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Higher dimensional simple knots and minimal Seifert surfaces

Eva Bayer-Fluckiger*

Introduction

A knot ^cS^1, q&gt;2, is said to be simple if K2^1 has a (q-1)-
connected Seifert surface. Such a Seifert surface is said to be minimal if the
associated Seifert matrix is non-singular. Levine has given an isotopy classification
of simple (2q-l)-knots and their minimal Seifert surfaces in terms of S-
equivalence and congruence of Seifert matrices (cf. [8]). Another algebraic
classification of simple (2q — l)-knots can be obtained via the isometry classification

of Blanchfield forms (cf. Trotter [14] or Kearton [7]) which is usually easier

to handle than the S-équivalence relation.
In the first section of the présent paper we define a (-l)q+1-hermitian form

which gives an isotopy classification of minimal Seifert surfaces. The Blanchfield
form can be obtained from this form by an extension of the scalars. This is

inspired by Trotter&apos;s papers [14] and [15].
The main purpose of this paper is to apply the algebraic results of [1] and [3]

to the classification of a spécial type of simple knots, called Dedekind knots,
which are defined as follows. Let L be the knot module of K2^&apos;1 and let A eZ[X],
A(l) ifcl, be a generator of the annihilator idéal of the Z[X, X~1]-module L (cf.
[9], [10] §7). We shall say that K2*&quot;1 is a Dedekind knot if A is irreducible and

Z[X, X&quot;1]/(A) is Dedekind.
Non-fibered Dedekind (2q - l)-knots, q&gt;3, are always easy to classify (see

Theorem 3). For fibered Dedekind knots we hâve two quite différent cases: if the
Blanchfield form is indefinite, then we hâve the same kind of classification
theorem as for non-fibered knots. On the other hand, the classification of fibered
Dedekind knots with definite Blanchfield pairing seems very difficult.

In Sections 2 and 3 we give applications to the cancellation problem, to the
number of minimal Seifert surfaces, and to the symmetries of Dedekind knots.
For instance we shall give a complète criterion for a Dedekind knot to be

(- l)-amphicheiral.
I thank Neal W. Stoltzfus for useful conversations.

* Supported by the &quot;Fonds National de la recherche scientifique&quot; of Switzerland.
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1. An algebraic classification of the minimal Seifert surfaces of a given simple
(2q-l)-knot, q&gt;3.

Let ro Z[z], AQ 2[z, z~\ (1-z)&quot;1] and let Eo be the field of quotients of
AQ. Thèse rings hâve involutions induced by 2 1 —z.

Let N be a Z-torsion free, finitely generated ro-torsion F0-module. We shall

say that an e-hermitian (e ±l) form ft : N x N—» J50/F0 is unimodular if the
adjoint map from N to HomFo (N, Eo/ro) which sends x to fx, defined by
/x(y) My&gt; x), is a conjugate-linear isomorphism.

The following is a conséquence of results of Levine [8] and Trotter [14], [15]:

THEOREM 1. LetR2*&apos;1 be a simple knot, q&gt;3,andletb:LxL-&gt;EQ/AQ be

the associated Blanchfield form. The isotopy classes of minimal Seifert surfaces of
K2q~l are in bijection with the isometry classes of unimodular (-l)q~hl-hermitian
forms

h:NxN~&gt;Eoiro

such that (N, h) ®Fo Ao (L, b).

DEFINITION. A form (N, h) as in Theorem 1 will be called a Trotter form.

Proof. Let A be a non-singular Seifert matrix associated with a minimal
Seifert surface of K2q~\ and let MA A-z(A + (-l)qA&apos;) where A&apos; dénotes the

transpose of A. Let Ao/MaAq, N FS/MArS (A is an nxn-matrix) and let

b:LxL-&gt; Eo/Ao

h:NxN-*Eoiro

be the quotient forms associated with MA (cf. [14], p. 178). The (~l)q+1-
hermitian form b is the Blanchfield form of KM~X (cf. [9], 14.3, p. 44). Clearly
(N, h) ®r0 Ao (L, b). It is easy to check that if A and B are congruent Seifert
matrices, then the quotient forms associated to MA and MB are isometric.

