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Gaps and bands of one dimensional periodic Schrodinger operators

John Garnett and Eugène Trubowitz

1. Introduction

Let q(x) be the periodic extension to the whole line of a function in L|[0, 1],
the Hilbert space of ail real valued square integrable functions on the unit
interval. The spectrum of the Schrôdinger operator -(d2/dx2) + q(x) acting on
L2(RX) is the union of purely absolutely continuous bands Bn(q), n&gt;\. The nth
band Bn is the set

Hère vn{ky q), n^l, the nth eigenvalue (counted with multiplicities when k —

0, ±|) of the boundary value problem

y + q(*)y Ày

y(x +1) e2rrlky(x), -œ&lt; * &lt;oo.

The eigenvalue vn(k) is a continuous function of k so that Bn is a closed
subinterval of R1. The purpose of this paper is to study the following question:
When is a collection of closed subintervals of K1 the set of bands corresponding
to a function q in L|[0, 1]?

It is well known that the bands may touch but never overlap. This property
makes it possible to reformulate the question posed above in a more suggestive

way. A tile is a closed interval. Tiles can be arranged in any way on the line so

long as they never overlap. They are, however, permitted to touch. Suppose we
are given a séquence of tiles. Can we place them in order on the line so that they
coincide with the séquence of bands for a q in L|[0,1]?

Let an(q), n&gt;l, be the length of Bn(q). It is a routine fact that
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The notation c^ bn 4- I2(n) means that £n&gt;1 (#n ~ bn)2&lt;œ&apos; What is more interest-
ing is that for each q in L|[0, 1] the inequality

,2an(q)&lt;(2n-l)7T

holds for ail n &gt; 1. The resuit is even stronger. If a single one of the inequalities is

an equality, then they are ail equalities and q is constant. Thèse universal bounds
on the lengths of the bands will be established in Section 3 where they are shown
to be équivalent to facts about conformai mappings of slit domains. J. Moser [3]
also found them while studying the spectrum of certain limit periodic potentials.

Judging by the last paragraph, it would seem that a séquence of tiles must
satisfy rather subtle conditions in order to be a candidate for a set of bands. Also,
we do not know that the individual inequalities and the asymptotic restriction on
the lengths exhaust ail necessary conditions. For thèse reasons we take a différent
point of view towards characterizing the spectra of one dimensional periodic
Schrôdinger operators. We hope to return, at another time, to the problem of
finding a complète set of necessary conditions on the bands.

From now on we assume that the bottom of the first band is at 0. Ail other sets
of bands are obtained from thèse by translation. The complément of the spectral
bands is a séquence of open subintervals of (0, &lt;») called the forbidden bands or
the gaps. It is well known that for most potentials q (a set of the second category
in Lr[0, 1]) no bands touch, so that there is a nontrivial gap between every two
bands. To each set of bands Bn(q), n &gt; 1, we associate the séquence of nonnega-
tive numbers

where yn(q) is the distance between the top of the rcth band and the bottom of the
next.

An open title of length 7 is an open interval of length 7 when 7 is positive and
a point when 7 is zéro. Open tiles may be arranged in any manner on (0, 0°) as

long as none of them overlap. Now let 7n &gt;0, n &gt; 1, be a séquence of nonnegative
numbers. We ask whether it is possible to place the séquence of open tiles of
length yn, n &gt; 1, in order on the positive axis (0, 00) such that the complément (we

regard points simply as marking places where two bands touch—they are not
removed) is the band spectrum of a q in Lr[0, 1]? Our goal in this paper is to
describe the set of ail possible configurations of bands by understanding the
distribution of gaps.

There is a simple necessary condition on the length of the gaps corresponding
to a q in L|[0, 1]. The séquence yn(q), n&gt;l, is in l2 i.e., £n&gt;i 7n&lt;°°. It is also
sufficient.
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THEOREM 1. Let yn, n ^ 1, be any séquence of nonnegative nwnbers

satisfying

Then, there is a way of placing the séquence of open tiles of lengths yn, n &gt; 1, in
order on the positive axis (0, &lt;») so that the compliment is the set of bands for a

function q in Lr[0, 1], In other words, the map

from L^[0,1] to (12)+, is onto.

Hère, (12)+ is the space of the nonnegative, square summable séquences
Yn,n&gt;l.

Theorem 1 tells us that there is no obstruction to a séquence of nonnegative
numbers being an actual gap séquence other than an explicit asymptotic condition.

This is in marked contrast to the set of band lengths.
It is natural to ask how many différent ways a séquence of open tiles, whose

lengths are yn, n &gt; 1, can be placed so that the complément is a set of bands. For
example, suppose that the tiles are properly arranged. If the first tile is moved,
even a very small amount, the complément may no longer be an actual band

spectrum. However, we can slide the (infinitely many) other tiles to try to
compensate for this. There could be a great deal of freedom.

THEOREM 2. There is just one way to place a séquence of open tiles, satisfying
the hypothesis of Theorem 1, on the positive real axis so that they are genuine gaps.

Thus, we hâve shown that (Z2)+ is a moduli space for ail band configurations.
Equivalently, a band spectrum is uniquely determined by its gap lengths and ail

gap séquences in (I2)+ occur as gap lengths.
Theorems 1 and 2 are proved in Section 5. We are going to use a characteriza-

tion of bands due to Marœnko and Ostrovskïi [2]. They identify band configurations

with slit quarter planes. In Section 4, we give a new approach to their
beautiful theory with the improvements that are necessary for our purposes.

Let iin(q), n &gt; 1, and vn(q), n &gt;0, be the Dirichlet and Neumann spectrum of

q in Lr[0, 1], that is, the spectra of (1.1) for the boundary conditions

y(0) 0,
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and

y&apos;(0) 0, y&apos;(D 0

respectively. If q is an even function (q(l -x) q(x)) then yn(q) \yin(q) — vn(q%

n &gt; 1. We define the signed gap lengths of q in Eo, the subspace of even functions
in Lr[0, 1] with mean 0, to be the séquence (fi,n(q)- vn(q), n &gt; 1). In Section 5 we

prove

THEOREM 3. The map from q to its signed gap lengths is a real analytic
isomorphism between Eo and l2.

To indicate why this theorem is true we calculate the derivative at q 0. The
gradient of a Dirichlet or Neumann eigenvalue is the square of its corresponding
normalized eigenfunction. Consequently, the directional derivative of the nth
signed gap length at q 0 in the direction of the function v e Ro is given by 2
(sin2 mrx -cos2 httx, v) -2 (cos 2rrnx, v). We see that the derivative of the map
from q to signed gap lengths is a boundedly invertible linear map between Eo and
l2. The inverse function theorem shows that our map is a real analytic isomorphism

in a neighborhood of q 0. We are using the fact that the Dirichlet and
Neumann eigenvalues are real analytic functions of q. This is proved in [4].

To prove the global Theorem 3 we hâve to show that the conformai map of a

quarter plane with infinitely many slits to the upper half plane is a real analytic
function of the infinitely many slits. In fact we obtain three real analytic
isomorphisms between the three spaces Eo, l2 and i2, the space of real séquences
{hn} satisfying Xn2h2&lt;o°. in Section 2 we introduce the conformai mapping
ô(À, q) from the upper half plane to the quarter plane with excised slits Tn

^y^lhJ}, and yn(q) is the length of S&quot;1^). When qeE0, we define

sgn(jutn(q)-i/n(q))|hn(q)|, where \K(q)\ is the length of the n-th slit Tn

determined by 8(\, q). Then ail three maps in the diagram

\/
are real analytic, one-to-one, onto, and hâve real analytic inverses.

