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Braided surfaces and Seifert ribbons for closed braids

Lee Rudolph(1)

Abstract A positive band m the braid group Bn îs a conjugate of one of the standard generators, a

négative band îs the inverse of a positive band Using the geometry of the configuration space, a

theory of bands and braided surfaces îs developed Each représentation of a braid as a product of
bands yields a handle décomposition of a Seifert nbbon bounded by the corresponding closed braid,
and up to is»otopy ail Seifert ribbons occur m this manner Thus, band représentations provide a

convenient calculus for the study of nbbon surfaces For instance, from a band représentation, a

Wirtmger présentation of the fundamental group of the complément of the associated Seifert nbbon m
D4 can be immediately read off, and we recover a resuit of T Yajima (and D Johnson) that every
Wirtmger-presentable group appears as such a fundamental group In fact, we show that every such

group îs the fundamental group of a Stem manifold, and so that there are finite homotopy types among
the Stem manifolds which cannot (by work of Morgan) be realized as smooth affine algebraic vaneties
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§0. Introduction

Stallings, reporting [S] on constructions of fibred knots and links, mentions
(almost in passing) a construction which associâtes to any braid |3eBn a certain
Seifert surface in S3 bounded by the closed braid (3. Actually-and importantly-
that construction begins not with a braid (an élément of the group Bn) but with a

1 Research partially supported by NSF grant MCS 76-08230
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braid word (an expression of the braid as a word in the standard generators

arl9..., &lt;rn_! of Bn, and their inverses). Stallings describes the constructed Seifert
surface as being plumbed together from n — 1 simpler surfaces.(2) More naively,
the surface is simply given as a handlebody: the union of n (2-dimensional)
0-handles connected by orientable l-handles whose number and location are
specified by the particular braid word.

The plumbing description, in Stallings&apos;s context of &quot;homogeneous braids,&quot; is

appropriate because it shows that the surface constructed from a homogeneous
braid (word) is actually a fibre surface for the closed braid. In this paper I hope to
show that the naive handlebody description, and a generalization of it which
produces Seifert ribbons, can be appropriate in other contexts.

This work fits into a circle of ideas going back to Alexander, E. Artin, van
Kampen, and Zariski. In 1923, without bringing the (then undiscovered) braid

groups into it,&apos; Alexander [Al] showed that every (tame) link type contains

représentative closed braids. In other words: the construction that begins with a

braid |3 e Bn and produces an oriented link j3 &lt;= S3 is perfectly gênerai - every link
type can be so produced. Artin introduced the braid groups Bn in 1925, giving
algebraic structure to the géométrie braids, and used that algebraic structure to
describe (among other things) a class of group présentations which included
présentations of precisely the link groups ir^S3 —L). Meanwhile, Zariski [Zl, Z2]
was investigating the groups 7T1(CP2-r), where F was a (possibly singular)
complex algebraic curve, and seems actually to hâve commissioned van Kampen
to prove the now-famous &quot;van Kampen&apos;s Theorem&quot; [vK] precisely to get présentations

of those groups-which are of course intimately related to the groups
?ri(C2-F).

A ribbon surface in the 4-disk D4 is a 2-manifold-with-boundary embedded in
a certain restricted way (see §§1 and 2, below). A (non-singular) pièce of algebraic
curve is, as it turns out, always a ribbon surface (cf. [Mi]). In §2 I show how, from
a braid |8 together with b, an expression for |3 as a word in certain generators of Bn

(the set of conjugates of the standard generators), one can construct a ribbon
surface in D4 bounded by (a link of the type of) |8 ; and in §3 I show that this
construction is perfectly gênerai, and produces représentatives of each isotopy
class of orientable ribbon surface. One may say that Alexander&apos;s theorem is the

boundary of thèse results. (A modification of the construction produces, equally
generally, &quot;ribbon immersions&quot; in S3; and in particular ail ordinary Seifert
surfaces can be constructed from &quot;embedded band représentations&quot; of braids.)

In §4 a présentation for the group tt1(D4-S(S)), of the form called a Wirtinger
présentation, is derived from b. Every group that has a Wirtinger présentation at

2 This kind of plumbing was first discovered by Murasugi [Mu].
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ail, has one of the sort that appears hère (and from such a présentation b is

immediately read off). Thus we recover Dennis Johnson&apos;s improvement [J] of T.
Yajima&apos;s [Y] resuit that any group with a Wirtinger présentation can be realized

as tt1(S4-S) for some smooth orientable surface S (the improvement being in the

ribbon-like nature of the surface, see below). Actually, I show somewhat more,
and as an application show that each such group also appears as the fundamental

group of a Stein manifold (in fact a complex surface in C5). John Morgan [Mo] has

ruled out many groups, for instance (x, y :[x, [x, [x, [x, y]]]] 1) G say, from
being fundamental groups of (affine) smooth algebraic varieties; but G, as it
happens, has a Wirtinger présentation.

Ribbon genus and related matters are attacked in §5. An appendix indicates
how the work can be extended to (alternatively) ribbon surfaces with nodes in D4,

or surfaces immersed in S3 with both ribbon and clasp singularises.
The long §1 lays the groundwork for the rest of the paper, relating information

about the geometry of the configuration space (the space of which Bn is the
fundamental group) to algebraic information about Bn and géométrie information
about surfaces in S3 and D4.

§1. Loops and disks in the configuration space: closed braids, braided surfaces,
and band représentations

Apparently it was only as late as 1962 that topologists first realized that &quot;Bn

may be considered as the fundamental group of the space of configurations of
n undifïerentiated points in the plane&quot; (this &quot;previously unnoted remark&quot; being
then made by Fox and Neuwirth [F-N, p. 119]).(3) In this section some further
relations among the geometry of that space, the geometry of links and surfaces,
and the algebra of the braid group, will be explored. Simply for convenience hère,
the plane R2 (in which the configurations of n points lie) will be identified with the
complex Une C; for a further application of the theory, where the complex
structure is really at the heart of things, see [Ru].

By identifying the complex nth degree monic polynomial rijn=i(w — w,)
wn + c1\vn~1 + -• • + cn_1\v + cn with on the one hand the un-ordered n-tuple
{w1?..., wn} of its roots, and on the other hand the ordered n-tuple (cu cn)
of its non-leading coefficients, we effect the well-known identification of C7©n
with Cn. (The symmetric group ©n on n letters acts on Cn by permuting the
coordinates.) Now, C7©n (being the quotient of Cn by a finite group of auto-
morphisms) inherits from Cn a natural structure of (singular, affine) algebraic

3Magnus [M], in a review of [Bi], indicates that Hurwitz, [Hu], studymg monodromy m 1891, had
in fact noted this définition
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variety; its singular locus 5^(C7©n) is the quotient by ©n of the multi-diagonal in
Cn, that is, it contains exactly those n-tuples {wl9..., wn} in which for some j^ fc,

Wj wk. But, via the identification of C7©n (the space of roots) with Cn (the

space of coefficients), we also give C7©n a non-singular structure, which is the
normalization and the minimal resolution of the quotient structure. Let us dénote

C7©n with this non-singular structure by En, and let A dénote its subset which
&quot;is&quot; the old singular locus. Then A is a hypersurface of the affine space En; when

n ^3, A is singular. (Algebraic geometers know A as the discriminant locus.) Still,
a smooth map of a manifold into En may be perturbed arbitrarily slightly to make

it transverse to A, since A is the image of a smooth manifold (any one of the

hyperplanes w, wk back in the multidiagonal of the space of roots) by a smooth

map. (Incidentally, this resolution shows that A is irreducible, so that its regular
set @l(A) is connected, a fact we need later.) In particular, ail the transversality we
will need in the sequel is collected in the following lemma.

LEMMA 1.1. Let Mbe a compact, smooth manifold-with-boundary of dimension

no greater thon 3. Then any smooth map f:M-&gt;En may be perturbed by an
arbitrarily small homotopy to a smooth map which misses the singular locus Sf(A)

entirely (since Sf(A) has real codimension 4) and which intersects the smooth,
codimension-2 manifold 9t(A) of regular points of A transversely. Iff \ dMis already
transverse to A in this sensé then the homotopy need not alter f \ dM.

The (open, dense) set En — A&lt;^En is the configuration space (of n &quot;un-

diflEerentiated points in the plane&quot;). The fundamental group ttiCE^—4) (we will
suppress basepoints whenever it is décent to do so) is called the braid group Bn.

(Its structure will be recalled later. General référence: [Bi].) Since En is contract-
ible, every loop / : dD2 -*En-A extends to a map / : D2 -&gt; En - we can assume /
is smooth, and by Lemma 1.1, transverse to A. Now, what is called a géométrie
braid is nothing more nor less than a loop in En — A. What then is such an
extension to a map of a disk?

DEFINITION 1.2. A (smooth) singular braided surface in a bidisk D
DixDl {(z, w)eC2:\z\^ru |w|^r2} is a (smooth) map of pairs i:(S,dS)^&gt;

(D, dxD) (hère dtD dénotes the solid torus dD\ x D\ which is half of the boundary
of D), such that

(1) prl°i:(S,dS)-*(Dl,dDl) is a branched covering map (and an honest

covering on the boundaries),
(2) S is so oriented that prx°U away from its finite set of branch points, is

orientation preserving (with respect to the complex orientation of D?c:C).

From (1) we see that S is orientable, so (2) makes sensé.
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The degree n of the branched covering pr^i is the degree of the braided

surface; ail but finitely many points zsD\ hâve n distinct preimages in S.

