Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 59 (1984)

Artikel: On the Nehari univalence criterion and quasicircles.

Autor: Gehring, F.W. / Pommerenke, Ch.

DOI: https://doi.org/10.5169/seals-45393

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 29.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

On the Nehari univalence criterion and quasicircles

F. W. GEHRING* and CH. POMMERENKE

1. Jordan domains

We assume throughout the paper that the function f is meromorphic and locally univalent in the unit disk \mathbb{D} . The Schwarzian derivative

$$S_f(z) = \frac{d}{dz} \frac{f''(z)}{f'(z)} - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2 \tag{1.1}$$

is analytic in D. It satisfies

$$S_{\omega \circ f \circ \psi}(z) = S_f(\psi(z))\psi'(z)^2 + S_{\psi}(z) \tag{1.2}$$

for $\varphi \in M\ddot{o}b$, where M\delta b denotes the group of M\delta bius transformations.

Nehari [13] has shown that if

$$(1-|z|^2)^2 |S_f(z)| \le 2 \quad \text{for} \quad z \in \mathbb{D},$$
 (1.3)

then f is univalent in \mathbb{D} .

The bound 2 cannot be improved because

$$f(z) = [(1+z)/(1-z)]^{i\varepsilon}, \qquad \varepsilon > 0, \tag{1.4}$$

satisfies (1.3) with 2 replaced by $2(1+\epsilon^2)$ but assumes some values infinitely often in \mathbb{D} .

The univalent function

$$f^*(z) = \log \frac{1+z}{1-z} \qquad (z \in \mathbb{D})$$
 (1.5)

^{*}This research was supported in part by grants from the Humboldt Foundation and the U.S. National Science Foundation.

satisfies $(1-z^2)^2 S_{f^*}(z) \equiv 2$ and maps $\mathbb D$ onto the parallel strip

$$T = \left\{ w : -\frac{\pi}{2} < \text{Im } w < \frac{\pi}{2} \right\}. \tag{1.6}$$

Hence $f(\mathbb{D})$ need not be a Jordan domain in $\hat{\mathbb{C}}$ under the assumption (1.3). Duren and Lehto [5] asked for conditions of the form

$$(1-|z|^2)^2 |S_f(z)| \le 2\lambda(|z|)$$
 $(r_0 < |z| < 1)$

that imply that $f(\mathbb{D})$ is a Jordan domain. They proved that $\lambda(r) = 1 + \varepsilon/\log(1-r)$ with $\varepsilon > 0$ is a possible choice, and this was improved by Becker [3] to $\lambda(r) = 1 + 2(1+\varepsilon)(1-r)/\log(1-r)$.

We shall show that the function f^* defined in (1.5) is essentially the only exception.

THEOREM 1. Let f be meromorphic in \mathbb{D} and let

$$(1-|z|^2)^2 |S_f(z)| \le 2 \quad \text{for} \quad z \in \mathbb{D}.$$
 (1.7)

Then f has a spherically continuous extension to $\overline{\mathbb{D}}$ and $f(\mathbb{D})$ is a Jordan domain or the image of the parallel slit T under a Möbius transformation. Moreover if $z_0 \in \partial \mathbb{D}$ and $f(z_0) \neq \infty$, then

$$|f(rz_0) - f(z_0)| = O(\text{dist}(f(rz_0), \partial f(\mathbb{D}))^{1/2}) \quad \text{as} \quad r \to 1 - 0.$$
 (1.8)

The estimate (1.8) means geometrically that the Jordan curve $\partial f(\mathbb{D})$ can at most have first order cusps (like two tangent circles).

In the second (exceptional) case, we can write

$$f = \varphi \circ f^* \circ \psi$$
 with $\varphi, \psi \in \text{M\"ob}, \psi(\mathbb{D}) = \mathbb{D}$.

Thus $(1-|z|^2)^2 |S_f(z)| = 2$ on some hyperbolic geodesic, by (1.2) and (1.5). Hence we conclude from Theorem 1:

COROLLARY 1. If

$$(1-|z|^2)^2 |S_f(z)| < 2$$
 for $z \in \mathbb{D}$,

then $f(\mathbb{D})$ is a Jordan domain.

The following more precise result will be stated under the normalization f''(0) = 0.

THEOREM 2. Let the assumptions of Theorem 1 be satisfied and let f''(0) = 0. Then either

$$f(z) = a \log \frac{e^{i\theta} + z}{e^{i\theta} - z} + b, \qquad a, b \in \mathbb{C}, a \neq 0, \qquad 0 \leq \theta < 2\pi, \tag{1.9}$$

or f has a homeomorphic extension to $\bar{\mathbb{D}}$ with

$$|f(z) - f(z')| \le M_1 \left(\log \frac{3}{|z - z'|} \right)^{-1} \qquad (z, z' \in \overline{\mathbb{D}}),$$
 (1.10)

$$|f(re^{i\theta}) - f(e^{i\theta})| \le M_2[\text{dist}(f(re^{i\theta}), \partial f(\mathbb{D}))]^{1/2}$$
 $(0 \le r < 1, 0 \le \theta < 2\pi)$ (1.11)

for some constants M_1 and M_2 .