Conversely let h:NxN-+Eo/ro be a unimodular (~l)q+1-hermitian form
such that (N, h) &lt;8&gt;r0 Ao (L, b). Following Trotter (cf. [14], [15]) let us define a

trace function s:E0-*Q by setting s(f) equal to the coefficient of z&quot;1 in the
Laurent expansion of / at infinity. Set [al9 a2] s(h(al9 a2)) for au a2zN. Then

[ ]:NxN-&gt;Z is a unimodular (~l)q-syrnmetric Z-bilinear form (cf. [14] pp.
292-294). We hâve [zau a2] [a1,(l~2)a2], i.e. (N, [ ], z) is an isometric structure.

It is easy to check that isometric (-l)q+1-hermitian forms give rise to
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isomorphic isometric structures. Let S, Z be the matrices of [ ], z with respect to
a Z-basis of N. Set A ZS~l. Then A is a Seifert matrix, i.e. A + (-l)qA&apos; S&quot;1 is

unimodular. A is non-singular as det (A) det (Z). By [14], Proposition 2.11,
(L, b) is isometric to the quotient form associated to MA. Trotter&apos;s main theorem
in [14] implies that A is in the S-equivalence class determined by K2*&apos;1. It is easy
to check that if two isometric structures are isomorphic then the corresponding
Seifert matrices are congruent so by Levine [8] the associated minimal Seifert
surfaces are isotopic.

Remark. The existence of at least one minimal Seifert surface follows from
Trotter, [13] and Levine, [8].

Let b and h be unimodular e-hermitian forms as in Theorem 1. Let &lt;p eZ[X]
be the minimal polynomial of z:L-*L and let F Z[X]/(&lt;p). Set A.(X)
(l-X)deg&lt;p(p(l/l-X)€Z[X]. We hâve AL 0 and À(l) ±l. Notice that A is a

generator of Ann^CL), cf. Levine [11], proof of Theorem 7.1. Let A
Z[X, X-1]/(À) A0/(À). Then L is a A-module and b takes values in (1/À)AO/AO==:

A. So we can consider b and h as unimodular e-hermitian forms b:LxL-^A.

We shall apply Theorem 1 to give a short proof of a theorem of Trotter, in a

spécial case. Let FeZ[X] be the characteristic polynomial of z:L-+L.

THEOREM 2 (Trotter, [14] Corollary 4.7). Let jK^^cS2^1 be a simple
knot, q ^3, such that F(0) ±p where p is a prime. Then the knot K2*&apos;1 has only
one isotopy class of minimal Seifert surfaces.

Let us assume that &lt;p is irreducible. As &lt;p and F hâve the same irréductible
factors, F is then a power of &lt;p. If the constant term of F is ±p, where p is a prime
number, then we must hâve F &lt;p.

Let F Z[a]. Then A [a&quot;1, â&quot;1] where â 1 - a. We hâve &lt;p(0) ±p, there-
fore F/(a)=Fp, so (a) is a maximal idéal.

In the spécial case where &lt;p is irreducible, Theorem 2 is a conséquence of the

foliowing lemma:

LEMMA. Let (J, h^) and (J, h2) be two unimodular e-hermitian forms where I
and J are F-ideals, such that (I, fi^^A =(J, h2)®A. Then (I, hJ^iJ, h2).

Proof of Lemma. We want to show that if I and J are F-ideals such that
IA =JA then akâml J for some integers fc, m. As F is noetherian we can write
I&quot; Ii HI2, J&apos; Ji H J2 where the I4&apos;s, J, &apos;s are the intersection of a finite number of
primary ideals (cf. [17] Chap. IV §4 Theorem 4). We can assume that the radicals
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of Iu Ji are prime to P (a) and to P and that the radical of the primary
components of I2 and J2 is P or P. By [17] Chap. IV §10 Theorem 17 the
hypothesis IA JA implies that It Jx. Let Qbea P-primary component of I2.
Then there exists an integer n such that an eQ. Let us assume that n is minimal
with this property. If n 0 then we hâve finished. We hâve Qc:P therefore
Q&apos; a~xQ c F. Then either Q&apos; F or Q&apos; is P-primary so we can repeat the above

procédure. We finally obtain a~n+1Q F. Therefore I2 (akâm), and a similar
resuit holds for J2.