We thank Richard Durrett and Peter Jones for helpful discussions.

2. Préliminaires

In this section we introduce some notation and dérive some simple facts which
will be used later.
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Let yt(x, A, q) and y2(jc, A, q) be the solutions of

-y&quot;+q(*)y Ay (2.1)

satisfying

and set

A(k) A(\, q) yi(l, A)4- yi(l, A).

The séquence of roots

of A2(A)-4 0 is the spectrum of équation (2.1) with periodic boundary conditions

of period 2, i.e. y(x + 2) y(x), -oo&lt;x&lt;&lt;x&gt;. Hère equality means that

A2n-i A2n is a double root or eigenvalue. The lowest eigenvalue Ao is simple,
â(\0) 2, and the corresponding eigenfunction has period 1. The eigenfunctions
corresponding to A2n_1? A2n hâve period 1 when n is even and they are an-
tiperiodic (y(x + l) -y(x)) when n is odd. Also,
n &gt; 1. We hâve the estimate(1)

J q(x)dx + l2(n)

Finally, Ao and A! are the bottom and top of Bl9 while A2 and A3 are the bottom
and top of B2, and so on.

We see from the discussion above that the problem of describing band

configurations is équivalent to the characterization of ail periodic spectra, or in

another guise, ail functions à(\) 4(A, q).
From now on, unless otherwise stated, we adopt the normalization A0(q) 0.

means
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LEMMA 2.1. Let(2)

ô(k,q)

Then 8(k) is a conformai mapping of the upper half plane {ImA&gt;0} to the slit
quarter plane

where

and

I n2h2n&lt;oo.

Moreover,

Proof. Let Àn, n &gt; 1, be the zéros of A. It foliows from Laguerre&apos;s theorem
[5 p. 266], that

because ^l(A) is entire of order 1/2 and the roots of A (k) ±2 coincide with the
real séquence An, n&gt;0. Since

dAC°S \ 2 /

we hâve

2cosS(A).

2 À is an abbreviation for dA/dk.
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We now see that ô(A) is a conformai mapping from the upper half plane to
some quarter plane Q(h) and that 8 maps the gap (A2n-i, A2n) onto the slit Tn, the
band (A2n, À2n+i) onto the interval (mr, (n + 1)tt) and the segment (-00,0) onto the

imaginary axis. It remains to check the estimate on the slit heights.
From the product représentations [See 4]

ns=l n TT

and

we obtain the estimâtes

4-42(A) (A2n - A)(A - A2n_1)O(l/n2), A2n_! &lt; A &lt; A2n

and

n sup

Hence

so that

|/i»|sO(n) sup

O(n) sup

The idea of Marcenko and Ostrowskïi is to use the slit heights as a set of
moduli.
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3. Lengths and harmonie measures

Write (12)+ for the space of séquences a^ n &gt; 1, such that £ a2l&lt;œ and a^ &gt;0,

and dénote by (Ii)+ the space of séquences h^, n &gt; 1, such that £ns=i rc2hn&lt;°° and

hn^0. Say he(lf)+ is fîra&apos;te if f^ 0 for n sufficiently large.
For h e (l\)+ let il{h) be the slit quarter plane

\
{Rez&gt;0,Imz&gt;0}

where

is the n-th slit in d/2(h), and let z &lt;phW be a conformai mapping from the upper
half plane % ={Im A &gt;0} onto il(h). By Carathéodory&apos;s theorem [6], &lt;ph extends

to a continuous mapping from the closure % U {°°} and the extended &lt;pH is

two-to-one over each non-trivial Tn and one-to-one over the remainder of
d/2(h)U{°o}. We normalize &lt;ph by

°
(3.1)

which détermines &lt;ph uniquely to within a positive multiple. When h is finite,
is by reflection meromorphic at oo and

(PhHz) az2 + b + o(^, |z| large,

with a&gt;0. Replacing cphW by &lt;ph(À/a), we may further normalize &lt;ph so that

&lt;Ph Hz) z2 + b + O(l/|z|2), |z| large, (3.2)

which makes &lt;ph unique when h is finite. If h is not finite, the truncations

&quot;;tk (3.3)
0, n &gt; k

hâve domains ftk ft(fi(k)) decreasing to ft(fi) and by Courant&apos;s theorem (and its
proof [6 p. 383]), their mappings &lt;ph(k)(^)&gt; when normalized by (3.1) and (3.2),
converge on °U U{oo}? uniformly with respect to the spherical metric, to conformai
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map (ph:°^ —&gt;/2(h). In this way we hâve a uniquely determined map &lt;ph for ail
h g (l\)+. From now on &lt;ph dénotes this unique conformai map. Set Ao 0; and for
n &gt; 1 define

^2n-i A2n-i(h) &lt;Pï\nir-) lim &lt;p,~\mr - e)

lim (p^
e 10

an an(h) A2n_i - A2n_2

and

Thus &lt;xn is the length of cp^flXn — I)ir4-, MTr-]) and yn is the length of &lt;Ph1(Tn).

When An, n&gt;0, is the periodic spectrum of (2.1), translated so that Ao 0, &lt;ph(A)

is the same as the map ô(A) defined in Lemma 2.1, and then an is the length of
the n-th band Bn and yn is the length of the n-th gap.

Most of our estimâtes of lengths dépend on the following simple lemma.

LEMMA 3.1. Assume h is finite. Let u(z) be a bounded harmonie fonction on

O(h) such that

u(z) 0, zedO(h), \z\ large

and let U(k) u(&lt;ph(A)). Then for Lebesgue almost ail teU, the limit

exists and is integrable, and

I [7(0 dt lim 2&gt;rrx2u(x + ix). (3.4)

In particular, the limit in (3.4) is finite and it is strictly positive if u(z) is nonnegative
but not identically zéro.

Notice that if u(z) is the harmonie measure of a bounded Borel set E c dO(h),
then [7(0 agrées almost everywhere with the characteristic function of (p^iE)
and the limit in (3.4) évaluâtes the length of &lt;ph1(E).
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Proof. The boundary value exists by Fatou&apos;s theorem because U(k) is a

bounded harmonie function on °U ; it is integrable, in fact bounded and compactly
supported, because U(t)= U((ph(t)) Q if teU and |f| is large. Moreover, for

so that by dominated convergence

f l/(t)dt-lim 7rn(7(£ + i&apos;n),

uniformly in |£|&lt;G By (3.2)

tï Im q&gt;h\x+ ix) 2x2 + 0(1), x

and since w(x + ix)-&gt;0 (x-»&lt;»), we therefore have

lim 7rr)Lf(£4-iT|)= lim

and (3.4). The limit is finite becuase the intégral converges. If u{z) is nonnegative
but not identically zéro, then U(f)&gt;0 and l/(À)&gt;0 for ail ke% and the intégral
représentation of U(k) shows that J U(t) dt&gt;0. D

We shall later need this refinement of the lemma:

I U(t) dt lim 2ttx2u(x + i(x + c)) (3.5)

for any constant c. The proof is the same.