As the proof will show (see (3.4)), it is sufficient to assume instead of (1.7) that

Re
$$[e^{2i\theta}S_f(re^{i\theta})] \le \frac{2}{(1-r)^2)^2}$$
 $(0 \le \theta < 2\pi, 0 \le r < 1)$ (1.12)

in order to prove (1.10). This condition was considered by Steinmetz [16] who proved (1.10) with an extra factor $1-2(1-r^2)/\log[8/(1-r^2)]$ in (1.12).

2. Quasidisks

The Jordan curve Γ is called a quasicircle with constant M if

$$\min \left[\operatorname{diam} \Gamma_1, \operatorname{diam} \Gamma_2 \right] \leq M |w_1 - w_2| \quad \text{for} \quad w_1, w_2 \in \Gamma$$
 (2.1)

where Γ_1 and Γ_2 are the components of $\Gamma \setminus \{w_1, w_2\}$. A domain bounded by a quasicircle will be called a quasidisk. If f is univalent in \mathbb{D} , the $f(\mathbb{D})$ is a quasidisk if and only if f has a quasiconformal extension to $\hat{\mathbb{C}}$ as Ahlfors [1] has shown.

THEOREM 3. If f is meromorphic in \mathbb{D} and if

$$(1-|z|^2)^2 |S_f(z)| \le b < 2 \quad \text{for} \quad z \in \mathbb{D},$$
 (2.2)

then $f(\mathbb{D})$ is a quasidisk with constant

$$M \le 8\left(1 - \frac{b}{2}\right)^{-1/2}. (2.3)$$

This result was proved by Ahlfors and Weill [2] except for the above estimate for the constant M. When b < 2 the function

$$f(z) = \frac{[(1+z)/(1-z)]^a - 1}{[(1+z)/(1-z)]^a + 1} (z \in \mathbb{D}), \qquad a = \left(1 - \frac{b}{2}\right)^{1/2},$$

satisfies (2.2) while (2.1) holds for $\Gamma = \partial f(\mathbb{D})$ only if

$$M \ge \left(2\sin\frac{\pi a}{4}\right)^{-1} \ge \frac{2}{\pi} \left(1 - \frac{b}{2}\right)^{-1/2}$$
.

Thus the order of the bound for M in (2.3) is best possible as $b \rightarrow 2$. We give an extension of the Ahlfors-Weill theorem.

THEOREM 4. Let f be meromorphic in \mathbb{D} and let

$$\limsup_{|z|\to 1} (1-|z|^2)^2 |S_f(z)| < 2.$$
 (2.4)

Then f has a spherically continuous extension to $\bar{\mathbb{D}}$ and there exists $p < \infty$ such that f assumes every value at most p times in $\bar{\mathbb{D}}$. If p = 1 then $f(\mathbb{D})$ is a quasidisk.

The number p can be arbitrarily large because every function that is meromorphic and locally univalent in $\overline{\mathbb{D}}$ satisfies (2.4).

The last assertion was conjectured by Becker [4]. He proved it under the additional hypothesis

$$\limsup_{|z|\to 1} (1-|z|^2) \left| \frac{f''(z)}{f'(z)} \right| < 2.$$

If f is not injective on $\partial \mathbb{D}$, then $f(\mathbb{D})$ need not be a quasidisk as the example $f(z) = e^{\pi z}$ shows.

COROLLARY 2. If the meromorphic function f satisfies (1.7) and (2.4), then $f(\mathbb{D})$ is a quasidisk.

This follows at once from Theorems 1 and 4; the exceptional case in Theorem 1 cannot occur because of (2.4).

Our next result is a quantitative version of a theorem of Sullivan [17]. It is a consequence of a result of Mañé, Sad, and Sullivan [11] for which we give an invariant version in terms of the cross ratio

$$(z_1, z_2, z_3, z_4) = \frac{z_1 - z_3}{z_1 - z_4} \cdot \frac{z_2 - z_4}{z_2 - z_3}.$$
 (2.5)

The Jordan curve $\Gamma \subset \hat{\mathbb{C}}$ is a quasicircle if and only if [1, p. 295]

$$|(z_1, z_2, z_3, z_4)| \le K_0 \tag{2.6}$$

for all ordered quadruples z_1, z_2, z_3, z_4 on Γ and some constant K_0 .