By an embedded braided surface in D let us mean a singular braided surface

for which i is a smooth embedding, or, by abuse of language, also the image

i(S)^D of such an L

EXAMPLE 1.3. If F is a complex-analytic curve in a neighborhood of D
(possibly analytically reducible, but without multiple components), so situated

that FDdD is the transverse intersection of (%(F) and dxD, then the normalization

oi FDD mapping into D is a singular braided surface; and if there are no

singularities of the curve inside D then it is an embedded braided surface. (Such

analytic curves motivated thèse investigations, but by no means exhaust the

examples.)

Hère is the connection between braided surfaces and the configuration space.
On the one hand, given a smooth map f\(D\,dDf)—&gt;(En, En-A) for which

f~l{A) is a finite subset of Int D?, one can create a singular braided surface /# in
Df xDf,, where the second radius r2 is any strict upper bound for the absolute

value of ail éléments w, in ail n-tuples {wl5..., wn}-f(z) for zeD\. (Begin by
considering the set S&apos;f {(z, w) e D : w e /(z)}. Then there is a finite subset X&lt;^S&apos;f

so that Sf—X is a genuine n-sheeted covering space of D\ — prx(X), embedded as

a submanifold of D, with prx as covering projection. Just from the continuity of /
it is easy to résolve the singularities of S&apos;f, yielding a surface-with-boundary Sf on
which the map /# is forced; and this is clearly the desired singular braided surface.
Note that its degree is n.)

On the other hand, given a singular braided surface î :(S, dS)—» (D, dxD), of
degree n, there is a corresponding smooth map i#:{D\, dDl)—&gt; (En, En-A): on
the set of those zeD\ where {w :(z, w)e i(S)} has n distinct éléments, one sets

i#(z) {w:(z, w)ei(S)}; again the extension to ail z in Dx is forced.
Note also that if /, as above, is transverse to A, then /# is an embedded

braided surface, and is also &quot;in gênerai position&quot; - meaning hère that branch
points of prx°f^ are ail &quot;simple vertical tangents&quot;. And conversely, given i as

above, i# will be transverse to A only if S is in fact embedded and its vertical
tangents are ail simple. Of course, any embedded braided surface is arbitrarily
close (isotopic through embedded braided surfaces) to an embedded braided
surface in gênerai position.

Recall that a surface embedded in D4 {(z, w)€C2:|z|2 + |w|2^l} is a ribbon
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surface if the restriction to the surface of |z|2 + \w\2 is a Morse function, identically
1 on the boundary, which may hâve saddles as well as local minima, but which has

no local maxima. Ribbon surfaces in D4, and the related ribbon immersions in S3

and R3, will be discussed in greater détail in §§2 and 3. Hère we will make the
connection to braided surfaces.

PROPOSITION 1.4. IfSaD is an embedded braided surface then there is an
isotopic déformation of D to D4 (in C2) which carnes S onto a ribbon surface.

Of course D has corners and D4 is smooth, but the isotopy will be smooth

except near the corners of D, which without loss of generality are missed by S.

Proof After a slight perturbation of S, perhaps, the function L0(z, w) |z|2

will, when restricted to S, be a Morse function with n (the degree of S) minima, a

saddle point for each branch point, and no local maxima, and it will be identically
1 on dS. Then for small e &gt;0, Le |z|2 + e |w|2, when restricted to S, has the same

properties, except that it is not quite constant on the boundary. A small isotopy of

D, supported near its own boundary, will fix Le | dS. The rest is clear.

Remark 1.5. A conséquence of the construction in §3 is that a converse to this

proposition holds-every (orientable!) ribbon surface is isotopic to an embedded

braided surface. This is the exact analogue, for ribbon surfaces, of Alexander&apos;s

theorem [AL] for links, that they ail occur as closed braids. I don&apos;t know a more
direct proof of this converse.

Next we will dip into the algebra of Bn for a while.
The standard gênerators of JBn are &lt;rl9..., o-n_i. (With respect to a basepoint

*€ En, for instance * {1,..., n}, o} is represented by a loop which as a motion of
the n points leaves ail but / and j +1 fixed constantly, while exchanging j and / +1
by a counterclockwise 180° rotation [this is the East Coast convention!].) The
standard présentation of Bn is Bn (al9..., crn_! : Rt (i 1,..., n - 2), Rt]

(l^i&lt;j — l^n — 1)), where J^ :&lt;rlal+1(Tl &lt;rl+1crlGrl+1 and RtJ :cr^cr, a}at are the
standard relations. Ail the standard generators belong to one conjugacy class: for
Rt may be rewritten as crl+1 crIcrI+1crlo-~+11o-r1 (crlcrl+1)crl(a-la&gt;I+1)~1 and so by
induction each o\ is conjugate to &amp;x. Also, this class is not equal to its inverse, and

in the infinité cyclic abelianization of Bn, each generator a, maps to 1.

For reasons which will be évident in the next section, I call any élément of the

conjugacy class of arx a positive band. The inverse of a positive band (i.e., a

conjugate of aï1) is a négative band. A band is a positive or négative band.
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In any group, I will use the notation ab to dénote the conjugate aba&quot;1, when
convenient.

For n&gt;2 there are infinitely many bands in Bn. (B2 is infinité cyclic.)
Intermediate between the set of 2(n -1) standard generators and their inverses,
and the set of ail bands, is a set of (n —l)n embedded bands. The positive
embedded bands are ahJ =A(lJ~1)o&lt;J, where (just hère) A(i,j — l) al • • • o-j_u and

l^i^/^n-1. (So &lt;rh1=orr)

NOTATION 1.6. An ordered fc-tuple b (b(l),..., b(k)) with each b(i) a

band in Bn (of either sign) is a bond représentation (in Bn) of the braid (3(b)

b(l) • • • b(fe), which we call the braid of b. The length l(b) is fc. Conventionally,
the braid of the unique 0-tuple is the identity of Bn.

If each 6(i) is an embedded band we call b an embedded band représentation. If
each b(i) is a standard generator or the inverse of a standard générâtor, we
identify b with a braid word in the usual sensé; in that case length is more usually
called letter length.

Since every braid is the braid of some braid word, it makes sensé to define the
rank of (3 in Bn, written r/^dS) or rfc(j3), to be the least k such that some band
représentation of /3 has length fc. Only the identity has rank 0. Rank is constant
on conjugacy classes, and is less than or equal to &quot;least letter length&quot; (the
analogue of rank when only braid words and not ail band représentations are
used) and greater than or equal to the absolute value of the exponent sum (an
invariant of words in the free group on au..., orn^.x which clearly passes on to
fîn). A band représentation in which each band is positive is a quasipositive band
représentation and its braid is a quasipositive braid (cf. [Ru]); the length of a

quasipositive band représentation equals the exponent sum and the rank, and
equals the least letter length if and only if the braid of the représentation is

actually a positive braid in the usual sensé.

Remark 1.7. The notion of band is algebraic, géométrie in En, and (as we shall
see) géométrie in S3. The notion of embedded band is not algebraic, and seems to
be géométrie only in the latter context. Thus the idea of &quot;embedded rank&quot; seems
to be unnatural and will be ignored.

There are some natural opérations that relate différent band représentations of
the same braid |3. (Perhaps some natural incidence structure, of the &quot;building&quot;

sort, awaits discovery in the set of such représentations.) Let £ (b(l),..., b(k)),
fc^2. If for some / between 1 and fc-1 we hâve b(j)b(j+l) leBn, then
(6(1),..., b(j-ï), fe(j+ 2),..., b(k)) is another band représentation of the same
braid, gotten by elementary contraction at the jth place.li j is between 1 and k +1
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(fc ^0), and a is any band, then the elementary expansion ofb (b(l),..., b(k)) by
a at the jth place is the band représentation of the same braid S&apos;=

(fc&apos;(l), • • •, b\k + 2)) with &amp;&apos;(0 b{ï) (î &lt;/), VU) a, ft&apos;(/ +1) a&quot;1, fo&apos;(0 fc(î - 2)

Now let 1 ^ / &lt; fc I(ft). The efïect of S,, the forward slide at the jth place, is to
replace b with S,b (bf(l),..., b&apos;(fc)): b&apos;(i) b(ï) if î^j, / + 1; fc&apos;G&quot;) b0)fr(/ + l);
and b&apos;(j + l) b(j). The efïect of S,&quot;1, the backward slide at the jth place, is to
replace S with S;1S (b&apos;(l),..., bf(k)):b&apos;(i) i if î^/, / + 1; b&apos;(j) b(j + l);
bf(j + l) b(j+1)xb(j). It is easy to check that $(£) p(S,G) p(S;1b) and that S,

and SJ&quot;1 are, indeed, inverse to each other.
(After preparing this paper, the author became aware of Moishezon&apos;s work

[Moi] on &quot;braid monodromies&quot; of complex plane curves. My slides are Moishez-
on&apos;s &quot;elementary transformations&quot;; because he is dealing purely with what I
hâve called quasipositive band représentations, he does not introduce expansions
and contractions.)

For a fixed fc ^ 2, the fc -1 slides Su Sk_x generate a group which acts on
the set of ail band représentations (of various braids) of length fc. It is readily
checked that thèse slides satisfy the standard relations jR,(Si, Sk-x) and

RtJ(Si,..., Sfc-j), and therefore médiate an action of the braid group Bk on this
set of length-fc band représentations. Let two band représentations (necessarily of
the same braid) which are in the same Bfc-orbit be called slide-équivalent. This
will be elucidated in the next section, and in Prop. 1.11.

EXAMPLE 1.8. Let (a, b) be a band représentation of length 2. It is easily
checked that S21m(a,b) (iab)ma,(ab)m~lab), Slm-\a9b) (iab)m~lab,(ab)rn&quot;1a) for any
meZ.