THEOREM 3.2. For ail he(ll)+ and ail n=&gt;l,

an(h)&lt;(2n-l)7r2.

Equality holds for a single n if and only if h 0.
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Proof. If h 0 then &lt;Ph1(z) z2, so that À2n-i rc27r2, À2n_2 (n -1)2^&quot;2 and

an (2n-l)7r2. Fix n, let ft(k) be the truncation (3.3) of h and let uk(z) be the
harmonie measure of ((n-l)ir, nTr)&lt;^dOk d/2(h(k)). By the maximum principle
uk(z)-uk+1(z) is harmonie, nonnegative and bounded on Ok+i and it is strictly
positive if hk+1&gt;0. The lemma then applies to uk — uk+1 to give

and

if ftfc+1&gt;0. Thus an(h(k)) is nonincreasing in k and it jumps down at each k with
hk&gt;0. Hence an(h(k))&lt;an(0) (2n-l)7r2, with equality if and only if h(k) 0.

The theorem now follows because by Courant&apos;s theorem an(h)
D

THEOREM 3.3. Ifhe (I2)+ then

7nW&lt;4Max(2irnhn,h2), (3.6)

and

Note that if

where hik) is the truncation of h defined by (3.3), then by Theorem 3.3, we hâve

so that I(7n)2&lt;co-

Proof. The I2 estimate follows from the pointwise estimate because

^n2^ X n2fi2 and I h^
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In proving (3.6) we may, by Courant&apos;s theorem, assume h is finite. So let h be
finite and let &lt;on(z) be the harmonie measure of Trt in Q(h). By the lemma

yn(h) lim 2irx2(on(x + ix)
X—&gt;oo

and by the maximum principle and the lemma, yn(h)&lt;yn(hf) where h^ ônmhm,

because replacing h by h1 does not decrease o)n(z). So replace h by h&apos;. Then
z -&gt; z2 maps ft{h) into °U\Tn where Fn is the parabolic arc

Tn {(n27r2- s2) + lirins : 0 &lt; s &lt; hn}

and o&gt;n(z)= Wn(yjz), where Wn is the harmonie measure of Fn in %\Fn. Enclose
Fn in a closed dise Dn with center n27r2-h2 and smallest radius

7rhn, h2)

On °U\Dn the harmonie measure of the orthogonal semicircle °U HdDn is

which is 2/tt times the angle of visibility of IRHDn at the point f. By the
maximum principle Wn(^)&lt; W^), ^G%\Dn, and by the lemma

yn(h)= lim
-n—*oo

&lt; lim ;
-n—&gt;oo

2 meas (R D Dn) 4rn

which is (3.6). D

For the Marcenko-Ostrovskiï characterization of spectra we need two further
estimâtes.

THEOREM 3.4. Let h g (ï?)+. Then
(a) There is a constant c c(fi) such that
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and

(b) limX(A2n(h&lt;k))-\2n(h))2 0

where h(k) is the truncation of h.

Proof. Part (a). Since 7n A2n-À2n-ie P, it is enough to consider A2n. We
first reduce the proof to showing

A^^^^nV+ cW+PW, (3.7)

where h(n) is the truncation (3.3). Write u(j^\z) for the harmonie measure in

QN O(hiN)) of dON H{0&lt;Re z &lt; mv), so that

À^ A2n(fi(N)) lim 2ttxVnN)(x + îx),

and let do)(N)(z,Ç) be the élément of harmonie measure for zeQN, Çed£lN.
Comparing boundary values, we see that for N&gt;n,

=n + l JTk
f ^ dco(N\z, C)9

k=n J

zeOn, from which Lemma 3.1 and Courant&apos;s theorem give

0 ^ A(2&quot;n&gt; - \2n lim (A2&quot;n&gt;

For

\
7T \(k — n)7r/ k~n

because the middle term is the harmonie measure at £ of {mr + iy :0&lt;y &lt;oo} in

the quarter plane {y &gt;0, x &gt; nu} and this harmonie measure dominâtes u^n)(£) on

dfin. Also, by Theorem 3.3,
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and hence

|A2r,-A^|&lt;Const. Z T^ Const.5n. (3.8)

But ôn € l2 since

8n^~ I khkyt^-(Ik2hiy&lt;HZ(yt)2)1/2.
n k=n+\ n

Therefore proving (3.7) will prove part (a).
Now consider

1 fn
vn(z) -\TV Jo

Im (z2) dt
(r-Re(z2))2 + (Im(z2))

which is the harmonie measure of {0&lt;x&lt;mr} in the quarter plane f}(0)
{x&gt;0, y &gt;0}. By the lemma

À™- n2TT2 lim 2ttx2(u^\x + ix)-vn(x + ix)),
X—*o°

while by integrating boundary values, we hâve

u&lt;ïXz)-vn(z)= £ f (l-t)n

Write 1 - vn(0 V^O + Vln)(^), where

is the harmonie measure of {iy :y&gt;0} in 11(0), and

and let

An Hm 2ttx2 X f V1(C) do,&lt;n)(x + ix, (3.9)
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and

Bn lim 2ttx2 X f V&lt;2n)(£) da&gt;in)(x + ix, £). (3.10)
x-*°° fc i JTk

Then À^-n2^2^ An + Bn, and (3.7) will be proved by establishing that Bnel2
and that for some constant c c(h),

{An-c(h)}el2.

First consider Bn. At £ g Tk we hâve

iXÛ ^Const. -^- fc &lt; nn-fc

and

Consequently

2 k=1n-fc

By Theorem 3.3, 7* g P, and since fc(n - k)&gt; n -1, 1 &lt; k &lt; n -1,

M ~

and hence Bn g ï2.

To study An, observe first that because V^Ç)^ 2hkl^r2k, £eTk, we hâve

lim 2ttx2 f VU) do&gt;Cn)(x + ix, £) &lt;%

By the maximum principle the limit is nonnegative and it is nonincreasing in n.
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Therefore the limit

ak lim lim 2ttx2 f VX(C) da)(N\x + ix, £)

exists. The constant in (3.7) will be c(h) £k 1 &lt;*k- Now

An - c(h) t (-ûk + lim 2ttx2 f Vx(£) d*&gt;in\x + «,

oo

I (3.11)

Since ak &lt;(2hk/7r2fc)7*, Theorem 3.3 shows that both séries Dn and c(n) —Do

are convergent and also that

because

^ Const. v1 /i i x * Const.

k=n+i

Finally, we hâve

Q I lim lim 2ttx2 f Vxtt)(Ao(n)(x + ix, f - dco(N)(x + îx, f

and by the maximum principle do&gt;(n)(zy ^)-dco(N)(z, ()&gt;0 on Tk, so that

Q&lt;Const. I^lim(7lT&gt;-7r)-

LEMMA 3.5. For n&gt;k,

))^ Const. £ r^ Const.
j=n+lJ ^

where ÔM is defined in (3.8).
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Accepting this lemma for a moment, we use it to note that

and hence that Cn € l2 because, as we showed above, 8n e I2.

To summarize, we now conclude that An-c(h) Cn + Dnel2 and conse-

quently that A^l)-n27r2-c(h)e P. That proves (3.7) and part (a).