THEOREM 5. Let the domain $G \subseteq \hat{\mathbb{C}}$ be bounded by a quasicircle Γ satisfying (2.6). Let the function

$$g = g(z, \lambda): G \times \mathbb{D} \rightarrow \hat{\mathbb{C}}$$

be injective in z (for fixed λ) and meromorphic in λ (for fixed z). Let $g(z, 0) \equiv z$. If $\lambda \in \mathbb{D}$, then $g(G, \lambda)$ is bounded by a quasicircle $g(\Gamma, \lambda)$ with

$$|(w_1, w_2, w_3, w_4)| \le \frac{1}{16} \exp\left[(\pi + \log K_0) \frac{1 + |\lambda|}{1 - |\lambda|} \right]$$
 (2.7)

for all ordered quadruples w_1 , w_2 , w_3 , w_4 on $g(\Gamma, \lambda)$.

Let now G be a simply connected domain and let ρ_G denote the hyperbolic (Poincaré) metric of G. Let the functions f be meromorphic and locally univalent in G. Ahlfors [1] and Gehring [8] have proved that, if and only if G is a quasidisk, there is a constant a > 0 such that

$$|S_f(z)| \le a\rho_G(z)^2 (z \in G)$$
 implies f univalent in G .

It follows from the argument given in [8] that also the image f(G) is a quasidisk if a is replaced by a smaller number.

We show now that the last fact holds in a much more general context.

THEOREM 6. Let G be bounded by a quasicircle Γ satisfying (2.6) and let ρ

be any positive function. Suppose that

$$|S_f(z)| \le a\rho(z)^2 (z \in G)$$
 implies f is univalent in G. (2.8)

If $0 \le b < a$ and

$$|S_f(z)| \le b\rho(z)^2 \qquad (z \in G), \tag{2.9}$$

then f(G) is bounded by a quasicircle $f(\Gamma)$ with

$$|(w_1, w_2, w_3, w_4)| \le \frac{1}{16} \exp\left[(\pi + \log K_0) \frac{a+b}{a-b} \right]$$
 (2.10)

for all ordered quadruples w_1 , w_2 , w_3 , w_4 on $g(\Gamma)$.

In we choose $G = \mathbb{D}$, $\rho(z) = (1-|z|^2)^{-1}$ and a = 2, then (2.8) becomes the Nehari criterion. Hence we obtain a new proof of the Ahlfors-Weill theorem. It turns out however that, for b close to 2, the bound is substantially larger than the one obtained in Theorem 3.

Remark. A similar argument can be used to prove the following analogue of Theorem 6. Let the functions f be analytic and locally univalent in the simply connected domain $G \subset \mathbb{C}$. If there is a constant a > 0 such that

$$\left| \frac{f''(z)}{f'(z)} \right| \le a\rho(z)(z \in G) \quad \text{implies } f \text{ univalent in } G$$
 (2.11)

and if $0 \le b < a$, then

$$\left| \frac{f''(z)}{f'(z)} \right| \le b\rho(z)(z \in G)$$
 implies $f(G)$ is a quasidisk. (2.12)

Martio and Sarvas [12, Theorem 4.9] have shown that (2.11) holds for some a > 0 and $\rho = \rho_G$ if G is a quasidisk. Astala and Gehring have just established the converse of this result, namely that (2.11) holds for some a > 0 and $\rho = \rho_G$ only if G is a quasidisk.

3. Proof of Theorem 2

(a) Let $0 \le \theta < 2\pi$. The function

$$h(t) = e^{i\theta} \frac{e^t - 1}{e^t + 1} \qquad (t \in T)$$

$$(3.1)$$

maps the strip T conformally onto \mathbb{D} and

$$g = f \circ h \tag{3.2}$$

is meromorphic and (at least) locally univalent in T. Computation shows that

$$|g'(t)| = \frac{1}{2}(1-r^2)|f'(re^{i\theta})|$$
 for $t \in \mathbb{R}, h(t) = re^{i\theta}$. (3.3)

Since $S_h(t) = -\frac{1}{2}$, it follows from (1.2) and (1.12) that

$$\operatorname{Re} S_{g}(t) = -\frac{1}{2} + \frac{1}{4}(1 - r^{2})^{2} \operatorname{Re} \left[e^{2i\theta}S_{f}(re^{i\theta})\right] \le 0$$
(3.4)

for $t \in \mathbb{R}$ and $h(t) = re^{i\theta}$.

We define

$$v(t) = |g'(t)|^{-1/2} \text{ for } t \in \mathbb{R};$$
 (3.5)

this function is zero at a possible pole of g. We see that

$$\frac{v'}{v} = -\frac{1}{2} \operatorname{Re} \frac{g''}{g'}, \frac{v''}{v} - \left(\frac{v'}{v}\right)^2 = -\frac{1}{2} \operatorname{Re} \left[\frac{d}{dt} \frac{g''}{g'}\right]$$
(3.6)

and therefore

$$v''(t) = p(t)v(t) \quad \text{for} \quad t \in \mathbb{R}$$
 (3.7)

(except where g has a pole) where

$$p(t) = -\frac{1}{2} \operatorname{Re} S_{g}(t) + \left(\frac{1}{2} \operatorname{Im} \frac{g''(t)}{g'(t)}\right)^{2} \ge 0$$
(3.8)

by (3.4). Hence v is non-negative and convex in \mathbb{R} ; this is also true if g has a pole at $t_0 \in \mathbb{R}$ in which case $v(t_0) = 0$.