Let h1:lxl-^r, h2:Ix/~»F be two unimodular e-hermitian forms such
that (I, hx) &lt;8&gt;r A (I, h2) ®r A. We hâve h^x, y) a,xy, i 1,2. As hx and fi2 are
unimodular, axa2x u isa unit of F. There exists x e A such that xx u. We hâve

xA=A, therefore x vakâm where v is a unit of F. So xx =ak*mâk+mvv u.

This implies that k —m, so xx vv w, therefore hx and ft2 are isometric.

2. Dedekind knots

Let K^-iciS2^^1 be a simple knot, q&gt;2, and let b:LxL-+A be the
associated Blanchfield form, A =Z[X, X~1]/(A) as above. We shall say that K2*&quot;1

is a Dedekind knot if À is irreducible and A is Dedekind. We shall now apply the
results of [1] and [3] to the classification of Dedekind knots and of their minimal
Seifert surfaces.

Let us dénote E the field of quotients of A and F the fixed field of the
involution. For every real embedding of F which extends to an imaginary
embedding of E we hâve a signature invariant of b : L x L —» A. We shall say that
b is definite if F is totally real, E is totally imaginary and if every signature is

maximal. Otherwise we say that b is indemnité. The déterminant of (L, b) is the
rank one form

det(b):AnLxAnL-»A

^ ytA • • • Ayn) -^ det (fcfo, y,),,)

where n =rankA (L).
If e -1 and rankA (L) is even, we also need a finite number of pfafiians. Let

A &apos; AHF and let p be a prime A &apos;-idéal such that pA P2. The involution on A/P
is trivial (cf. [6], §5), and the skew-hermitian form b induces a non-singular
skew-symmetric form b on L L/PL. Let us dénote by Pfp (b) a pfaffian of this
form. If (M, b) is another lattice such that &lt;p : (L, b) —» (M, b) is an isometry, then
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Let us recall the classification theorem of [3], We hâve the following
hypothesis:
(*) Either A^F (or equivalently À(0)^±l) or the e-hermitian forms b.il^x
Lt-+A are indefinite.

THEOREM 3. Assume that the hypothesis (*) is satisfied. Then two unimodu-
lar e -hermitian forms bii^xLx—^A and b2:L2xL2-&gt;A are isometric if and only
if they hâve the same rank, same signatures and isometric déterminants, and if
moreover e -1 and the forms hâve even rank, there exists an isometry f between

det (bx) and det (b2) such that det (f) Pfp (b^ Pfp (b2) mod PifpA P2.

Proof. This is a conséquence of [3], Theorem 2 and Remark 1. Notice that if p
is a prime of r&apos; FnF such that pA&apos; A&apos; then pF PP with P+P. Indeed,
pA&apos; Af implies that p contains aâ (see the proof of Theorem 2). The minimal
polynomial of a over F is X2-X+aâ. Therefore r/pr r/p[X]/(X2-X)

The isotopy classes of simple (2q - l)-knots, q^2, are in bijection with the
isometry classes of Blanchfield forms (cf. Kearton [7] or Levine [8] and Trotter
[14].) Therefore the above theorem gives an isotopy classification of Dedekind
knots satisfying (*). Notice that ail non-fibered (2q - l)-knots, q^3, satisfy (*).
Indeed, an easy application of the /i-cobordism theorem shows that a simple
(2q - l)-knot, q&gt;3, is fibered if and only if À(0) 1.

COROLLARY 1. Let Kt and K2 be Dedekind (2q-l)-knots such that the

associated Blanchfield forms satisfy (*), and let K be any (2q - l)-knot. If the

connected sum K1 + K is isotopic to K2 + K then Kx and K2 are isotopic.
In particular, cancellation holds for non-fibered (2q — l)-Dedekind knots if

Proof. Let bu b2 and b be the Blanchfield forms of Kl9 K2 and K. We hâve an

isometry between bx±.b and b2lb where _L dénotes orthogonal sum. The knot
modules of Kt and K2 clearly hâve the same annihilator À eZ[X], À(l) 1. Let
A =Z[X, X^l/CÀ). Taking tensor product over Z[X, X&quot;1] with A and then taking
the Z-torsion free part we may assume that b:LxL-&gt; A, where L is a projective
A-module of finite rank. Now Theorem 3 implies that bi and b2 are isometric.