Proof of Lemma 3.5. Write to(kn)(f) for the harmonie measure at £eiln
n(h(n)) of the set Tkczdfln, fc&lt;n. Then

For ^gTp /&gt;n, we see, comparing ûj(kn)(^) to the harmonie measure of {kir +
iy, 0&lt;y &lt;œ} in the quarter plane {x &gt; kir, y &gt;0}, that

3

Consequently

Part (b). As in the réduction of part (a) to (3.7), we hâve for fc &gt; n,

&lt; X Const.
j=k+ l

And for k &lt; n we hâve

-A2n|&lt; | (sup ii



Gaps and bands of one dimensional periodic Schrôdinger operators 275

If k is so large that fij^l, /&gt;fc, then sup£€Ti (1 —u^ (£))^Const. h,, because
1 — u^k)(£) reflects to be harmonie on {£:|£ — JTr\&lt;7r} and u^(7t) 1. Hence we
hâve

|A2kn}-A2nNConst. £ h,7*

for ail n if k is sufficiently large, and since

(b) is proved.

4. The Marcenko-Ostrovskiî Theorem

We say q e Lj^O, 1] is even if q(x) q(l - x) and we let E dénote the subspace
of even functions in Lj^O, 1].

THEOREM 4.1. Let he(lf}+ and let &lt;ph be the conformai mapping from the

upper half plane to the slit quarter plane O(h) (normalized as in §3 above). Then
there exists qeE such that

Except for the fact that the potential q is even, this theorem was proved by
Marcenko and Ostrovskiï (see Theorem 5.1 of [2]) by a différent method. In this
section we give an alternative proof, using the estimâtes of §3,and some ideas

from [4], and we prove that q can be chosen from E.
We first consider the roots

of y2(l, A, q) 0. The séquences fin, n &gt; 1, is called the Dirichlet spectrum of q, it
is the set of eigenvalues of (2.1) with Dirichlet boundary conditions y(0) y(l)
0. It is well known [7] that A2n-i ^ i^n — A2n&gt; ar*d so the Dirichlet spectrum satisfles

the estimate
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It is also well [7] known that q(x) is even if and only if fxn(q) À2n_i(q) or A2n(q)

for ail n &gt; 1. We need the following characterization of Dirichlet spectra. Let S be
the Hilbert manifold of ail increasing séquences &lt;rn n2Tr2 + I2(n), n &gt; 1, and let
Eoc:Lr([0, 1]) be the subspace of even functions with mean 0. The fact we need

is that ail Dirichlet spectra are obtained by translating séquences in S:

THEOREM 4.2. The map front Eo to S defined by

E03q-&gt; (|uti(q), [X2{q),. .)€ S

is one-to-one, onto and bianalytic.

Proof. See the Appendix for a proof of Theorem 4.2.

We next make a list of ail possible functions â(k, q).

LEMMA 4.3. Let creS, Le. cr (al5 cr2,...) is any strictly increasing séquence

of real numbers satisfying

Then the séries

l 2cosVA+ I 2[(-l)&quot;-cosV&lt;rJ II —

converges, uniformly on bounded subsets of C, to an entire function. Moreover there

is an even function q(x) g Lr([0, 1]) with Jo q(x) dx 0 such that A(k, q) -dCT(A)

and an ^n(q), n &gt; 1. Conversely, if qeL2 is even and JJ qdx 0, then A(k, q)
^V(A) where |jl (fxu fx2,...) is the Dirichlet spectrum of q.

Proof: First suppose q(x) is even and Jj q(x) dx 0. Then

/e|Im,AK
A (À, q) - 2 cos VA 0( J

and fxm fxm(q) m27r2+ i2(m), so that the contour intégral



Gaps and bands of one dimensional periodic Schrôdinger operators 277

tends to 0 as N —» oo. Direct application of the residue theorem yields

0 (4(A)-2cosVA)
1 Mmm Sri M&apos;m

n27r2

AX JL

„ m^n Mm ~&quot;

M-n

Multiplying both sides by flm^i ((Mm -A)/m27r2), we obtain

X O-2 cos VmJ 11 ^J*X fO m 11 J
n&gt;l m^n Mm Mm

2cosV\+ £ 2((-l)B-cos&gt;/nJ£ fi _ns:l m^n M&apos;m M&apos;m

because MnCq)^ A2n-i(q) or A2n(q), n&gt;l. Therefore,
Conversely, if an, n &gt; 1, is a séquence satisfying the hypothesis of the lemma,

then, by Theorem 4.2 there is a qgEo such that crn ^n(q), n&gt;\. It follows from
what we hâve already shown that

The proof is finished.

Unfortunately, the manifold S of ail séquences a which satisfy the hypothèses
of Lemma 4.3 is not a moduli space for functions 4(A), nor a fortiori spectra,
because many séquences in S yield the same function. In fact, 4X*(A) 4(A, q),
q g JE0, for any séquence A.* (A* A2n(q) for A2n-i(q), n ^ 1). It is for this reason
that we must consider the conformai mappings Ô(A) and

Proof of Theorem 4.1. We first treat the case of finite h. Let A^=
where h(k) is the truncation (3.3) of h. By Theorem 3.4 there is a constant
ck c(h(k)) such that A2^ n2ir2 + ck + I2(n). By Theorem 4.2 there is an even
function qk g Lr[0, 1] with JJ qk dx ck such that

and
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We now show

An= An(qk).

(So far ail we know is that A|n is either A2n_i(qk) or A2n(qk).)
Let &lt;Pk(A.) &lt;phoo(À) be the (normalized) conformai map from the upper half

plane to il(h(k)). Then cos&lt;pk(A) is entire and by (3.2)

|A| large,
\|A| /

so that

2 cos cpk(A) 2 cos V(A - ck) + O\^~r^V

for large |A|. Consequently, just as in the proof of Lemma 4.3,

1 f 2 cos &lt;pk(z) - 2 cos V(z - ck) /t-t J2^^^
27TÎ J|z|=(N+i/2)2w2 z - A \Vi A2j- z)

tends to 0 as N-»oo? and

2 cos &lt;pk(z) 2 cos Vz -ck + X 2[(-l)J -cos Va2j-ck] il xk _ xk
m#j A2m A2j

since cos &lt;pk(A2j) (~1)J. But applying Lemma 4.3 to qk - ck, which has zéro mean
and Dirichlet spectrum M,,(qk-ck) M-j(qk)-ck A^-Cj,, we obtain

fk) 4(z-ck,qk-ck)

2cosVz-ck+X 2[(-l)J-cosV(A|J-ck) FI A^Vk -

j&gt;1 m#jA2m A2j

Therefore 2 cos &lt;pk(z) 4(z, qk) and k^ kj(qk) for ail j, and from this it follows
that

The gênerai case now follows by approximation. By part (b) of Theorem 3.4,
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the séquences

converge in the space S to

Hence by Theorem 4.2, qk converges to an even function q e Lr[0, 1] and
H,j(q) \2j(h),j&gt;l. But then since 8(k,qk) converges to ô(A, q) uniformly on
compact subsets of the upper half plane we hâve

and the proof is finished.