(b) We use now the hypothesis that f''(0) = 0. It follows from (3.2) that g''(0) = 0. Hence (3.6) shows that v'(0) = 0. Therefore v has its minimum at 0 where v(0) > 0, and we conclude that $g(t) \neq \infty$ for $t \in \mathbb{R}$.

Let first $v'(t_0) = 0$ for some $t_0 \neq 0$, say $t_0 > 0$. Since v is convex, we conclude that v'(t) = 0 for $0 \leq t \leq t_0$ and thus v''(t) = 0. Hence Re[g''/g'] = 0 by (3.6) and Im[g''/g'] = 0 by (3.4) and (3.8). We conclude that g''(t) = 0 for $0 \leq t \leq t_0$ and thus

for $t \in T$ by the identity theorem. It therefore follows from (3.1) and (3.2) that f has the form (1.9).

Suppose next that f is not of the form (1.9). Then the above argument shows that v'(1)>0 for each choice of the constant θ in (3.1). It follows by continuity that

$$v'(t) \ge \alpha > 0$$
 for $1 \le t < \infty$

for some constant α and therefore

$$v(t) \ge v(t_0) + \alpha(t - t_0) \quad \text{for} \quad 1 \le t_0 \le t < \infty. \tag{3.9}$$

In view of (3.5) this means that

$$|g'(t)| \le \frac{1}{[v(t_0) + \alpha(t - t_0)]^2} \quad \text{for} \quad 1 \le t_0 \le t < \infty.$$
 (3.10)

(c) We obtain from (3.1), (3.3), and (3.10) that

$$|f'(z)| \le 2\alpha^{-2}(1-|z|^2)^{-1}\left(\log\frac{1+|z|}{1-|z|}-1\right)^{-2} \quad \text{for} \quad |z| \ge \frac{e-1}{e+1}.$$

Hence there are constants a and b such that

$$|f'(z)| < \frac{a}{1-|z|} \left(\log \frac{8}{1-|z|} \right)^{-2} + b \quad \text{for} \quad z \in \mathbb{D}.$$

We apply now a standard method (see for instance [15]) to derive (1.10) from (3.11). It is sufficient to consider $z, z' \in \mathbb{D}$ because then (1.10) shows that f is uniformly continuous in \mathbb{D} and hence has a continuous extension to $\overline{\mathbb{D}}$. Let Γ be the hyperbolic segment joining z and z' in \mathbb{D} . Then Γ has length $l \le \pi |z - z'|/2$ and

$$\min(s, l-s) \le \frac{\pi}{2} (1-|\zeta|)$$
 (3.12)

for each $\zeta \in \Gamma$, where s is the length of the part of Γ between z and ζ . We see

from (3.11) and (3.12) that

$$|f(z) - f(z')| \leq \int_{\Gamma} |f'(\zeta)| |d\zeta|$$

$$\leq \int_{\Gamma} \frac{a}{1 - |\zeta|} \left(\log \frac{8}{1 - |\zeta|} \right)^{-2} |d\zeta| + bl$$

$$\leq 2a \int_{0}^{t/2} \frac{\pi}{2s} \left(\log \frac{4\pi}{s} \right)^{-2} ds + bl$$

$$\leq \pi a \left(\log \frac{16}{|z - z'|} \right)^{-1} + \frac{\pi b}{2} |z - z'| \leq M_{1} \left(\log \frac{3}{|z - z'|} \right)^{-1}$$

because $\frac{1}{x} \left(\log \frac{8}{x} \right)^{-2}$ is decreasing in (0, 1).

(d) We also obtain from (3.5) and (3.10) that

$$\int_{t_0}^{\infty} |g'(t)| dt \le \int_{t_0}^{\infty} \frac{dt}{[v(t_0) + \alpha(t - t_0)]^2} = \frac{1}{\alpha v(t_0)} = \frac{1}{\alpha} |g'(t_0)|^{1/2}$$

for $1 \le t_0 < \infty$. Hence we see from (3.1), (3.2), and (3.3) that

$$|f(e^{i\theta}) - f(re^{i\theta})| \le \frac{1}{\alpha} \left[\frac{1}{2} (1 - r^2) |f'(re^{i\theta})| \right]^{1/2},$$
 (3.13)

and (1.11) follows from a consequence of the Koebe distortion theorem [14, p. 22]. This completes the proof of Theorem 2 except for the statement that f is injective on $\partial \mathbb{D}$.

4. Proof of Theorem 1

There exists $\varphi \in \text{M\"ob}$ such that $(\varphi \circ f)''(0) = 0$. Hence it follows from Theorem 2 that $\varphi \circ f$ and therefore f has a spherically continuous extension to $\bar{\mathbb{D}}$.