Remark 1.9. It is tempting to conjecture that a single slide-équivalence class

should fill out the set of band représentations of (3 of a given length, at least when
that length is the rank of p. This fails to be true. For instance, in B3,
(&lt;J&quot;i, €r\(rxcf22) and (cr21o-1a2, a^crxO-^l) hâve the same braid and (being quasipositive)

are of minimal length for that braid, but they are not slide-equivalent.
(Sketch of proof : For typographical convenience, let ax and &lt;x2 be abbreviated to
1, 2, respectively. Using Example 1.8 it suffices to show that 2~*1 cannot be
written as (1221)ml or as (1221)ml2 (1 &apos;221)m2&quot;*1 for any integer m. Now, in any group,
three éléments u, v, x satisfy ux vx if and only if mu&quot;1 commutes with x. So

we hâve to show that (1 • 221)W and (1 • 22l)m2 don&apos;t commute with 1 for any m. A
straightforward but unilluminating computation in SL(2, Z), using the well-known

représentation o*i&apos;~&gt;(n
î

)&apos; °&quot;2l&quot;^(i

î
)&apos; suffices to verify this.) It happens
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that thèse two band représentations are &quot;conjugate&quot; in the obvious sensé (by crj*)
but not ail examples of this phenomenon arise so simply.

Remark 1.10. In §4 we will see an example of a braid |3 of rank 2, and a band

représentation b of j3 of length 4, which is not slide-equivalent to any elementary
expansion of any band représentation of the minimal length 2.

Our next task is to relate band représentations to disks in En. Now we fix a

basepoint *eEn-A, and identify Bn with iT1{En-A,*). For each fc^l,
moreover, we fix a set Pk of k distinct interior points of D2 - let us be definite and

say Pk={l/m-lGC:m l,...,fc}cD2 {zeC:|z|^l}. Let the basepoint of
D2 be * -\/-l. Then 7r1(D2-Pk;*) is the free group of rank k on free

generators x, (/ 1,..., k), where x, is the class of a loop consisting of a straight
line segment from * to a point on the circle of radius l/2fc(fe-l) centered at
1//-1, followed by the circle traversed once counterclockwise, followed by the
segment back to *. If h is a difïeomorphism of D2 to itself which is the identity on
dD2 and which préserves Pk as a set, then the automorphism h* : tt^D2- Pk ; *) —»

7r1(D2-Pk; *) satisfies h*([dD2]) [dD2], where [dD2] is the homotopy class of
the (counterclockwise oriented) boundary of D2, namely, xxx2 • • • xk. It is a fact
(cf. [Bi]) that the group of ail such automorphisms h* is naturally isomorphic to
the braid group Bk; a difïeomorphism which is supported in a l/2fc(fc-l)-
neighborhood of the interval

m

and rotâtes the interval 180° counterclockwise will induce the automorphism Xm

corresponding to crm.

PROPOSITION 1.11. (i) Letf:(D2,dD2, *)-* (En, En - A, *) be smooth and
transverse to A, and suppose that f~1(A) contains precisely k points. Let h:D2-&gt; D2
be a diffeomorphism, fixing dD pointwise, such that h(Pk) f~l(A). Then the

k-tuple ((foh)^xt,..., (f°h)*xk) is a band représentation in Bn, and its braid is

P=f*([dD2]). The band représentations which correspond to différent choices of h

are slide-equivalent, and vice versa.
(ii) Conversely, given a band représentation b of p, and a smooth mapf:(dD2y *)

-&gt;(En — A, *) such that f(dD2) (oriented counterclockwise) represents |3, then there
is a smooth extension of f over the whole disk D2, f : (D2, dD2, * -&gt; (En, En-A,*),
which is transverse to A, with f~x(A) Pk, and such thut the band b(f) equals /*xJ
(/ 1,..., k). Such an extension is unique up to homotopy. If f is an embedding on
dD2 the extension may be taken to be an embedding also, unique up to isotopy.
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Proof. If k 1, then (i) says that a loop (through *) which bounds a disk that
meets A transversely in exactly one point represents a band in Bn; and the
existence half of (ii) says that every band arises like this. Both statements are true:
for, indeed, an obvious explicit loop representing ax (as in [Bi, p. 18]) bounds an
equally obvious disk of the sort required in (i), and (up to orientation) ail loops
which bound such disks are conjugate in Bn because (by transversality) the map
7Ti(En—A9 *)—&gt; tt^ê^ —â?(4),*) induced by inclusion is an isomorphism and (as

remarked before Lemma 1.1) 31{A) is a connected submanifold of En of codimen-
sion 2.

Now, to prove (i) for any fc, note that since (f°h)*:TT1(D2-Pk; *)-»
TTx{En-A\ *) is a homomorphism, certainly the product (f°h)%x1 • • • (f°h)*xk
equals (f°h)^(x1 • • • xk) which is /#([dD2]) since h is the identity on dD2; and by
the case fc 1, each braid (f°h)*Xj is indeed a band; so we do hâve a band
représentation of |3. A différent choice of h corresponds to composing the original
f°h on the right with a diffeomorphism of D2 which fixes the boundary pointwise
and Ffc as a set, and therefore to composing the original (f°h)% on the right by an

automorphism in the group generated by the 2/s. But one quickly sees that, on
the level of band représentations, Xm corresponds to the forward slide Sm. So (i) is

proved for ail k.

As to (ii), given b one readily constructs a map g from a bouquet of k disks
Vk=iCD2, *), identified at a common boundary point *, into En so that each

restriction g | Df is smooth and transverse to A, meeting it at a single point, and

taking dD2 to a loop in the class b(j). Then there is a map q:(dD2, *)—»

(Vjk=idD2, *) with (goq)*[dD2] p; and g°q is homotopic (rel. *) to the given

map / in the complément of A. Using q to glue the annulus (which is the domain of
the homotopy between / and g°q) to \/\=1D2, one créâtes a disk D2 and a

continuous extension of / from dD2 across D2. This extension is smooth on the
boundary and near the preimage of A, to which it is transverse; and a small

perturbation will préserve those properties, while rendering the extension smooth

everywhere. Two différent extensions differ, up to homotopy, by an élément of
TT2(En-A) but according to [F-N] the space En-A is a K(Bn, 1): so any two
extensions of / are homotopic. Finally, if n &gt; 2 the assertions about embeddings
and isotopies are easy by gênerai position, the ambient dimension being then at
least 6; while if n 2, B2 is Z and what little there is to be said can be justified by
ad hoc arguments.

The following proposition shows how any two band représentations of a braid
are related. The proof given is géométrie; the algebraically-minded reader may
supply an algebraic proof.
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PROPOSITION 1.12. Two band représentations of j3 in Bn may always be

joined by a finite chain in which adjacent band représentations differ either by an

elementary expansion or contraction or by a forward or backwards slide.

Proof. Let /:D2—&gt;En be smooth and transverse to A. Then the natural
(complex) orientations of D2 and 0t(A) give the finite set f~l(A) an orientation -
the sign of a point equals the sign of a corresponding band. Let F:D2xI—&gt;En
be a homotopy between two such maps ft=F(&apos;,i), i 0,1, with F\dD2x{t}
independent of t, and F smooth and transverse to A in the interior of the solid
cylinder D2xl. Then the set F~X(A) is a smooth 1-manifold-with-boundary in
D2xl, with d(F~1(A)) fô\A)Ufï\A); and in fact F&apos;^A) has a natural orientation

for which, as a relative cycle, dF~~1(A) -fô1(A) + fï1(A). After possibly a

small perturbation we can assume that pr2 \ F~1(A):F~1(A) —» / is a Morse func-
tion. For ail but critical values tl9..., tN9 F(-, t) : D2 —» En gives a band représentation

of the braid [/0(dD2)]. The band représentations just below and above a

local minimum (resp., maximum) difïer by an elementary expansion (resp., an

elementary contraction). In an interval without critical points, F is an isotopy rel.
A and the band représentations at the ends of such an interval difïer by a

séquence of slides (slides really appear: it may not be possible, as it were, to
choose a fixed normal form for the disks D2x{t} over the whole interval).

Note that F~1(A)aD2xI may well be knotted and linked. There is a

homomorphism Tr1(D2xI — F~1(A))-+Bn which takes meridians to bands. In a

picture, it can be helpful to label arcs of the diagram of F~l(A) with names of
bands.

EXAMPLE 1.13. Figure 1.1 shows the géométrie équivalent of the following
chain of band représentations (as before, we simplify typography by writing i for

(1,221) -&gt; (1,221, 2, 2&quot;1) -&gt; (1, 2,21,2&quot;1)

-+(2,2%2l,2-1)-&gt;(292-%212-\2l)

-+ (2, 2-il2212-lf *-% H) -» e~X 2D-

The last link in the chain dépends on the calculation 2 • 2&quot;112212&quot;1 identity in JB3.

The reader may like to check that if a and b are any two bands satisfying
aba bab (for instance, at and crl+1) then the following chain corresponds to an
arc knotted in a trefoil: (a) -&gt; (a, b~\ b) -* (ab~\ a, b) -&gt; (ab~\ b, b&apos;xa) -»
(ablal6, ab~\ bla) -&gt; {ab-&apos;a~&apos;b) (a) again.