The theorem can also be proved without using the approximations qk. The
proof of Theorem 3.4 shows that

when h e (Z?)+ and z ed£l(h), Re z &gt;0. A reflection across the positive imaginary
axis and a Phragmén-Lindelôf argument then gives

and hence we hâve

2 cos cph(A) 2 cos VU - c(fi)) +

even when h is not fînite. The proof now follows as in the finite case.

5. Proofs of Theorems 1, 2 and 3

Write IR+={xelRN:xn&gt;0, l&lt;n&lt;N} and regard R+ both as the subspace

{hn=0, n&gt;N; hn&gt;0, n&lt;N} of (/f)+ and as the subspace {Yn 0, n&gt;N;
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7n &gt;0, n &lt; N} of (12)+. Then we hâve defined a mapping h -&gt; yn(h) from M+ into
M™ because, as we hâve seen, yn 0 if and only if h» 0. Theorems 1 and 2 are

conséquences of

LEMMA 5.1. From U+ to R£ the map h -&gt; yn(h) is real analytic. It satisfies

^7^+ I ^&gt;Const.ne-(M+h«)/2, (5.2)

where M max {h» : n 1, 2,...}.

The main use of the lemma is the observation that the Jacobian of yn(h) is

never zéro, since by (5.1) and (5.2) the diagonal entry of each column dominâtes
the absolute sum of the rest of that column.

Proof. Real analyticity will be proved in the next section. For h eR+, z e O(h)
and 1 &lt; n =s N, write

the harmonie measure of Tn at z, relative to the domain O(h), so that by Lemma
3.1,

yn(h)~ lim 27rx2o)n(x + ix).
X —*&lt;x&gt;

By the maximum principle, an increase in h^ will increase o&gt;n(z) and thus yn, but it
will decrease cok(z) and yky k^n. Hence we hâve the weak form of (5.1),

dyn dyk
dhn~~

&apos;

dhn~~
&apos;

Fix n, let en be the unit vector (en)1 ônj, let r&gt;0 and consider the positive
harmonie function
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en). We bound Vt(h, z) from below. Let It be the segment

and let fi*(b), b&gt;0, be the slit strip

f}*(b) {|x- mr| &lt; tt, y &gt;0}\{n7r4-iy :0&lt;y &lt;b}

with base

Bn {(n - 1)tt &lt; x &lt; (n + 1)tt}.

On ail*(hn + t) we hâve

(5.3)

where xe dénotes the characteristic function of E. The estimate of
o&gt;(/2*(hn), Bm f), ^elt, is in two cases.

Case 1. hn +1 &lt; tt/2. In terms of the coordinate w (z/tt) - n, /2*(^n) contains
the slit half dise

D {|w|&lt;l,Imw&gt;0}\{iy :0&lt;y &lt;hjir},

which has diameter Bn and which contains Jt. The mapping t(w)
{(7r2w2+hî)/(&lt;TT2+hîw2)}m sends the slit half dise into the full half dise {|t|&lt;1,
Im t &gt; 0} so that Bn corresponds to the two segments

Cn r(Bn) [-1, -hj7r]U[hnl7T, 1]

and so that Z f (s) n-nr + i(hn + s) g It falls on

w icr(s) tirVs 4 2
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Therefore

Cn, ior(s))&gt;—arctan^-^ arctan a(s).

with a positive constant.

Case 2. hn + f&gt;&apos;n&gt;/2. From a comparison with the half strips {jtt&lt;x&lt;

(/ + 1)tt, 0&lt;y &lt;oo}, j n — 1, n, we hâve co^O*^), Bn, z)&gt;e~y |sinx|, and hence

(oifl^ihn), Bn, z)&gt;const. e~hn on the two horizontal segments {7r/4&lt;|x-M7r|&lt;

3tt/4, y ^-1}. Repeating the argument of Case 1 with the slit half dise

{\z -(mr + i(hn - 1))|&lt;tt, y, y &gt;hn - l}\{rnr + l&apos;y : y &lt;hn}

then yields

Together the two cases give us

with

fConst./Vfvi, f^ small

[Const. e~\ hn large.

Now take zn mr + i(^n + 1), 0 &lt; t &lt; hJ2 and let

If fin&lt;7r/2, a comparision with the slit half dise {|z-n-7r|&lt;7r}\{n7r + iy :0&lt;y &lt;

K +1}, gives

g(t)&gt; Const.

If hn &gt; tt/2, a comparison to the slit dise

{|z - (htt + JhJI &lt; -nr/2}\{n7r + iy : h, - tt/2 &lt; y &lt; hn +1},



Gaps and bands of one dimensional penodic Schrodinger operators 283

yields g(t)&gt;Const Vf Therefore (5 3) gives us

Vt(h,zn)&gt;7 mf a&gt;(n*(hn),Bn,Og(t)
t I\I 2

&gt;Const e \
in both cases Harnack&apos;s mequality gives the same lower bound, with a somewhat
smaller constant, on {| z — zn | &lt;c |} and a final companson with the stnp

then yields

Vt(h, z)&gt;Const e (y+h»)/2, |x-n7r|&lt;7r/2,

Fmally, let W be the quarter plane {x&gt;0, y&gt;l + M= 1 + max hk} Applymg
Lemma 3 1 to W, we see that

lim 2irx2Vt(h, x 4-1 (x + M)) &gt; Const ne (M+hn)/2,

and hence by the remark followmg the statement of Lemma 3 1

+ ix)&gt;Const ne &lt;M+hn&gt;/2,

which proves (5 2)

The proof that the inequalities (5 1) are strict îs a very similar argument, with
Vt(h, z) replaced by (l/t)(ù)k(h + ten, z)-o)k(h, z)), and we omit the détails

Notice that the proof of (5 2) remains vahd if we permit h, 0, for some ] ± n,

and just delete the term dyjdhn, which îs zéro anyway
The proof of Lemma 5 1 can also be used to show that yn(h) îs Lipschitz

Since we will need that fact, as well as the upper bound for dyjdhn, in the next

section, we pause to prove ît now By (5 1) and (5 2)

t&gt;0, so we only consider yn(h + ten) - yn(h) If hn 0, then by (3 6)

t&gt;0
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Assume hn&gt;0. Then, for t&gt;0,

yn(h + te*)- yn(h) lim 27rx2{o)n(h 4- ten, x 4- ix)- &lt;on(h, x 4- ix)}.

The différence is the harmonie function on 17(h 4-1^) with boundary value

Comparing OtiK.) to the slit dise

gives

&lt;Const.Max(l,h-1/2)f1/2.

Let 8 Min (1, hJ2) and let z g O(h 4- fen), |z - (nrr 4- if^)! Ô. Then

It, z)&lt;Const. (r/ô)1/2, t&lt;S/2,

by a comparison with a slit half plane. For the same choice of z we also hâve

(on(h, z)&gt;const., and hence by the maximum principle

(on(h + ten, x + ix)-ù)n(h, x 4- ix)&lt;Const. Max (1, l/hn)&lt;on(fi, x 4- ix) • t.

Therefore by (3.6), we hâve

and 7n is Lipschitz.