Suppose now that f is not injective on $\partial \mathbb{D}$. Since S_f is invariant under Möbius transformations, we may assume that

$$f(z_1) = f(z_2) = \infty, \quad z_1, z_2 \in \partial \mathbb{D}, \quad z_1 \neq z_2.$$
 (4.1)

Let Γ be the hyperbolic geodesic joining z_1 and z_2 in $\mathbb D$ and let h map the strip T conformally onto $\mathbb D$ such that $h(\mathbb R) = \Gamma$.

We set $g = f \circ h$. Then g is analytic in T and we see as in part (a) of the proof of Theorem 2 that

$$v(t) = |g'(t)|^{-1/2} \qquad (t \in \mathbb{R})$$

is convex and positive. Suppose that $v'(t_0) \neq 0$ for some $t_0 \in \mathbb{R}$. If $v'(t_0) = \alpha > 0$ then we obtain (3.10) as in part (b) of the proof of Theorem 2. This implies $g(+\infty) \neq \infty$ in contradiction to (4.1). Similarly $v'(t_0) < 0$ leads to $g(-\infty) \neq \infty$ contradicting (4.1). Thus $v'(t) \equiv 0$, $g''(t) \equiv 0$ and $g \in \text{M\"ob}$. Hence $f(\mathbb{D})$ is the image of T under the M\"obius transformation g.

5. Proofs of Theorems 3 and 4

We need the following characterization of quasidisks. We say that the domain $G \subset \mathbb{C}$ has a *c-accessible boundary* if each $z_1, z_2 \in \partial G$ can be joined by an open arc $A \subset G$ such that

$$\min_{j=1,2} |z - z_j| \le c \operatorname{dist}(z, \partial G) \quad \text{for} \quad z \in A.$$
(5.1)

It follows from (5.1) that $c \ge 1$.

LEMMA 1. Let G be a Jordan domain in \mathbb{C} . Suppose that there is a constant c such that, for all $\varphi \in \text{M\"ob}$ with $\varphi(G) \subset \mathbb{C}$, the domains $\varphi(G)$ have c-accessible boundaries. Then ∂G is a quasi-circle with constant $M \leq 2c$.

It easily follows from [9, Theorem III.2.3] that the converse holds except for the constants.

Proof. We show first that each $w_1, w_2 \in \partial G$ can be joined by an open arc $B \subseteq G$ such that

$$|w - w_1| \le c |w_1 - w_2| \quad \text{for} \quad w \in B.$$
 (5.2)

We may assume that w_1 , w_2 are finite and set

$$\varphi(w) = (w - w_1)/(w - w_2).$$

Then $\varphi(G) \subset \mathbb{C}$ with $0, \infty \in \partial \varphi(G)$. By hypothesis there is an open arc A joining 0

and ∞ in $\varphi(G)$ such that

$$|w| \le c \operatorname{dist}(w, \partial \varphi(G)) \le c |w-1| \text{ for } w \in A$$

because $1 \notin \varphi(G)$. If $w \in B = \varphi^{-1}(A)$ we deduce that

$$|w-w_1| = \frac{|\varphi(w)|}{|\varphi(w)-1|} |w_1-w_2| \le c |w_1-w_2|.$$

Now fix $w_1, w_2 \in \partial G$ and suppose that

min (diam
$$\Gamma_1$$
, diam Γ_2) > 2c $|w_1 - w_2|$

where Γ_1 and Γ_2 are the components of $\partial G \setminus \{w_1, w_2\}$. Then we can choose $z_j \in \Gamma_j$ with

$$\min_{j,k=1,2} |z_j - w_k| > c |w_1 - w_2|. \tag{5.3}$$

Let C be the open segment (w_1, w_2) and suppose first that $C \cap \partial G = \emptyset$.

If $C \subseteq G$ then we join z_1 , z_2 by an open arc $A \subseteq G$ satisfying (5.1). Since C separates z_1 and z_2 in G we can choose $z \in A \cap C$ in which case

$$\operatorname{dist}(z,\partial G) \leq \frac{1}{2} |w_1 - w_2|.$$

Thus, by (5.1),

$$\min_{j=1,2} |z_j - w_k| \le \frac{c}{2} |w_1 - w_2| + |z - w_k| \le c |w_1 - w_2|$$
(5.4)

where w_k is the endpoint of C nearest to z.

If $C \subset \mathbb{C} \setminus \overline{G}$ let B be an open arc joining w_1 , w_2 in G for which (5.2) holds. Then $B \cup \overline{C}$ is a Jordan curve which separates z_1 and z_2 , and hence

$$\min_{i=1,2} |z_i - w_1| \le \max_{w \in B \cup \bar{C}} |w - w_1| \le c |w_1 - w_2|$$

by (5.2). Together with (5.4) this shows that

$$\min_{i,k=1,2} |z_i - w_k| \le \hat{c} |w_1 - w_2| \tag{5.5}$$

whenever $C \cap \partial G = \emptyset$.