In the fibered definite case there are counter-examples to cancellation (cf. [2]).
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Minimal Seifert surfaces

The isotopy classes of the minimal Seifert surfaces of a given simple (2q -1)-
knot K, q &gt; 3, are classified by the isometry classes of the Trotter forms associated
to K (cf. Theorem 1). Therefore Theorem 3 implies the following

COROLLARY 2. Let K2q~1 be a Dedekind knot such that the associated

Blanchfield form is indefinite and that F is Dedekind. Let Sx and S2 be two minimal
Seifert surfaces of K and let (Nu hx) and (N2, h2) be the associated Trotter forms.
Then Sx and S2 are isotopic if and only if there exists an isometry /:det (Nl9 ht) —&gt;

det (N2, h2) such that

Pfp (Nl9 h,) det (f) =Pfp (N2, h2) mod PifpF P2.

Remark. We hâve A F[a~1,â~1] so if F is Dedekind then A is Dedekind
too. But the converse is not true. I thank Jonathan Hillman for the following
example: let À(X) 9X4-3X3-llX2-3X+9, then &lt;p(X) X4-2X3 + 34X2-
33Xf9, A=ZKX&quot;1]/(A), r Z[X]/(&lt;p).

Then A is Dedekind by Levine&apos;s criterion (cf. [10], §28). On the other hand
&lt;p(X)e(3, X)2, so F is not Dedekind by Uchida&apos;s criterion (cf. [16]).

COROLLARY 3. If K2*&apos;1 is a Dedekind knot, q&gt;3, such that the associated

Blanchfield form is indefinite and that F is Dedekind, the number of isotopy classes

of minimal Seifert surfaces of K only dépends on A.

If moreover À(0) ±p where p is a prime number, then K has only one isotopy
class of minimal Seifert surfaces. (This is a generalization of Theorem 1, in the case

of Dedekind knots.)

Remark. The above corollary is no longer true if the Blanchfield form is

defînite. For instance let À(X) aX2 + (l-2a)X + a, &lt;p(X) X2-X+a, where a
is a positive integer, a^l, and l-4a is square free. Then E Q[X]/(À)
Q(Vl —4a) is an imaginary quadratic field. Let p(n) be the number of partitions of
n into the sum of positive integers. There are at least p(n) unimodular forms

h:NxN-&gt;F, rank(N) An such that (N, h)®r A is isomorphic to (1) 1 • • • 1 &lt;1&gt;

(cf. [2], Remark 2). On the other hand the number of unimodular forms
h :NxN-&gt;F such that (N, h)®rA is isomorphic to &lt;1&gt;±&lt;-1&gt;±- • -±&lt;1&gt; does not
dépend on n.

3. Symmetries of knots

If X is an oriented manifold, let us dénote X~ the same manifold with the

opposite orientation. We shall say that a knot X2q~1&lt;=S2q+1 is invertible if it is
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isotopic to (JC2q&quot;1)-c:S2q+1 (+ï)-amphicheiral if it is isotopic to K2*&quot;1 c (S2**1)&apos;

and (-l)-amphicheiral if it is isotopic to (K2q&quot;1)&quot;c=(S2q+1)-. F. Michel [11] has
translatée! thèse conditions into algebraic conditions on the Blanchfield form
(L, b) associated to K2*&apos;1, q &gt;2. Let us define (L, b) as follows: L is equal to L as

Z-modules, and the A-module structure of L is given by À*x Àx. Let b(x, y)
b(x, y). Then K2*&quot;1 is invertible if (L,b) (L,b), (+l)-amphicheiral if (L, b)
(L, -fc) and (-l)-amphicheiral if (L, fc) (L, -b) (see [11], [5]).

In this section we shall apply Theorem 3 to détermine the symmetries of
Dedekind knots.

COROLLARY 4. Let K2^&apos;1 be a Dedekind knot, q&gt;2, and let (L, b) be the

corresponding Blanchfield form. Then K2^&apos;1 is (—\)-amphicheiral if and only if
a) (F. Michel [11]) rank(L) is odd and there exists a unit u of A such that

uù -l
b) rankA (L) is even and every signature of b is zéro.

Proof It is easy to see that the conditions are necessary. Let us prove that they
are also sufficient:

a) an isometry is given by multiplication with u
b) As rank (L) is even, det (-b) det (b), and we hâve Pfp (-b) (-l)n Pfp (b)

where 2n =rankA (L). Therefore f(x) (-l)nx gives an isometry between det (b)
and det(-b) such that det(/)Pfp (fc) Pfp (-b)modP if pA=P2. As b and -b
are indefinite and hâve same signatures, they are isometric by Theorem 3.