Proo/ o/ Theorem 1. Let yn be any séquence in (12)+ and set

10
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By the lemma the Jacobian of the map

from U+ to M+ is never zéro. Hence, by the Inverse Function Theorem y is a

diffeomorphism in some neighborhood of every point of R+ so that 7 is an open
mapping from U+ to IR^. Also, the map is proper because

(const.)nhn &lt; 7n &lt;4tt max (nhn, hl). (5.5)

It follows that 7 maps onto IR+, because a proper open map is onto. In
particular, there is h(N)eR+ such that

for ail n &gt; 1. By (5.5) the séquence {h(N), N&gt; 1} is bounded in the Hilbert space
l\. If h € If is a weak limit point of the séquence, then for some subsequence,

for ail n, so that h e (If)+ and by Courant&apos;s theorem

for ail n.

Proof of Theorem 2. Fix distinct h and h in (î?)+. We show y(h) ^ y(h). Now
because 7n=0 if and only if ^ 0 and because (5.2) remains valid when we
delete thèse indices / for which h, 7, 0, we may assume h^ / 0 for ail n. Choose
N so large that h(N)^h(N\ and let a eUN be the unit vector

)||
~ («1» «2» • • • »

where || || is the euclidean norm (S hl)1/2 in (RN. Set

yM(h)= triynW,
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Then

+ t(h(N) - ft(N))) dt

n=l

Const. c&quot;m- ||h(N)- fi&lt;N)|| I n Kl
n l

by the lemma, where

mN Max {max (f^, i^), 1 &lt; n &lt; N}.

Thus the maps is one-toone over U+, and the Cauchy-Schwarz inequality gives
the estimate

| &gt; Const. V~ Whim- h(N)l (5.6)

LEMMA 5.2. If h e (/?)+ and if N is large, then

k=N

Accepting Lemma 5.2 temporarily, we see that for constants Cx and C2,

f N 11/2

{I (7nW-7nW)2] a
f N

n=N

If N is large the second term is smaller than the first term and that proves
Theorem 2.
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Proof of Lemma 5.2. This resembles part of the proof of Theorem 3.4. Let
M&gt;N. Then yn(h(M))- yn(h(N)) corresponds via Lemma 3.1 to the harmonie
function on O(h(M)) having boundary values

M
vn(0 Z o)(n(h(N)), Tn, OxtSO-

In Section 3 we saw that for k&gt;n,

K
sup ù)(O(h(N)), Tn, 0 &lt;Const. •

£eTk k-n

and that if N is so large that hk &lt; k, fc &gt; N,

Therefore

and by Courant&apos;s theorem,

7n(h)-7n(h(N))&lt;Const.

Let If t^=l. Then

k=N+l

N cx&gt; il 2

n l k=N+l K &quot;

oo N t
Const. Yé khi Z T

k=N+l n l k~n

&lt;Const. X k^ Z ITTr&quot;

&lt; Const. £ —p,

and the lemma follows.
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Proof of Theorem 3. It is shown in [4] that the maps

q -&gt; jx,(q) (/xn(q), n &gt; 1)

and

from Eo to S are real analytic. So, 7 is real analytic.
Suppose y(q) y(q) for some q,qe Eo. Then, by Theorem 2, q and q hâve the

same periodic spectrum since |7n(q)| |7n(&lt;ï)l n&gt;l. Using the additional information

sgn Yn(q) sgn7n(q), n&gt;l, we may conclude that jxn(q) jxn(q), n&gt;l,
because they must both lie at the same end of the nth gap. However, as noted in
Theorem 4.2, two even functions with the same Dirichlet spectrum are equal.
Therefore the map is one to one.

Let 7 € l2. By Theorems 1 and 2 there is a unique periodic spectrum Ao 0,

Àn, n&gt; 1 with k2n~^2n-i= \yn\&gt; n^l. For each n&gt; 1 choose fxn À2n or À2n-i and

vn A2n-i or \2n so that 7n iin - vn. It is shown in [4] that there exists a unique
even function whose Dirichlet and Neumann spectrum are ixn, n ^ 1 and 0, vn,

n &gt; 1 respectively. Thus, the map 7 is onto I2.

It remains to show that 7&quot;1 is real analytic. Let 7 g l2 and let Ào 0, An be the

endpoints of the gaps for the conformai map corresponding to |*y| Cl*y»»U

Set

We will show in Section 6 that ^(7) is a real analytic map from l2 to S. Let
e(/LL)(x) be the unique even function with Dirichlet spectrum /m. It is shown in [4]
that e is a real analytic function jul. Therefore, eo(7) e(fji(7))(x)-[e(^(y))],
where [/] llfdx, is a real analytic map from l2 to Eo. By construction, e0 is the
inverse of 7. The proof is finished.

6. Analytîcity

To complète the proof of Theorem 3 we must show the map nn(y) from l2 to
S, defîned by (5.8), is real analytic. This will be done first by mapping 7 to the slit

lengths hn. For hel\ defined \h\e{l\Y by |h|n |fin| and define
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Because 7n(|ft|) 0 if and only if hn 0, the proofs of Theorem 1 and Theorem 2
show that h*+y(h) is a homeomorphism from l\ onto l2 (bicontinuity follows
from (5.6) and (5.7)). Also define

Then because À2n \2n_1 if and only if hn 0, jxn is continuous on l\. In this
section we prove: (See Note added in proof p. 312).

THEOREM 6.1. (a) The map h —&gt; y (h) and its inverse are real analytic.
(b) The map h -^{^n(h)-c(h)} where c(h) is defined by Theorem 3.4, is a real

anlytic map from l\ into S.

Together (a) and (b) complète the proof of Theorem 3; and they show that ail
three of the maps we hâve defined between Eo, l2 and l\ are bianalytic.

Recall that a map F from an open subset V of a complex Hilbert space Kx to a

complex Hilbert space K2 is analytic if at each x0 g V there is a bail
{x:||x —Xol^e}^ V on which F is bounded and if, whenever yeK2 and xe
Ki, \\x\\ &lt; e, the K2-inner product

z-*&lt;F(xo+zx),y&gt; (6.2)

is analytic on {z eC : \z\ &lt; 1}. A map from one real Hilbert space Hl to another H2
is real analytic if it can be extended to an analytic mapping from a neighborhood
V of Hi in C® Hi into C®H2. The map is bianalytic if it is a bijection and if both
it and its inverse hâve such extensions. By the Inverse Function Theorem, a

bijective real analytic map from Hx to H2 is bianalytic if its Jacobian is invertible
at each point of Ht.

We begin the proof by showing that the harmonie function which gives rise to
yn(h) is analytic in any finite number of variables, using a Schwarz itération. Fix n
and fix N&gt;n, and write

wefl(fi), heM+. Also fix numbers 0&lt;ôi&lt;ô2&lt;ô1&lt;Ô2&lt;l, to be determined
later, and set ek 8[/2k.