Thus we see from (5.3) that $C \cap \partial G \neq \emptyset$. Let C_1 and C_2 denote the components of $\partial G \setminus \{z_1, z_2\}$. For j = 1, 2 we choose $w'_j \in \overline{C} \cap C_j$ such that

$$|w_1' - w_2'| = \text{dist}(\bar{C} \cap C_1, \bar{C} \cap C_2)$$

and let $C' = (w'_1, w'_2)$. Then z_1 and z_2 lie in different components of $\partial G \setminus \{w'_1, w'_2\}$. Since $C' \cap \partial G = \emptyset$ it follows from (5.5) that

$$\min_{i,k=1,2} |z_j - w_k'| \le c |w_1' - w_2'|.$$

It is easy to see that this is a contradiction to (5.3). Thus ∂G is a quasicircle with constant $M \leq 2c$.

Proof of Theorem 3. We show first that G is c-accessible. We verify (5.1) where it is sufficient to consider $z_1 = f(-1)$, $z_2 = f(1)$ because of (1.2).

We employ the notation of Section 3 with $\theta = 0$. It follows from (2.2) and from (3.4) through (3.8) that

$$v''(t) \ge a^2 v(t)$$
 for $-\infty < t < \infty$ (5.6)

where $a^2 = (2-b)/8$. For given t_0 we may assume that $v'(t_0) \ge 0$; otherwise we replace g(t) by g(-t).

We compare the differential inequality (5.6) with the initial value problem

$$u''(t) = a^2 u(t)(t \ge t_0), \qquad u(t_0) = v(t_0), \qquad u'(t_0) = 0$$

which is solved by

$$u(t) = v(t_0) \cosh a(t - t_0)$$
.

From a well-known comparison theorem, or directly from

$$\frac{d}{dt} \frac{v(t)}{u(t)} = \frac{v'(t)u(t) - v(t)u'(t)}{u(t)^2}$$

$$= u(t)^{-2} \int_{t_0}^t (v''u - vu'') ds + v'(t_0)v(t_0) \ge 0$$

for $t \ge t_0$, we deduce that $v(t) \ge u(t)$ for $t \ge t_0$. Thus, by (3.5),

$$\int_{t_0}^{\infty} |g'(t)| dt \leq |g'(t_0)| \int_{t_0}^{\infty} \left[\cosh a(t - t_0) \right]^{-2} dt = \frac{1}{a} |g'(t_0)|.$$

If $z_0 \in (-1, +1)$ is given, we choose t_0 such that $z_0 = h(t_0)$ and obtain

$$\min_{j=1,2} |z_j - f(z_0)| \le \frac{1}{a} |g'(t_0)| \le \frac{2}{a} \operatorname{dist} (f(z_0), \partial G)$$

by (3.3) and the Koebe distortion theorem. Thus (5.1) holds with

$$c = 4\left(1 - \frac{b}{2}\right)^{-1/2}. (5.7)$$

Since the Schwarzian derivative is Möbius invariant, we therefore conclude that the assumption of Lemma 1 is satisfied with (5.7) and $G = f(\mathbb{D})$. Thus $f(\mathbb{D})$ is a quasidisk with constant

$$M \le 2c = 8\left(1 - \frac{b}{2}\right)^{-1/2}.$$

Proof of Theorem 4. By (2.4) there exist $\delta > 0$ and $r_1 < 1$ such that

$$(1-|z|^2)^2 |S_f(z)| < 2-5\delta \quad \text{for} \quad r_1 \le |z| < 1.$$
 (5.8)

Let $\alpha > 0$. The function

$$\varphi(\zeta) = e^{-i\pi\delta/2} \left(\frac{1+\zeta}{1-\zeta} \right)^{1-\delta} - i\alpha \qquad (\zeta \in \mathbb{D})$$
(5.9)

maps \mathbb{D} conformally onto a wedge of vertex $-i\alpha$ and angle $\pi(1-\delta)$ that lies in the right-hand halfplane and has $[-i\alpha, -i\infty]$ as one boundary line. Hence

$$\psi(\zeta) = e^{i\theta} \frac{\varphi(\zeta) - 1}{\varphi(\zeta) + 1}, \qquad 0 \le \theta \le 2\pi, \tag{5.10}$$

maps $\mathbb D$ conformally onto a domain H in $\mathbb D$ bounded by an arc of $\partial \mathbb D$ together with a circle through $e^{i\theta}$ and $e^{i\theta}(\alpha-i)/(\alpha+i)$ that forms the angle $\pi(1-\delta)$ with $\partial \mathbb D$. Hence we can choose α so large that $H \subset \{r_1 < |z| < 1\}$. We see that, for some fixed $\beta > 0$ independent of θ ,

$$\{e^{it}: \theta - \beta \le t \le \theta\} \subset \partial H. \tag{5.11}$$

We obtain from (1.2), (5.10), and (5.9) that

$$S_{\psi}(\zeta) = S_{\varphi}(\zeta) = \frac{2\delta(2-\delta)}{(1-\zeta^2)^2} \qquad (\zeta \in \mathbb{D}).$$
 (5.10)