12 LEE RUDOLPH

Figure 1.1

Because the relationship between différent band représentations of the same
braid is of interest, the further study of the configurations F~l(A) may be worth
undertaking. In this regard one further construction may be mentioned hère. For
n ^ 3 there is room in En to alter a homotopy F by surgeries, as follows. First, one

may assume that F(D2xI) is an embedded 3-disk (Le., F identifies only along
intervais {z}xl, zedD2). Let L be any link in the interior of this 3-disk, disjoint
from A. Then in JEn, L is the boundary of a collection of 2-disks which are
pairwise disjoint and disjoint, except along L, from F(D2xI), and which are
smoothly embedded transverse to A. Corresponding to any framing of any
component 1^ of L in the 3-disk there is an embedding of a bidisk D2 x D2 in En

so that D2 x{0} is mapped to the 2-disk bounded by L, and dDfxD2 with its

product structure induces the given framing of L&gt; in the 3-disk, while D2 x dD2 is

transverse to A. Make a 3-manifold in En, with boundary equal to the 2-sphere
F(d(D2x/)), by removing the solid tori dDfxD2 from the 3-disk and replacing
them with the solid tori D2xdD2; this 3-manifold is transverse to A and easily
smoothed at its corners. In case L is a split link of trivial knots, each framed with
±1, the new 3-manifold is again a 3-disk and a new homotopy has been created
between the original pair of band représentations /0, ft. It may be hoped that such

surgeries, properly chosen, can replace gênerai configurations F~X(A) with ones
that are spécial enough in some way to be more easily understood. For instance,
crossings in a diagram of the link F&quot;1 (A) can be reversed, at the expense (in
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gênerai) of introducing new components (each component L, of L will contribute
a (±2,2) torus link binding together the arcs whose crossing has switched sign).

Remark 1.9 shows that what might be conceived to be the ultimate simplification
is not always possible: we cannot assume that F&quot;1 (A) is simply a braid (with
respect to projection on J).

§2. Constructions of surfaces from band représentations

The real content of this section, and the next, is in the pictures.
Figure 2.1 shows a surface of the type described in [S] (there named T3) for the

&quot;homogeneous&quot; braid word a-1cr22crfo&quot;21eB3. (Although the notation T$ would
seem to suggest that the surface dépends only on the braid, in fact the particular

Figure 2.1 Figure 2.2

FOUR SURFACES S (S)

Figure 2.1 8- (crl5 crly arlt in B3

Figure 2 2. b (o^, cr2, crv in B5

Figure 2.3. b (&lt;r2A, &lt;r12, cr2 3, a3 4, crl 3) in B5.

Figure 2.4. b (^htj, a*r\l) in B4.

Figure 2.3 Figure 2.4
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word is used to make the surface.) Instead of drawing the surface just as [S] would
hâve it, with a twist (positive or négative according to the exponent of the
corresponding letter in the braid word) to each band, I hâve preferred to give the
bands half-curls: then, in Fox&apos;s expressive words [F, p. 151], &quot;the resulting
surface may be laid down flat on the table so that only one side of it is

visible,&quot; whereas twists expose a bit of the back side.
Hère is the procédure for making a surface according to a braid word

(homogeneous or not): if the word represents an élément of Bn and is of letter
length fc, the surface has an ordered handlebody décomposition h?U- • -Uh°U
h\ U • • • U h\\ the 0-handles are embedded in R3 as planar cells, stacked in order
in parallel planes; the 1-handles are attached (orientably) along the front edges of
the 0-handles, in order; if the /th letter in the word is o-f^, e(j) ±1, then the jth
1-handle connects hf(j) to h%)+1; the half-curl is downwards (i.e., towards the next
1-handle) if e(/) +l and upwards if e(j) — 1. (The référée observes that this is

really just Seifert&apos;s method of &quot;Seifert circles&quot; [F], applied to a natural oriented
link diagram for the closure of the given braid word.)

Figure 2.2 illustrâtes the surface corresponding to the braid word (T1a2(T\(T21

considered as an élément of B5; just as including a braid in Bn (hère, B3) into the

group Bn+m adds m trivial components to the link which is its closure, so does
such an inclusion add disks to the constructed surface.

Somewhat more generally, if B (b(l),..., b(k)) is an embedded band
représentation of p &amp;(b) in Bn9 then there is a Seifert surface for |8 made of n
0-handles connected by k 1-handles, where now the 1-handles may have to
stretch across several intervening disks between their two ends.

It should be noted that while the surfaces constructed from braid words are ail
unknotted (that is, the fundamental group of the complément of the surface is

free-as the référée remarks, this is always true for surfaces constructed by
Seifert&apos;s procédure), this is not true of ail surfaces constructed from embedded
band représentations; see Fig. 2.3, an annulus knotted in a trefoil, corresponding
to the embedded band représentation (o&quot;2j4, 0^ 2, cr2t3, cr3 4, cr14) in B5.

Now consider a gênerai band représentation b. Make a choice, for each

/ 1, ...,fc, of a particular braid word w(j) such that 6(j) w(j)°&quot;ÎgV (One is

actually also choosing i(j).) Then, as in Fig. 2.4, where the process is applied to
C^o-2, ^o-r1) with w(l), w(2) as written, a surface h?U- • -UfiSuMu- • -Uhï
whose boundary is the closure of j3(fc) can be constructed; but now it is not
embedded in R3, but rather immersed. The 0-handles have interpenetrated each

other according to the braid words wO^wO&apos;)&quot;1. Each component of the singular
set of the immersed surface is of the same type: an arc of transverse double-
points, of which the preimage on the abstract surface consists of two arcs, one
entirely interior to the surface and one with both its endpoints on the boundary
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(briefly, a proper arc). A surface with only such singularities is called a ribbon

surface (in R3 or S3), or a ribbon immersion. We hâve constructed a Seifert ribbon

for the closed braid.

A band représentation b of |3 in Bn thus gives various différent Seifert ribbons
for |3 (each one a ribbon immersion, conceivably an embedding, of the same
abstract surface), differing according to spécifie ways of writing the bands. For our
purposes there seems to be no need to distinguish thèse various ribbons, any one
of which will therefore be denoted by S(b).

Ribbon immersions in S3 are related to the previously introduced ribbon
surfaces in D4 as follows (a detailed exposition has been written up by Joël Hass,

[H]). Let i : S —» S3 dD4 be a ribbon immersion. Then without changing i on dS,

one may isotopically push i into D4 so as to separate the double-arcs and produce
an embedding (S, dS) &lt;= (D4, dD4) which is a ribbon surface in the sensé of §1; and

every ribbon surface in D4 arises in this way (from any one of many différent
ribbon immersions i).

We will also use the symbol S(b) to dénote such a pushed-in version of (any
one of) the Seifert ribbons S(b). On this interprétation, S(b) is uniquely defined
(up to isotopy), perhaps justifying the ambiguity in the other interprétation; we
can see this by explicitly using the data of b alone (no choices of conjugators
vv(/)) to construct S(b) in D4. Figure 2.5 illustrâtes stages in such a construction of
S(o-U &quot;&quot;Vx). Figure 2.6 shows a Seifert ribbon S(b) in S3 adorned with représentative

level sets showing how to push the ribbon immersion into D4.
This is the gênerai construction: if b =(b(l),..., b(k)) is in Bn, of length fc,

think of an n-string (open) braid which changes in time, from the (constant) trivial
braid at t 0 to |8(b) at t 1. In between there are k singular times, 0 &lt; tx &lt; • • • &lt;

tk&lt;l; the interval [0, 2tt] which paramétrées the changing braid is also divided
into subintervals, by values 0 6X &lt; • • • &lt; 6k &lt; 2tt. Between t 0 and t \{tl +t2),
the braid changes only in the 6 -interval $1&lt;0&lt; 02&gt; in which before and after the
singular time tx it moves by isotopies, passing at tt through a stage where a simple
crossing (a point of order 4, like the center of an X) appears. Similarly, between
t==2(h + t2) and t j(t2+t3), the braid changes only in the 0-interval 02&lt;6&lt;03,

where it has a simple crossing when t t2; and so on. When this movie of a

changing open braid is used to create a surface in the bidisk D
{(z, w) : \z\^ 1, |w| ^ K}, by letting z t exp W, the surface evidently is a braided
surface, isotopic (vide Prop. 1.4) to a ribbon surface in D4; and the boundary is

(of the link type of) /3(b). We will use S(b) also for the braided surface just
constructed.

Remark 2.1. Of course, according to §1, b dictâtes an embedding
(D2,dD2) —&gt;(En,En-A) transverse to A, and this embedding in turn gives a
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singular

ÏT II

0^0,0202&apos; 2O

Jî

singular

Figure 2.5. A movie of the construction of S(aly

braided surface in D: it should be no surprise that this surface is none other than
S (S). It is hoped, however, that the pictorial approach taken has been of some

help in understanding this situation.

Remark 2.2. The algebraic moves of §1 can now be interpreted geometri-
cally. &quot;Slides&quot; on the level of band représentations correspond to handle-slides of
the surfaces S(S)&lt;^D4 with their ordered handlebody décompositions; thus,

slide-equivalent band représentations of 0 in Bn produce surfaces S(b), S(b&apos;)

which are isotopic in D4 (but generally not through a level-preserving isotopy).
An elementary expansion of b corresponds to adding a (hollow) handle to S(b),
either joining two components by a trivial tube S1 x I or taking the connected sum
of one component with a trivial torus S^^xS1, in D4 (the cases corresponding to
whether or not the pair of inverse bands in question hâve a permutation that links
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Figure 2 6

previously disjoint cycles); an elementary contraction, when possible, corresponds
to removing such a trivial tube or torus.

§3. The construction is général

We will show that every orientable ribbon surface is (isotopic to) some S(b), b

a band représentation. We will do this on the interprétation of &quot;ribbon surface&quot;

as &quot;ribbon immersion in R3cS3&quot;; the isotopy will be ambient isotopy. The proof
is in two steps. First we show that every ribbon immersion &quot;may be laid down flat
on the table.&quot; Then we show how to move any such tabled surface around until it
is an S(b). As before, the text is secondary to the pictures.