LEMMA 6.2. The function
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extends to a function (on(t, w) analytic in

{teCN:\lmtk\&lt;ek}

and harmonie in

N fl(|Ret|)\ Û

where |Re r| (|Re r^, |Re t2\,..., |Re fN|)eR+, and Ak(t) is the dise in the w plane

f |Refc|&lt;8î/fc

The extension is odd as a function of ^ and even as a function of tk, k^n. It is

bounded in w g WN(t) and it vanishes on

Proof Fix helR+. We extend o&gt;n(-, w) one variable at a time, beginning with
hn. Let rn Ô2/n and bn ôjn

Case 1. hn&lt;bn. Let At be the slit half dise

0&lt;r&lt;bn, and let Pt(Ç, z) |d£| be the élément of harmonie measure for zeAt on
the semicricle

I\ {|z| rn, Im z&gt;0}cdAt.

with respect to Av Then

is a conformai map from At to the half dise D {|à|&lt;1, ImÀ&gt;0} and
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consequently

where K(a, A) is the Poisson kernel for keD. Using the map ((1-f A)/(l-A))2
from D to the upper half plane, we see that

K(A)ITT mHm&apos;n

AgD, (tgôD, so that by inspection Pt(£, z), CeFl9 is the sum of a power séries

convergent in {teC:|t|&lt;|z|}. By continuity

sup sup f |Pf(£z)|dC|&lt;
|t|&lt;bn/2|2|=bn Jr,

if 81/82 bnlrn is small. Now set

and

and let Q(z, w) \dz\ be the élément of harmonie measure for w g W on Fo relative
to the domain W. Comparing Q(h) to a half plane gives

p fsup f Q(z,w)\dz\&lt;C8J82, (6.3)

with constant C independent of n and h. Therefore the operator

=[ f

from L^Fx, |dz|) to the space of bounded harmonie functions on W has a power
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séries expansion in {teC:\t\&lt;bJ2} and

sup |Aj(w)\ &lt; Const. (8J8J sup |/(f)| (6.4)

The extended function A/(w) is jointly continuous in t and w, and since At is an

intégral, s—&gt; At(/S)(w) remains analytic in any complex parameter for which
s-*fs is analytic. Hence by Hartog&apos;s Theorem

AJ(w)

is analytic in {t eC : \t\ &lt; bJ2}.
Now let v(t, z) a)(At, [0, if], z) and vo(t, w) JFo v(t, z)Q(z, w) \dz\. Then for

and wgW,

w(f, w) &lt;o(n(h(N)- hnen + ten), Tn,

f u(t, z)Q(z, w) \dz\
Jr0

vo(t, w)+ f f u(t, t)Pt(z, C) \dÇ\ Q(z, w) \dz\,
Jr0 Jrt

because u(t, z) - v(t, z) JFi w(f, f)Pt(z, £) |df |, z € r0. Therefore

u(t, w) X Atkt;0(f, -)(w),

where the séries converges uniformly {|f|&lt;ô1/2n} by (6.4). Because

v(t,z)= rn K(x,wt(z))dx, (6.5)
J

v(t, z) is analytic in {f eC:|f|&lt;|z|}. Hence vo(t, z), zeF0 and w(f, w), weW, hâve

power séries représentations convergent in {t eC:\t\&lt;bn/2}. By (6.5),
*, z)|&lt;C|f|/rM, so that by (6.3)

sup \vo(t,w)\&lt;C\t\bJrî
iw|&gt;rn

and thus

sup |w(f,w)|&lt;|f|/rn, (6.6)
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by (6.4) if 61/ô2 bjrn is small. Notice that on dW, w —? u(t, w) vanishes except
an Fo and that by (6.5) and by the form of wt(z), v(t, z), and hence u(t, w), are
odd functions of t.

Case 2. hn&gt;bn 8Jn. Let an 8[/n, sn 82/n and let At be the slit dise

{|z-ihrt|&lt;sn}\{iy:hn-sn&lt;y&lt;t}, hn-an&lt;t&lt;hn + an, and let Pt(Ç,z)\dÇ\ be

harmonie measure for zeAt on the curve Fx {\Ç-ihn\ sn}&lt;^dât relative to At.

Using

for the conformai map from At to the half dise D, we see that Pt(£, z) is the sum of
a power séries convergent in {f eC:|f-hn|&lt;|z-ihn|} and that

SUp SUp f |Pt(&amp;z)||d£|:
\t hj&lt;an/2\z-ihn\-an JTi

;1

if ô;/Ô2 is small. Set

W

and

ro {

and let Q(z, w) |dz| be harmonie measure for weW on Fo. Then

sup f Q(z,w)|dz|&lt;Const.(on/sn)1/2

and

f f f(Ç)Pt(&amp; z) |df | O(z, w) |dz|,f

fe L°°(rl9 \dÇ\), is analytic in {tGC:|t-hn|&lt;an/2}, and harmonie in we W, and

sup | Af(w)| &lt;Const. (ajsn)in sup
wef, T!
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Let

u(f, w) a)(n(h + (f- hn)en), Tn, w + mr)

and

uo(w) a&gt;(W,[0,i(hn-an)],w).

Then for \t-hn\&lt;aril2,

u(t, w) uo(w)+ f f u(t, f )Pt(&amp; z) \dC\ Q(z, w) |dz|
Jr0 Jrx

£ A^uo(w)

with convergence uniform in t. Thus u(t, w) extends to be analytic on {f eC:|t-
hn\&lt;an/2} and harmonie on W. If ajsn is small, then

sup |u(r,w)|&lt;3/2

and u(t, w) 0, wgôW\F0, so that if Ô2 is small

sup \u(t, w)|&lt;2w(hn, w). (6.7)

uniformly in t.

That extends co(û(h), Tn, z) to {^eCrllm ^|&lt;en, Retn&gt;-en} en ô;/2n,
because if two of the power séries constructed hâve intersecting domains, they
coincide on the positive reals and hence everywhere. Since u(-t, w) -u(t, w), |t|

small, a reflection defines the function on {tneC:\lmtn\&lt;en}.
Next let fc^n and let ut(h, w), h, &gt;0, /^ n, |Imhn|&lt;en, be the analytic

continuation of o)(hN, Tn, w), made already. We repeat the above reasoning to
obtain analyticity in t hk.

Case 3. hk &lt; bk ôx/fc. As in Case 1 we hâve a slit half dise At

{|z| &lt; rk Ô2/fc, Im 2 &gt;0}\{(y : 0&lt; y &lt; r}, 0&lt; t &lt;bk, semicircles rl {\z\ rk,

Im z &gt;0}, and Fo {|z| bk, Im z &gt;0}, a domain
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where

is contained in the domain of the first extension ux{h, w), and kernels Pt(£, z) for
At and Q(z, w) for W. The operator

w) f f f(QPt(C z) \dt\ Q(z, w) \dz

again satisfies (6.4) and AJ(w) analytic in {teC:\t\&lt;bk/2}.
Now let uo(w) be the solution to the Dirichlet problem in W with boundary

value ux{z) ux(h — hkek, z -f kir) on d W\F0 and u0 0 on Fo. When 0 &lt; t &lt; bk, we
then hâve

u(t, w) Mx(h — hfcefc 4- tefc, w 4- ku)

J w(f, w)Q(z, w) |dz|

because both sides hâve the same values on d W. Then since u(t, z) is harmonie on

4 and u(t, £) 0 on d4\I\,

u(t, w) uo(w) +1 f u(t, £)P,(£ z) \dz\ Q(z, w) \dz
Jr0 Jr,

j=0

is analytic in {teC:|t|&lt;bk/2}. And since u1(z) 0 on d,T2(fi)n{Re w-kir \ &lt;ir},

we hâve by (6.3)

sup |uo(z) - Ux(z)| ^ CiSJSJ sup |u2(z)|.
Fi rx

Therefore (6.4) gives the estimate

sup |u(t, w)| &lt;(1 + CÔ1/Ô2) sup |Ml(z)|, (6.8)

uniformly in {teC:\t\&lt;bk/2}, if 81l82=bklrk is small. Note also that w(t, w)
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ut(w) on {|w| &gt;rk}ndW. In this case u(t, w) is even as a function of t, because

uo(w) is independent of t and because, by the formula for wt(z), Pt(£, z) is even in
t.