Since $\psi(\mathbb{D}) = H \subset \{r_1 < |z| < 1\}$, it follows from (1.2), (5.8), and (5.12) that the function $h = f \circ \psi$ satisfies

$$|S_{h}(z)| \leq |S_{f}(\psi(z))| \left(\frac{1 - |\psi(z)|^{2}}{1 - |z|^{2}}\right)^{2} + |S_{\psi}(z)|$$

$$\leq \frac{(2 - 5\delta) + 4\delta}{(1 - |z|^{2})^{2}} = \frac{2 - \delta}{(1 - |z|^{2})^{2}}$$

for $z \in \mathbb{D}$. Hence we see from Theorem 3 that h maps $\overline{\mathbb{D}}$ topologically onto a closed quasidisk with constant $M = 8(2/\delta)^{1/2}$.

Since the domains H are congruent for all θ , it follows from (5.11) that some annulus $\{r_2 < |z| < 1\}$ can be covered by finitely many domains H. Hence we obtain from the last paragraph that f has a continuous extension to $\bar{\mathbb{D}}$ and assumes every value at most p times in $\bar{\mathbb{D}}$ for some $p < \infty$.

Assume now that p = 1. Then $\Gamma = f(\partial \mathbb{D})$ is a Jordan curve. We may assume that diam $\Gamma \le 1$ because the Schwarzian is Möbius invariant. Then there exists d > 0 such that

$$|f^{-1}(w)-f^{-1}(w')| \le \frac{\beta}{\pi}$$
 if $w, w' \in \Gamma, |w-w'| \ge d$.

Choose $w_1, w_2 \in \Gamma$ and let Γ_1, Γ_2 denote the components of $\Gamma \setminus \{w_1, w_2\}$. Let first $|w_1 - w_2| \le d/(2M)$. We show that

$$\min \left(\operatorname{diam} \Gamma_1, \operatorname{diam} \Gamma_2 \right) \le 4M \left| w_1 - w_2 \right|. \tag{5.13}$$

Otherwise we could find points $z_1 \in \Gamma_1$, $z_2 \in \Gamma_2$ with

$$|z_{j} - w_{1}| = 2M |w_{1} - w_{2}| \le d \tag{5.14}$$

and a domain H such that z_1 , z_2 , w_1 , $w_2 \in \partial f(H)$. Then z_1 , z_2 would lie in different components of $\partial f(H) \setminus \{w_1, w_2\}$ and (5.14) would contradict the fact that $\partial f(H)$ is a quasicircle with constant M.

If
$$|w_1 - w_2| \ge d/(2M)$$
 then

$$\operatorname{diam} \Gamma_1 \leq 1 \leq \frac{2M}{d} |w_1 - w_2|.$$

Hence we see from (5.13) that Γ is a quasicircle with constant $M_1 \le \max(2M/d, 4M)$.

6. Proofs of Theorems 5 and 6

Theorem 5 is an immediate consequence (with A = G) of the following lemma which is a quantitative and Möbius-invariant version of the surprising " λ -lemma" of Mañé, Sad and Sullivan [11].

LEMMA 2. Let A be any set in $\hat{\mathbb{C}}$ and let the function $g = g(z, \lambda) : A \times \mathbb{D} \to \hat{\mathbb{C}}$ be injective in z (for fixed λ) and meromorphic in λ (for fixed z). Let $g(z, 0) \equiv z$. Then $g(z, \lambda)$ has a spherically continuous extension to $\bar{A} \times \mathbb{D}$ that is meromorphic in $\lambda \in \mathbb{D}$ and satisfies

$$|(w_1, w_2, w_3, w_4)| \le \frac{1}{16} \exp\left[(\pi + \log^+ |(z_1, z_2, z_3, z_4)|) \frac{1 + |\lambda|}{1 - |\lambda|} \right]$$
 (6.1)

for every quadruple z_1 , z_2 , z_3 , z_4 in \bar{A} where $w_i = g(z_i, \lambda)$.

Proof. Fix distinct points $z_i \in A$ (j = 1, 2, 3, 4). The function

$$h(\lambda) = (g(z_1, \lambda), g(z_2, \lambda), g(z_3, \lambda), g_4(z, \lambda)) \qquad (\lambda \in \mathbb{D})$$

$$(6.2)$$

is meromorphic and omits the values 0, 1 and ∞ because the points $g(z_i, \lambda)$ are distinct. Hence we obtain

$$|h(\lambda)| \le \frac{1}{16} \exp\left[(\pi + \log^+ |h(0)|) \frac{1 + |\lambda|}{1 - |\lambda|} \right]$$
 (6.3)

from the precise form of Schottky's Theorem proved by Hempel [7] (see also [6]). Since $h(0) = (z_1, z_2, z_3, z_4)$ this is our assertion (6.1) for the case $z_j \in A$. The general case will follow from the next paragraph by continuity.