Let us say that a surface immersed in R3 is tabled if it is oriented, and we hâve
an oriented 2-plane (the table) so that orthogonal projection from the surface to
the plane is an orientation-preserving immersion. In [F], Fox attributes to Seifert
essentially the following procédure for finding a tabled surface in the isotopy class
of a given embedded surface (oriented and without closed components, necessar-
ily), S. There is a handlebody décomposition of S with n 0-handles hf, fc

1-handles h], and no 2-handles; and the 1-handles are attached orientably. (We
might of course require that n be the number of components of S, but we don&apos;t

hâve to; and when we corne to the case of immersions this won&apos;t be possible.) Let
TcR3 be an oriented 2-plane. By isotopy of S in R3, we may make each h® a
2-cell lying in a translate Tt of T, bearing the proper orientation there; and we
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can assume that the projections of thèse 0-handles into T are pairwise disjoint.
Now by isotopy arrange that the core arcs of the h] project into T in gênerai
position, and with no points except their endpoints in the images of the h°. Shrink
each h) down to a narrow band around its core arc; then, without loss of
generality, the projection of h] identifies some number of transverse arcs to
points, and is otherwise an immersion, alternately preserving and reversing
orientation in the régions between the transverse arcs - that is, h) is twisted (as

seen from T). Also, of course, h] may be knotted, and the various 1-handles may
link each other, too. As far as twisting goes, however, since the 0-handles already

projected orientably and S is oriented, each h] has an even number of twists; and by
further isotopy &quot;thèse twists can be replaced by curls (just half as many curls as

twists)&quot; ([F, p. 151]). When the twists are ail out, the surface is tabled.
Figure 3.1 illustrâtes this procédure as applied to a particular Seifert surface

for the figure-8 knot, without regard to economy in the number of handles.

Figure 3.1. Tabling an embedded surface by twisting handles.
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Now suppose that we begin with a surface which is not embedded, but is

ribbon immersed by i:S—&gt;R3, where on i(S) the double-arcs are Am (m

1,..., s), and i~1(Aw) is the disjoint union of the proper arc A&apos;m and the arc
A^&lt;= Int S. It is easy to find a set A* (m 1,..., s) of proper arcs on S, pairwise
disjoint and disjoint from ail the A&apos;p, such that for each m, A&apos;^a A%. Then there
is a handlebody décomposition of S which includes among its 0-handles a

neighborhood on S of each proper arc Afm and A*, and which has no 2-handles.
(As always, S is oriented and without closed components.) It is now possible
practically to mimic Seifert&apos;s procédure with i(S), except of course that the
0-handles containing A* and Afm will not have disjoint images in T, and cannot
both lie in planes parallel to T. Let us always take Am c i(S) to be actually a

straight line segment, parallel to T; then of the two immersed 0-handles containing

it, one can be taken to lie parallel to T, and the other to lie in another plane
parallel to T except for a narrow tab which passes through Am. (Note that to have
both the 0-handles project orientably to T, one may have to &quot;pivot&quot; one of them
about Am.) Figure 3.2 illustrâtes this, for a particular ribbon immersion of a

disk - the boundary being a stevedore&apos;s knot.
Returning to surfaces S(b) for a moment, we see that they are of course tabled

(as pictured in §2) - both from the point of view of the plane of the paper, and
from the tilted plane perpendicular to the axis of the closed braid dS(b) j3, in
which perspective the 0-handles greatly overlap each other. So our second task is

to take our ribbon surface, already assumed tabled, and isotope it until it has

become an S(b). First, skewer ail the 0-handles; that is, pick an axis A perpendicular

to T, and by isotopy of S through tabled surfaces arrange the 0-handles so
that each one intersects A in its own plane (in the case of the 0-handles with tabs,
let us make the intersection fall in the planar part, not in the tab). Now pick
rectangular coordinates in T, and for référence a rectangle-with-rounded-corners
R in T, its sides parallel to the axes, which we will call horizontal and vertical. Let
one of the vertical sides of R be called its front edge. By further isotopy of S, we
may so arrange the 0-handles so that each one projects either onto exactly R (if
there is no double-arc in that 0-handle) or onto jR suitably enlarged along the
front edge (by a larger or smaller tab), and so that the double-arcs are vertical
segments projecting outside jR (past its front edge). Next we may arrange the
1-handles (if necessary, sliding their attaching maps along the boundaries of the
0-handles) so that: they attach only along the front edges of the projections
(including front edges of tabs); so that their projections are neighborhoods of
polygonal arcs composed solely of horizontal and vertical segments; and so that in
the resulting &quot;link diagram&quot; of core arcs, each over-arc is a horizontal segment.
(We always assume gênerai position, so it also is assured that the 2fe endpoints
of the k 1-handles&apos; core arcs have 2fc distinct vertical coordinates; let also the
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A*2 A,

Figure 3.2. Tabling a ribbon immersed surface by twisting handles.

1-handles be sufficiently narrow that ail attaching takes place inside 2fc disjoint
intervais.) This is illustrated in Fig. 3.3, continuing the example of the stevedore&apos;s

knot,
We are nearly done now. One by one, vertical parts of the bands may be

expanded into full-fledged 0-handles and thèse 0-handles slipped into the stack

impaled by A - the adjacent horizontal segments, if they approach from the left,
being given half-curîs to allow the attachment to stay within the realm of tabled
surfaces with ail bands attached along front edges. When no vertical parts are left,
the resulting surface is of the form S(b), where ($(S) is a braid on some large
number of strings (n plus the number of vertical segments).
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Remark 3.1. Each band in such a band représentation S is actually of the
form wcrf1 where for some i^j either w cr,&lt;rI+1 • • • o-j^ or w cr^+x • • • a~2x-
it is either embedded or has a single double-arc but goes directly from h® to ftJVi-

Figure 3.4 shows how this last part of the construction was used to make the
surface in Fig. 2.3, beginning with an annulus knotted in a trefoil (already tabled);
and Fig. 3.5 finishes the stevedore&apos;s knot with its ribbon disk.

Acknowledgement. The conviction that every ribbon surface should arise as

S(b) for some S came upon the author in 1978, after expérimentation with
cardboard models. It was some time before the idea of using, essentially, link
diagrams with only vertical and horizontal segments in them, and every over-
crossing horizontal, was incorporated into a proof. And it was only much later
that the author remembered having first heard of such a construction at the

October, 1977, topology conférence in Blacksburg, Va. (at VPI&amp;SU) from
Herbert Lyon, in whose hands the construction was used to show that every
(embedded, orientable) surface in S3, without closed components, is a subsurface

Figure 3.3. The stevedore&apos;s knot and its ribbon disk, continued.
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Figure 3.4. Thickening vertical parts of 1-handles into 0-handles.

Figure 3.5. The ribbon disk bounded by a stevedore&apos;s knot, concluded.
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of a fibre surface of some fibred knot, [L]. The unconscious memory of Professor
Lyon&apos;s talk was undoubtedly an important ingrédient in the genesis of the
author&apos;s proof.

The fact that every ribbon surface appears as S(b) for some b has some
immédiate conséquences which may be noted hère.

PROPOSITION 3.2. Every (orientable) ribbon surface in the 4-disk is isotopic
to a braided surface in the bidisk.

As stated in Remark 1.5, I don&apos;t know a more direct proof of this.

PROPOSITION 3.3 (Alexander). Every link can be represented as a closed
braid.

We might say that Proposition 3.3 is the boundary of Proposition 3.2; of
course it relies on the existence of Seifert surfaces for every link.

Further conséquences will be reserved to the next section.

§4. The fondamental group irx(D-S{b))

A Wirtinger présentation of a group G is a présentation G

(jcl5..., xn : x;(r) w(r)x,(r)&gt; r 1,..., fc), in which each w(r) is a word in

xl9... ,Xnm, a group with a Wirtinger présentation is a Wirtinger group. A spécial

Wirtinger présentation is one in which each conjugator w(r) is actually one of the

generators, xm(r). It is clear that any Wirtinger group has a spécial Wirtinger
présentation.

That any link group tt^S3-^ (for L tame) is Wirtinger is classical (presuma-
bly due to Wirtinger); and indeed that Wirtinger présentation which is written
down in the usual way from inspection of a link diagram is spécial. Then Fox&apos;s

method of cross-sections (for instance), or, indeed, Morse theory relative to the
submanifold X, shows that any group tt^S&quot; -X), X a smooth orientable sub-
manifold of codimension 2, is Wirtinger. Not every Wirtinger group appears as a

link group in S3. But the following is true.

PROPOSITION 4.1. (Yajima [Y], Johnson [J]). If G is a Wirtinger group,
then there is a smooth, orientable surface Se:S4 with tt1(S4-S) G; and S may be

taken to be the double of a ribbon surface in the 4-disk D4.
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(The papers of Yajima and Johnson were pointed out to me by Professor
Jonathan Simon; Johnson&apos;s proof, obtained independently of Yajima, introduces
the ribbon refinement; the proof to be given hère uses the formalism of band
représentations to render Johnson&apos;s construction by &quot;band moves&quot; even more
perspicuous.)

