 155, Remark] one deduces from Stallings&apos; theory of groups with
infinitely many ends and from H2(L,/L)=Z that H\L,ZL) 0, whence
H2(L,ZL) 0. D
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