Let now $z_0 \in \bar{A}$ and let ζ_n , ζ'_n be distinct points in $A \setminus \{z_2, z_4\}$ with $\zeta_n \to z_0$, $\zeta'_n \to z_0$ as $n \to \infty$. The meromorphic functions

$$h_n(\lambda) = (g(\zeta_n, \lambda), g(z_2, \lambda), g(\zeta'_n, \lambda), g(z_4, \lambda)) \qquad (\lambda \in \mathbb{D})$$

omit $0, 1, \infty$ and therefore form a normal sequence. Since $h_n(0) = (\zeta_n, z_2, \zeta'_n, z_4) \rightarrow 0$ as $n \rightarrow \infty$, it follows that $h_n(\lambda) \rightarrow 0$ locally uniformly in $\lambda \in \mathbb{D}$. Hence $g(\zeta, \lambda)$ has

a limit as $\zeta \to z_0$, $\zeta \in A$, and it follows that g has a continuous extension to $\bar{A} \times \mathbb{D}$ which is meromorphic in λ .

Proof of Theorem 6. Choose a point $z_0 \in G$ with $z_0 \neq \infty$. Since the Schwarzian is Möbius invariant we may assume that $f(z_0) = z_0$, $f'(z_0) = 1$, $f''(z_0) = 0$. Let $\lambda \in \mathbb{D}$. Since G is simply connected, it follows from the theory of linear differential equations [10] that the initial value problem

$$S_{g}(z) = \lambda \frac{a}{h} S_{f}(z), \qquad g(z_{0}) = z_{0}, g'(z_{0}) = 1, g''(z_{0}) = 0$$

has a unique solution $g = g(z, \lambda)$ which is meromorphic in λ . Note that

$$g(z, 0) = z, g\left(z, \frac{b}{a}\right) = f(z).$$
 (6.4)

We see from (2.9) that $|S_g(z)| \le a\rho(z)^2$ for $z \in G$ so that $g(z, \lambda)$ is univalent in G by condition (2.8). Hence our assertion follows from (6.4) and Theorem 5.

REFERENCES

- [1] AHLFORS, L. V., Quasiconformal reflections, Acta Math. 109 (1963), 291–301.
- [2] AHLFORS, L. V. and WEILL, G., A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975–978.
- [3] BECKER, J., Über homöomorphe Fortsetzung schlichter Funktionen, Ann. Acad. Sci. Fenn. Ser. AI, 538 (1973), 1–11.
- [4] BECKER, J., Conformal mappings with quasiconformal extensions, Aspects of Contemporary Complex Analysis, ed. by D. A. Brannan and J. G. Clunie, Acad. Press 1980, 37–77.
- [5] DUREN, P. L. and LEHTO, O., Schwarzian derivatives and homeomorphic extensions, Ann. Acad. Sci. Fenn. Ser. AI 477 (1970), 1-11.
- [6] HAYMAN, W. K., Some remarks on Schottky's Theorem, Proc. Cambridge Philos. Soc. 43 (1947), 442-454.
- [7] HEMPEL, J. A., Precise bounds in the theorems of Schottky and Picard, J. London Math. Soc. 21 (1980), 279–286.
- [8] GEHRING, F. W., Univalent functions and the Schwarzian derivative, Comment. Math. Helv. 52 (1977), 561-572.
- [9] GEHRING, F. W., Characteristic properties of quasidisks, Séminaire de Math. Sup., Université de Montréal 1982.
- [10] HILLE, E., Lectures on ordinary differential equations, Addison-Wesley Publ. Co., Reading and London 1969.
- [11] Mañé, R. Sad, P. and Sullivan, D., On the dynamics of rational maps, preprint 1982.
- [12] MARTIO, O. and SARVAS, J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. AI Math. 4 (1978/79), 383-401.
- [13] NEHARI, Z., The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.

- [14] POMMERENKE, CH., Univalent functions, Vandenhoeck & Ruprecht, Göttingen 1975.
- [15] STEGBUCHNER, H., On some extensions of a theorem of Hardy and Littlewood, Ann. Acad. Sci. Fenn. Ser. AI Math. 7 (1982), 113–117.
- [16] STEINMETZ, N., Locally univalent functions in the unit disk, Preprint, Universität Karlsruhe, 1983.
- [17] SULLIVAN, D., Quasiconformal homeomorphisms and dynamics II, preprint 1982.

Dept. of Mathematics University of Michigan Ann Arbor, Michigan 48109 USA

Fachbereich Mathematik Technische Universität 1000 Berlin 12 W. Germany

Received June 10, 1983