Proof. First, let us dérive a (Wirtinger) présentation for ir^D-Sib)) from b. If
b is in Bn, of length k, there will be n generators and k relations. Thinking of S (S)

as a closed braid changing in time from the (constant) trivial braid to (3(b), one
can identify the generators xu..., j^ as standard meridians at any one of the

stages; the relations appear at the singular stages, and as in [F, p. 133] each

relation takes the form &quot;two meridians are equal&quot; (not, of course, necessarily
standard meridians). More explicitly: recall that there is a (faithful) représentation
of Bn as a group of left automorphisms of the free group Fn (xl9..., xn :

given on generators by alxl=xxl+1, alxl+1 xl, alxJ=xJ (j^i, i + 1); and that, if
7 g Bn and the open géométrie braid K c: D2 x I represents y, then in terms of the
standard meridians xb..., ^ of K in D2x{0}, the standard meridians of K in
D2x{l} (taken in the same order) are yxl9...,yxn. (This is readily checked

graphically; or see [Bi] where, however, right automorphisms are used.) Let
B (b(l),...,b(k)), b(/) w(j)o-f(j1); then the /th stage contributes the relation
w(/)xl(j) w(/)xl(j)+1. Noting that for any braid w and any xl, wxl is a conjugate of
some Xj (true by inspection for w a generator, then generally true by induction),
we see that this relation can be rewritten in Wirtinger form.

Consider two particular types of bands. An embedded band o**1 contributes
the relation xl=x]+1. A band of the form wof\ with w (njrr72Ia-m)a/~_11, contributes

the relation x, =xoc,+1. According to Remark 3.1, every orientable ribbon
surface ScD4 can be constructed as S(b) for some band représentation with
bands only of those two types; the corresponding présentation is spécial
Wirtinger. Conversely, given any spécial Wirtinger présentation of a group G, after
possibly adding new generators set equal to old ones, we can assume that each

relation is of one of the two forms xl xJ+1, xl XjxJ+1; and it is easy to find a band

représentation with that as the corresponding présentation.
So every Wirtinger group appears as 7T!(D4-S(b)) for some b. By Morse

theory, because S(b) is ribbon, the homomorphism ir1(S3-18(6))-&gt; 7Ti(D4 — S(b))
is onto. Now, by van Kampen&apos;s theorem, the groups Tr1(D4-S(b)) and tt^S4-
2S(b)\ where 2S(b)) is the double of S(B) in S4 (the double of D4), are

isomorphic.

EXAMPLE 4.2. Let b (al, ^crl1) in B3; then /§(£) is a square knot, S(b)
is a ribbon disk, and it is readily checked that 7r1(D~-S(b)) (x1,x2,x3:
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xt x2, xt X2X3X2x3) (x, y : xyx yxy), the group of the trefoil knot. In fact, in
this case the double of the disk pair (S(B), D) is the spun trefoil in S4.

EXAMPLE 4.3. Hère is the example, using a knotted 2-sphere, promised in
Remark 1.10 to show the subtle structure of the set of band représentations of a

given braid. As before, let 1, ^ 3 abbreviate &lt;rl9 cr2, cr3 respectively; and let Je

abbreviate x&quot;1. Then j3 (3(3,222!)eB4 closes to a split link with two unknotted
components, and evidently rfc(j3) 2 since |3 is not the trivial braid. One calculâtes

Tr1(D-S(31^22î)) (x2,x3: If b is any band in B4, the elementary
expansion (3,222Ï, b, b) gives a présentation irx(D- S(3,222Ï, 6, b))
(x2, x3 : r(x2, x3)) with (at most) one new relation, since b and b give rise to the
same relation according to Theorem 4.1. Then any band représentation of |3 of
length 4, which is slide équivalent to an elementary expansion of (3,222Î), gives a

présentation of the same form.
On the other hand, consider the band représentation b (23,553, 3Î1,121). Its

conjugate wb, w 3212333, has braid equal to j3 (we use b for ease of computa-
tion). We calculate 7r1(D-S(f)) (x1, x2, x3, x4:x2=x4, x^2x3 x4, Xj Xix4,

x»x2 x3) (x2, x3 : x2x3x2 x3x2x3, [x2, x3]=l). This is the group of the 2-twist
spun trefoil, and in fact when we cap off the two trivial components of the closed
braid the 2-twist spun trefoil is the knotted 2-sphere we get. In any case, this is

not a one-relator group, so the length-4 band représentation wb of j3(3,555Ï)

cannot be slide équivalent to an elementary expansion of (3, ï). (Presumably
two elementary expansions, some sliding, and one elementary contradiction
suffice to connect the two slide-equivalence classes, but I hâve not checked this.)

Remark 4.4. The Wirtinger présentation of Tr^D-Sib)) derived in Proposition

4.1 evidently takes no notice of the signs of the bands in B, so every Wirtinger
group arises as tti(D-S(8)) for some quasipositive band représentation b. As
shown in [Ru], if fcDcC2 is a pièce of complex-analytic curve with dF

rndtD (transverse intersection), then dF |3 is a closed quasipositive braid, and

conversely every quasipositive braid arises in this manner. Examining the proof
given there in the light of this paper, one sees that in fact (up to isotopy) such

pièces of (non-singular) complex-analytic curves are precisely the surfaces S(b)
for B quasipositive.

We can use this to produce a Stein manifold McCN with fundamental group
G, for any Wirtinger group G. In fact, find a quasipositive band représentation B

with TTxiD — SiB^^G; realize S(B) as a pièce of complex-analytic curve (non-
singular, and extendible to a slightly larger bidisk) in D. By the solvability of the
Cousin problem for the bidisk (cf. [G-R]), there is a holomorphic function
f(z, w) in (a neighborhood of) D, of which the zero-set in D is precisely S(B).

Also, the 2-disk D2cC may be embedded as a Stein submanifold of some CN



26 LEE RUDOLPH

(and actually N 2 will do), by a proper analytic embedding g:D2-* CN. Then
(z, w)^(g(z), g(w), l//(z, w)) is a proper analytic embedding of D-S(b) onto a

Stein submanifold M ci C2N+1. (In fact, by Forster [Fr], if N 2 or 3, M must be an

analytic complète intersection, since it is parallelizable.)

SCHOLIUM. There are finite homotopy types which can be realized as Stein

manifolds but not as non-singular affine algebraic varieties.

For John Morgan, using Hodge theory, has shown that, for instance, the group
G (*, y : 1 [x, [x, [x, [x, y]]]]) is not the fundamental group of any non-singular
algebraic variety (affine or not), [Mo]. Yet G has the Wirtinger présentation
G (x, y, s, t, m, v, w : s - yx, x st, v=xt,x= vu, w xu, x wx). (To see this, one
uses repeatedly that in any group c[a, b] [ca,cb], and [a, fc]= 1 ifï [a, b~~1] 1.)

Of course, there are infinité homotopy types among the Stein manifolds; for
instance, any open subset of C (e.g., the complément of the integers) is a Stein
manifold, [G-R]. (The analogue in Cn, n&gt;l, is naturally quite false.)

The abelianization of a Wirtinger group is free abelian, so there are certainly
finitely presented non-Wirtinger groups, and some of thèse appear as fundamental

groups of Stein manifolds, indeed of algebraic varieties. Is it possible that every
finitely presented group appears as the fundamental group of a Stein manifold?
Given a finite présentation, it is easy to construct various (open) complex
manifolds of complex dimension 2 with G as the fundamental group, but it is not
at ail clear how to make such a construction yield Stein manifolds.

§5. Rank and ribbon gênas

Recall that rknip), for ($€Bn, is the least k such that some band représentation

of 0 in Bn has length fc. Call such a shortest band représentation minimal in

Recall also the définition of the ribbon genus of a knot or link, L c= S3 dD4.

Every such L is, of course, the boundary of various connected orientable smooth
surfaces S c dD4. The ribbon genus gr(L) is the least integer that appears as the

genus of such a surface which is ribbon embedded in D4; clearly we hâve

gOL^grOL^g^L), where the (classical) genus g(L) restricts the surfaces over
which the minimum is taken to those actually in S3, and the slice genus gs(L)
makes no restrictions.

The genus is quite a classical invariant; ribbon genus and slice genus are of
more récent interest; both hâve been under study by some quite high-powered
methods, cf. Gilmer [Gl, G2]. As band représentations and ribbon surfaces are so
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closely related, there might be some hope that the more naive methods of this
paper would be relevant to the study of gr. This section présents some observations

on the beginnings of such a program.
It should be noted that (because of the requirement that the surfaces involved

be connected) g, gr, and gs ail are most satisfactory when applied to links which
can bound connected surfaces (without closed components) only: for instance,
knots, or more generally links in which any two distinct components hâve
non-zero linking number.

The following Proposition is an immédiate conséquence of the construction in
§3, applied to any Seifert ribbon for L which happens to hâve genus gr(L).

PROPOSITION 5.1. LetLbea link for which every Seifert ribbon is connected.
Then for some n and some braid PeBn with j§ L, we hâve gr(L)
§(2- n + rknifi) - c(|8)) (where c(j3) is the number of cycles in the permutation of j3 ;

or equivalently the number of components of L).

It would be nice if the quantity \{2- n + rknift)-c(|3)) always computed gr(j3).
This, alas, is not the case, as Professor Andrew Casson pointed out to me.
Example 5.3. is due to him. (Below, i abbreviates orh and i abbreviates er^1.)

EXAMPLE 5.2. In B4, consider j3 =3323211212. Then 0 is a split link of
two unknotted circles. (The reader familiar with Markov moves may verify this by
flrst increasing the string index to fîve by the move j3 —» 34323211212; conjugat-
ing this braid to get 32343211212; reducing the string index to four by moving
back to 3233211212; and then by a fairly straightforward séries of conjugations
and réductions in string index, proceeding to the identity in B2, which certainly
has the closure advertised. Alternatively, experiments with string, or pencil and

eraser, may give the resuit more quickly.) So j3 bounds a pair of disjoint disks. If
there were a band représentation of |3 in B4 of which the associated ribbon
surface was a pair of disks - even ribbon disks - then it would hâve to hâve length
2, and (since |3 has exponent sum 0) it would hâve one positive and one négative
band.