The following is a conséquence of Corollary 4:

COROLLARY 5. Let K2*&apos;1 be a Dedekind knot, q &gt;2, which has order two in
the knot cobordism group (Le. x2q~1 + K2q~1 is nullcobordant where + dénotes
connected sum). Assume that the associated Blanchfield form has even rank. Then

is (—ï)-amphicheiral.

In the case of odd rank, D. Coray and F. Michel hâve given counter-examples
to the above statement in [4].

Let CA be the group of isomorphism classes of A-ideals and let Ce ={ceCA
such that if le c then ï=xl with xx e} (notice that if c g CA contains an idéal I
such that J xi, xx e, then every Jec has this property. Indeed, let J al then
J (â/a)xJ).

The following is a generalization of results of F. Michel, (cf. [11], Propositions
2 and 3):
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COROLLARY 6. Let K2q~l be a Dedekind knot, q&gt;2, such that the as-
sociated Blanchfield form (L, b) satisfies (*). Let c be the idéal class of the

A-module L. Then K2*&apos;1 is invertible (resp. (+l)-amphicheiral) if and only if the

signatures of b and b (resp. -b) are equal and ceCe with e =(-l)n(q+1) (resp.

e =(-1)™*), where n rankA (L).

Proof. It is easy to check that there conditions are necessary, let us prove that
they are also sufficient. Let us choose a basis eu en of V such that L
Iex®Ae2®&apos; • -©Aen with T=xl, xx e. We can identify V and V using the
isomorphism /: V-* V, /(Àet) À*et. We hâve L fe1©Ae2©- * -®Aen, and
multiplication by ±x gives an isometry between det (L, b) and e(-l)n(q+1) det (L, b). If
n is even and b is skew-hermitian, we see that Pfp (L, b) Pfp (L, b) for pA - P2.

Theorem 3 now gives the desired resuit.
In the fibered definite case there are counter-examples to the above corollary.

Let for instance A =Z[£] where £ is a 52th root of unity. Then there exists a

non-trivial A-idéal I such that I3 is principal and that I supports a rank one form
b (cf. [12], [1] §1). Notice that I is not isomorphic to J, therefore (I, b) cannot be
isometric to (J, b). So by unique factorisation of definite forms (cf. [2]) blblb
cannot be isometric to bLbLb.

EXAMPLE. Let I be a A-idéal which supports a rank one form b. Let
(L9bf) &amp;b)±(ï-b). The simple (2q-l)-knot, q&gt;2, which has Blanchfield
pairing (L, br) is clearly (+l)-amphicheiral, but it also has the two other symmet-
ries by Corollary 4 and Corollary 6. This answers a question of J. Hillman in [5],
for the spécial case A Z[w, ^], J (5, w +1), with w l+V-211/2.

4. Rank one forms

Theorem 3 essentially reduces the classification of non-fibered Dedekind
(4q + l)-knots, q ^ 1, to the classification of rank one hermitian forms. Thèse hâve
been studied in [1], §1 and §2. Let CA, CA&gt;, dénote the idéal class groups (recall
A&apos; {xeA such that x x}) and let N:CA-^&gt;CA&gt; be the norm homomorphism.
Let UA be the group of units of A, and N(u) uû. Let I(A) be the set of
isomorphism classes of rank one forms, which is a group under tensor product.
The following diagram summarizes the relation between F-lattices and A-lattices.
The rows and columns are exact.
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1 &gt; Ker (f) * Ker (g) &gt; Ker (h) * Y

I I I
1 &gt; UrlN(Ur) * HT) * Ker (Nr) &gt; 1

&apos;I -I 4
1 » UA./N(UA) * I(A) &gt; Ker (JVA) * 1

I 1 I
X 1 1

1

EXAMPLE. Let &lt;p(X) X2-X+122, A(X) 112X2-223X+112 A
Z[X, X&quot;1]/^), r Z[X]/(&lt;p). Then we hâve the following diagram:

1 &gt; 1/1 * Z/14 —&gt;Z/2

I I
Z/2 x Z/14 * Z/14 &gt; 1

1 * 1/2x1/2 » 1/2x1/2

I I
Z/2
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