But in fact j3 is not the product of two bands in B4. We check this as follows.
There is a homomorphism &lt;f&gt; of B4 onto SL(2, Z), given by

[49
301

J. One also finds that the gênerai form
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.2\\-ac ±a2 1
of the image of a band is -, where a and c are coprime inteeers:

L tc 1 + acJ
the upper (lower) sign corresponding to a positive (négative) band. Then, up to
conjugation in SL(2, Z), a product of one positive and one négative band takes
the form

-ac + c2 -1-ac + a2&quot;]

-c2 1 + ac J

This has trace 2 + c2, so if it is conjugate to &lt;£&gt;(/3) we must hâve c2 36. But let a

[x y! f 49 301
conjugate ; the lower left hand

z wj L~&quot;lo —11J

corner of the conjugate is -18w2+60wz -30z2. Yet -18w2 + 60wz -30z2 -36
can hâve no intégral solutions (z, w), for dividing it by 6 and taking both sides

modulo 5 yields 2w2^-l (mod 5), which is impossible.
Although (3 is not a product of two bands in B4, the product 34 • |3 e B5 is a

product of three bands in B5, namely 34 • 0 ***4 • ^l • 432Ï. It would be

interesting to know whether j3 considered as an élément of B5 is a product of two
bands in B5. If it were, we would hâve hère an example in which the rank of a

braid decreases when the braid is considered to lie in a braid group of larger string
index.

Now, 0 when considered as an élément of B5 has closure a split link of three
unknotted components. If rk5(j3) 2, it is at least reasonable to suppose that
among the minimal band représentations of j3 in B5, some at least correspond to
the Seifert ribbon for )3 which consists of three unknotted disks. But if such a

band représentation of length 2 does exist, it still willnotjbe possible to get from
it to the band représentation of length 4 given by |8 34 • 43234 • 43321 • 432Î simply
by inserting a pair of cancelling bands and sliding: this can be shown by an
argument like that in Example 4.3, comparing the fundamental groups of the
compléments of the surfaces corresponding to the différent band représentations.

EXAMPLE 5.3. (Casson). In B3, let y (12)5. Then 7 is a ribbon knot, but
rfc3(7)^4; so that |(2-n + rfcM(7)-c(7)) i(-2_+_rfc3(7))^l&gt;O gr(7).

To see that 7 is ribbon, we consider yx 12123 • 7 € B4, which has the same
closure, and observe that the équation 7l 123 • fi (where |3 is as in Example 5.2)
displays 71 as the boundary of a ribbon disk made from the two disks bounded by
0 and a single band joining them.

To see rfc3(7)&gt;2 (whence it must be at least 4), we represent B3 in SL(2, Z)
and make an argument similar to that above; détails are left to the reader.
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In an earlier draft of this paper, the following hypothèses were put forth as

conjectures.

Hypothesis I. rfc^O) rkn(]8) for ail |8 e Bn c Bn+1.

Hypothesis IL rfcn+1(/3o-*1) rkn(j8) + l /or allpeBn.

Hypothesis III. Ifb (b(l),..., fc(fc)) is a minimal band représentation in Bn+1
ofP&lt;=Bn,thenb(k)j=cr*\

Hypothesis IV. // 6 is a minimal band représentation in J3n+1 of pe Bn, then
actually each band b(j) belongs to Bn.

The logical relationships of thèse hypothèses are as follows.

PROPOSITION 5.4. Hypothesis II ^&gt; Hypothesis I; Hypothesis TV 3&gt; Hypothesis

III; (Hypothesis III Se Hypothesis I) =&gt; Hypothesis IL

Proo/. Certainly IV implies III.
Observe that ail band représentations of a given braid hâve lengths of the

same parity; that rkn+ï(p)^rkn(P) for any t$eBn; and that ^(07)
rknO) + rfcn(7) for any ft 7eBw.

Suppose |3 falsifies I. Then rfcn+1(j3)^r/cn(/3)-2. Then if b is a minimal band
représentation of 0 in Bn+1, (b, cr*1) is a band représentation of jScr*1 in Bn+1, so

ril^+xdScr^^rJkndS) -1, and j8 also falsifies IL Thus II implies I.
Now suppose III and I are both true. Let b be a minimal band représentation

of fioren in Bn+1 (e ±1). Then (b, a~e) is a band représentation of p in Bn+1; by
III it is not minimal, so rfcn+1(/3)^rfcn+i(j3cr^)-l. But in any case rfc^O)^
rkn+x(pcren)-1; so in fact rfcn+1(|8cr^)-1 rfcn+1O), and by I this equals rfcn(j3); so

II is true.

However, Hypothesis II is not true.
To see this, recall Markov&apos;s Theorem (alluded to in Example 5.2), as proved in

[Bi]: Let &amp;eBn and P&apos;eBn&lt; be braids with closures of the same (oriented) link
type. Then there is a finite séquence pl9..., ft of braids ft e Bn(l), with (3l j3,

ft 0&apos;, such that for each i 2,..., s, one of the following holds - either

(Ml) n(i) n(i-l) and ft is conjugate to ft_! in Bn(l) Bre(l_1), or
(M2) n(0 n(i-l) + l and ft « ft-i^-x), or

n(i) n(î-l)-l and ft.t fto-*(î).
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LEMMA 5.5. Suppose Hypothesis II is true. Then if two braids |8, /3&apos; differ by a
Markov move (Ml), (M2), or (M2&quot;1), they hâve the same différence between string
index and rank.

Proof. In (Ml) string index is constant, and so is rank since it is a conjugacy-
class invariant. In (M2), let /3 € Bn, /3&apos; (So**1; then by Hypothesis II, the rank of
/3&apos; is one greater than the rank of |8, but so is its string index, and the différence is

constant. Similarly for (M2&quot;1).

By Lemma 5.5 and Markov&apos;s Theorem, if Hypothesis II is true, then the
différence of string index and rank would be an invariant of oriented link type;
but Examples 5.2 and 5.3 show that it is not, so Hypothesis II is false.

Then, by Proposition 5.4, not both of Hypothesis III (or the stronger
Hypothesis IV) and Hypothesis I can be true. I will still conjecture (weakly) that
Hypothesis I is true.

I will conclude by asking various questions.
Is there an algorithm for calculating the rank of an arbitrary braid? Such an

algorithm, with Proposition 5.1, would at least estimate the ribbon genus of a

knot.
The rank of a quasipositive braid is, of course, its exponent sum. But is there

an algorithm for determining whether a braid (which has not been given as the
braid of a quasipositive band représentation) is quasipositive? Is there an
algorithm for determining whether a given knot or link has, among its various
expressions as a closed braid, one which is quasipositive? Is there even a criterion
which can rule out certain knots as possibly quasipositive? (No criterion based on
a Seifert form for some Seifert surface can work-not, e.g., signatures or Alexan-
der polynomials; [Ru2].)

Is there a way of determining (perhaps for a limited class of braids) whether
the stable situation of Proposition 5.1 has been achieved? In particular, if 0 eBn
is quasipositive, is &amp;.(/§) J(2—n + rknifi) — c(j3))? For the particular case that /§ is

one of the quasipositive iterated torus links associated to singular points of
complex plane curves, that this equality holds has been conjectured by Milnor.
Also, if equality fails for some quasipositive braid, then (using results of [Ru]) one
could represent some positive homology class in H2(CF2; Z) by a smooth man-
ifold of genus strictly less than that of the homologous smooth algebraic curve - a

situation which Thom has conjectured cannot occur.
Finally, note that if gs(L) g, then for some m (the number of local maxima of

the radius-squared on some surface in D4, with boundary L and genus &amp;(L)) the
link LUmo consisting of L and m (split) unknots has gr(L U mo) g. If L j3,

m then LUmo is the closure of |8 considered as an élément of Bn+m.
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Particularly in case Hypothesis I is true, can the method of band représentations
give any information about the slice genus?

Appendix. Clasps and nodes, ùberschneidungszahl, etc.

Hère we sketch briefly how the various sections of the paper proper can be
extended to a broader class of surfaces.

A.l. A nodal braided surface is a singular braided surface i : S —&gt; D for which i
is an immersion in gênerai position (that is, each singularity is a transverse

doublepoint, briefly, a node). A nodal braided surface is itself &quot;in gênerai
position&quot; if no two nodes lie over any one point of D\, and no node lies over a

branch point (whence also neither tangent plane at a node is vertical). We will
tacitly take ail nodal braided surfaces to be in gênerai position.

Though the disk i#:D\-+En which corresponds to a nodal braided surface is

not transverse to A (if there really are nodes), its intersections with A are either
transverse or simply tangent.

An immersion / : S —&gt; D4 of an orientable surface is a ribbon immersion in D4

provided that L°f (where L(z, w) \z\2 + \w\2) is Morse without local maxima.
Such an immersion, if it is in gênerai position, has only nodes as singularities, and

no node is a critical point of L°f.
The analogue of Proposition 1.4 holds: any nodal braided surface in the

bi-disk is isotopic to a ribbon immersed surface in the disk.

Let a node in Bn be the square of a band. A nodal band représentation v is a

fc-tuple (*&gt;(1), • • • &gt; v(k)) in which each v(i) is either a band or a node; as before,

l(v) k is the length of v, &amp;(v) Il!c=i HO is its braid. Let k(v) be the number of
nodes in v.

In analogy to Proposition 1.11, we see that to a nodal band représentation v
and a smooth map f:dD2-*En-A representing j3(i&gt;), there corresponds a

smooth extension of / over D2 with l(v) intersections with A, of which k(v) are
&quot;node-like&quot;. A suitable converse holds.

Slides (as well as various species of expansion and contraction) can be defined

as before. In&apos;particular one sees that any nodal band représentation is slide-

equivalent to (and thus has the same braid as) a nodal band représentation with
ail the nodes at the end.

A.2. From a nodal band représentation v a nodal braided surface i:S-~&gt;D,

and hence a ribbon immersion S -» D4, each with boundary (of the link type of)
/§(£), can be constructed; likewise, after a choice of conjugators w(i) with
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cr

Figure A.l. A clasp/node surface derived from a nodal band représentation.

i/(î) w(lVJ=(la), an immersion S—&gt;S3 with boundary 0(v). Ail of thèse, as before,
will be indiscriminately denoted by S(v). The model in S3 is no longer a ribbon
immersion if k(v)^0. It will hâve, besides ribbon singularities, so-called clasp
singularities.

A component of the set of clasp singularities on the immersed surface is an arc
of double-points A ; the two inverse images A&apos; and A&quot; each hâve one endpoint on
the boundary of the abstract surface, and one in its interior; and the two sheets of
the immersion are transverse along A. Figure A.l shows how each node in the
nodal band représentation contributes one clasp (and, of course, possibly some
ribbon singularities). Observe that the immersion isn&apos;t quite tabled - again, from
each node there is a contribution of a single flap of the backside of the surface

exposed to view.

Figure A.2. Putting a clasp disk bounded by the stevedore&apos;s knot into the form S(v).
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A.3. Again, the construction is gênerai; again, this is most easily seen in R3.
One finds, in the isotopy class of the given clasp/ribbon surface, a surface which is
&quot;almost tabled&quot; - tabled except for flaps such as those mentioned above.* As
before, ail the double-arcs of ribbon singularises can be made &quot;vertical&quot; segments
in planes parallel to the table; and now ail the double-arcs of clasp singularises
are taken to be &quot;horizontal.&quot; In the neighborhood of a clasp double-arc, two flaps
(one tabled, the other not) interpenetrate each other, each attached to the front
edge of one of the stacked 0-handles. Then one proceeds just as before. Figure A.2
illustrâtes this for a clasp disk bounded by the stevedore&apos;s knot.

A.4. If is a nodal band représentation in JBn of length fc, the fundamental

group ir^D-Siv)) can be presented with n generators and fc relations; k(v)
among the relations will be of the form &quot;two (not necessarily standard) meridians
commute,&quot; while the rest as before set two meridians equal. Analogues of ail the
results in §4 hold hère.

A.5. If KaS3 is a knot, define ù(K) [resp., ûr(K); ùs(K)] to be the least

integer k such that there is a ribbon immersion of a disk in D4, bounded by K9

with only one local minimum [resp., a ribbon immersion of a disk in D4, bounded
by K; an immersion of a disk in D4, bounded by K] with exactly fc singular
points, each one a node. Then û(K) is the ordinary ùberschneidungszahl of K, and

may also be defined as the least number of self-crossings in a generic regular
homotopy of K to an unknot; while u, and ùs may be called the &quot;ribbon

ùberschneidungszahl&quot; and &quot;slice ùberschneidungszahl&quot; respectively, for obvious

reasons.
Now, if S c M4 is any generically immersed surface in a 4-manifold, a surgery

may be done on S inside M, replacing two 2-disks on S with a node as their
intersection by an annulus with the same boundary, thereby increasing the genus
of S (if it is connected) while decreasing the number of nodes by the same

amount; and if S is ribbon-immersed in the 4-disk, such a surgery can be done

within the class of ribbons, each annulus introducing two new saddles and no local

extrema. Thus we hâve inequalities u(K)^ur(K)^gr(lC), îUJO^^sGK)»&amp;(&amp;)»

for any knot K.

PROPOSITION. For any knot K9 Ur(K) is the least number k of self-crossings
in a (generic) regular homotopy of K to a ribbon knot

Proof. The trace of a regular homotopy of K to K&apos; is an annulus with
singularises (generically, only nodes) in S3xL So k^ûr(K). To see that fc^
ùr(K), let S be a disk, ribbon immersed in D4 with boundary K, with exactly

* Added in proof: using vertical double arcs, clasps too may be tabled completely.
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ûr(K) nodes. Then there is a nodal band représentation v such that S is ambient
isotopic to S(v); if v is in Bn, then an Euler characteristic argument shows that
l(v) k(v) + n — 1 ùr(K) + n — 1. After slides, if necessary, we may assume that
ail the nodes in v are collected at the end, v (v&apos;, v&quot;) where v&apos; is an ordinary band
représentation of length n — 1 in Bn, and v&quot; is ail nodes. The permutation of a node
is trivial, so ($(vf) has the same permutation as P(v), and 0(v&apos;) is a knot K\
bounding a ribbon disk S(vf). Now, evidently, v&quot; may be understood as defining a

regular homotopy of K to K&apos; with ûr(K) self-crossings. D

PROPOSITION. If the knot K is the closure of a strictly positive braid &amp; g Bn,
then

Proof Recall that the diagram D(j3) of a positive braid |8 is the (finite) set of
positive braid words with that braid. Call (5 square-free if no word in its diagram
has two consécutive letters equal.

Suppose that for k &lt; e(/3), m £i n, if 7 e Bm is a strictly positive braid, 2(7) fc,

then there is a regular homotopy of 7 to an unknot with \(e(y)-m + l) self-
crossings. If ftis not square-free, let |8 p(b) where some two consécutive letters
in S are equal, and let Bo be 6 with those two letters omitted; then there is a

regular homotopy of K to 0(BO) with one self-crossing, and this may be followed
by the inductively-assumed homotopy of (B(S0) to the unknot, to produce the
desired homotopy of K.

So let |8 be square-free. Each word in its diagram has at least one an-x in it,
for ^ is strictly positive. If some word in D(|3) has an^x in it exactly once, then
that letter may be omitted to obtain a braid of smaller exponent sum (in one
lower string index) with closure X, and the homotopy we seek exists by the
inductive hypothesis. So we may assume each word in D(j3) contains an_x at least
twice. Find $ in D(j8) with the fewest possible uses of &lt;rn_i, and, among those,
with some two uses of arn^1 separated by as few letters as possible, say E

acrn_17ocrn_1ô, 70eBn_1. Then 70 is not empty (since 0^-1 cannot appear in fc),

and it certainly begins with &lt;rn_2 (for a letter with a smaller subscript could be
commuted forwards past crn_u shortening 70), and likewise ends with crn_2. Write
70 crn_27iPo, where 7!€Bn_2 and p0 is either empty (in which case so is 7^ or
begins and ends in &lt;rn_2. Continue this process iteratively as long as possible,

writing 7, =crn_2_I7l+1pl, where 7l+1eBn_2_I and pt is either empty (in which case

so is 7l+1) or begins and ends in crn_2_l. The process must stop eventually, and at
that point we hâve £ acrn_1crn_2 • • • €rn_2-iA+i &apos; &apos; * poaw-iô. But pl+1 isn&apos;t empty
(the process stops at the first empty remainder), so it begins with o-n_1_1, and we
hâve $=€*&apos;•• crn_1_io-n_2_lorn_1_I • • • S. Now apply the standard relation to re-
write o*n_1_icrn_2_to-ri_1_i as o-n_2_Ian_1_lcrn^2_.l, and commute the first of the new
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letters forward past everything till it passes o-n-x. Now the two crn_i&apos;s are
separated by fewer letters than in S, contrary to assumption; so no square-free
word has crn_1 in it twice.

We are done, once we start the induction. But the only strictly positive braid of
exponent sum 1 is ax in JB2, f°r which u(|8) =5(1 — 2+1).

Remark. Milnor [Mi] conjectured the proposition, with an equality, in the
particular case of links of singularities; and Henry Pinkham has given an inductive
argument (based on the structure of such links as iterated torus knots) proving the
proposition, again in that case.

CONJECTURE. If j3 is a strictly positive braid (coming, for instance, front the

link of an irreducible singular point of a complex plane curve), then there are
equalities u(/3) 0,(0) g(|3) gr(0).

This would follow from the discredited Hypothesis II of §5, and still seems a

good bet.

Index of notation

Notations introduced in the paper (other than ephemera, used briefly in proof
or exposition and then discarded) are listed with their page of définition. Standard
symbols appear on the list if their use is somewhat idiosyncratic, or if they are

very basic, or occasionally if their domain of standard use is remote from
topology.

b; b(i) a band; the ith band in a band représentation (6, 7)
b a band représentation (7)
|8(fc); j3(b) the braid of a band représentation (7); its closure
Bn the braid group on n strings (n -1 generators) (4)

cO) the number of cycles in the permutation of /3 (27)

D;D4 a bidisk D2 x D2 (4) ; a round 4-disk (5)
A the &quot;discriminant locus&quot; (4)
e(p) the exponent sum of 0 (7) (the image of |3 in Z H1^))
En the ambient space of A (4)
En — A the &quot;configuration space&quot; of n points in R2(4)
&amp; &amp;&gt; gs genus, ribbon genus, slice genus of a link (26)

rknifi) the rank of 0 in Bn (7, 26)
R,, R,, &quot;standard relations&quot; in the braid group (6)
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9t regular locus of an algebraic set (4)
S,, S&quot;1 forward and backwards slides of band représentations at the jth place

(8)
©n the symmetric group on n letters

if singular locus of an algebraic set (4)
S(B) the Seifert ribbon corresponding to a band représentation b (15)

cr, a &quot;standard generator&quot; of Bn (6)

crltJ an &quot;embedded band&quot; (7)
T&amp; Stallings&apos;s notation for a particular kind of S(B) (13)
w, Û,., ùs the ûberschneidungszahl of a knot, and a ribbon and slice analogue

thereof (33)

In any group, [x, y] dénotes ocyx~1y~1, and xy dénotes xyx&apos;1.
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