Case 4. hk&gt;bk. We take ak 8[/k, sk =82/k and proceed as in Case 2, but
with domain

W ((n-k)7r+W0)n{\z-ihk\&gt;ak},

where Wo is as defined in Case 3, and with uo(w) the solution to the Dirichlet
problem on W with boundary value 0 on Fo {\z — ihk\ ak} and ux(h, w + kir) on
dW\jT0. Then

\\dz\u(t, w) wo(w)+ f f u(t, 0Pt(£ z) \d(\ Q(z, w)
Jro Jr,

Z (A{uo)(w)
j=0

is analytic in {teC:\t-ihk\&lt;ak/2} if 8[/82= ak/sk is small. We now hâve the

estimate

sup|w(r, w)|&lt;(l-fc(ôi/Ô2)1/2)sup|u1(z)|, (6.9)

uniformly in t. In this case u(f, w) Wi(vv) on {|w-ihk|&gt;sk HdW.
By reflection the even function u(f, w) has now been defined and is analytic in

{tkeC:\Imtk\&lt;ek 8[/2k}. By Hartog&apos;s theorem con(h, w) co(il(h), Tn, w) has

been extended to be analytic in {(tk, tn) g C2 : |Im fk| &lt; ek, |Im ^1 &lt; en} and harmonie
in w g W. Now repeat the arguments of Case 3 and Case 4 for the remaining
variables hr The continuation is well-defined because it agrées with o)n(h, w)
when h g IR^ and because an analytic function in {t g Cn : (Im | tk \ &lt; ek, 1 &lt; k &lt; N} is

determined by its values on IR^. The construction shows that wn(t, w) is bounded
and harmonie in we WN(t) and that its boundary values vanish except on Tn and

the circles or half circles Mk(t)ndWN(0.

By Lemma 6.2, and a normal families argument,

yn(h) lim 27rx2con(h, x + ix)

has analytic extension from IR+ to {tGCN:|Im tk|&lt;ek}. We now make some
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estimâtes which will permit us to send JV to œ and simultaneously control

LEMMA 6.3. LetM&gt;0, and letl&lt;n&lt;N.Ifh&lt;=UN and ifY,k2hl&lt;M2, then
there are 8l(M)&lt;82(M), independent of n and N, and 8&apos;1(h)&lt;Ô2(h)&lt;81(M),

depending on h but not on n and N, such that on {t eCN &apos;\tk-hk\&lt;ek 8[(h)12k},

6n)-fC/n2. (6.10)

Before giving its proof, we use Lemma 6.3 to show that the map

is real analytic. Fix h e l2 and let

VhHt€C(8)l?:Ik2|rk-hk|2&lt;(ô;(h))2/4}. (6.11)

Let

(N) U
[0

r(N)

By (6.10) and Theorem 3.3, {yn(t(N)) : N &gt; 1} is bounded in C&lt;8&gt;f2.(3) Hence it has

a weak limit yn(t)eC&lt;S&gt;l2, still satisfying (6.10). Thus we hâve a locally bounded

map F from a neighborhood of II in its complexification to C® l2. When h is real,
F(h) {yn(h)} since yn(hiN)) converges in norm to yn(h) by Lemma 3.5 and by
reflection. To prove analyticity, let xoeVh and let xeC&lt;8&gt;I? be such that
{xo+zx:zeC, |z|&lt;l}c: Vh, and let y={yn}eC&lt;8&gt;i2. Then by weak convergence

&lt;F(xo+zx), y&gt;=

By Lemma 6.2, (6.10) and Theorem 3.3, \fN(z)} is a bounded séquence of analytic
functions on {|z|&lt;l}. Therefore (6.2) holds and the map is analytic.

Proof of Lemma 6.3. We shall use some facts from the proof of Lemma 6.2.
By symmetry we may assume heU+. Set k1 n and write u^t, w) for the first

For n&gt;Ntake7n(r(N))
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extension of con(-9 w). The /-th extension M,(t, w) is with respect to the variable tkj.

Thus {ku fcN} is a reindexing of {1,..., N} with k1 n.(4) Then m, is harmonie
on

u
P=i

and u,=0 on dCW^Vi; UUJP=i àAK(h)). Moreover, Uj+^u, on
a(W0+1))\ai4kj+l(h) and u,+1 is constructed from u, via Case 3 or Case 4 of the

proof of Lemma 6.2.

Let «x sup sup {|ut(t, w)| : w g 6 W(1) H (Tn U dAn(h))} and
Il»-hnl&lt;«n

a, sup{114,(1, w)| : wedAK(h\ \th~hkl\&lt;ekl, 1 &lt;I&lt;/}.

Then

N
wN(f, 2)&lt;a1con(h + 6nen, z)+ Z «^(^^a^, z).

If x&gt;xo(M), then

&lt;o(W°}, 34k,, x + ix)&lt; Qo(/2(h + ekjekj), Aki r\dfl(h + e^), x + ix).

Therefore, by the Lipschitz estimâtes (5.4),

I a, Max (M2, fcJ)diam(4kj)
J=2

£ a,, (6.12)
J=2

with C independent of M and n.

We hâve «!&lt;2 by (6.6) and (6.7). Let t}&gt;0. Then if Ôx/^ and ô&apos;Jô^ are

sufficiently small, (6.8), (6.9) and induction give

(6.13)

4 It will not matter which ordering of kJ9 ; 5= 2 is chosen.
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where

ù)^ sup

ând

û)}0 SUp &lt;

zeâAk(K)

We estimate the coj0.

Case 1. hki &lt; ôj/fc,, hk &lt; ôx/kj. Let l^0 {x &gt; 0, y &gt; 0}\4fc(fi) and use the map
z^&gt; z2 as in the proof of Theorem 3.3. That gives

Case 2. hkl&gt;8Jkb h^^ôjkj. Since kihkl&lt;M, the proof of Theorem 3.3 now
gives

o&gt;

V^j Kl)

because \z2-kfir2\ &lt; C82, z g Akr

Case 3. hkj&gt;8Jkj, hkl&lt;8Jki. Again using the map z-&gt;z2, we see that

Case 4. hkj&gt;81/kp hkl&gt;8Jki. Since k2hk&lt;M2, there are at most M4/ô? pairs
(fcp fci) for which this case applies. Thus there is a constant B(h, 8X) such that

sup co(W(l)(h), Tkl UdAkl(h), z)^

for ail such pairs. But the above harmonie measure vanishes on T^, so that we
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have

Let Ô&gt;0. Choosing small 8X(M) and 82(M) first, and then taking 8[(h) and

W very small, we obtain

(X)

8

in ail cases.

By (6.13), (6.14) and induction,

N iy —1
j=2 j=2&lt;

V- 1 1

2 ,2)2(fc2

with /0 1. But

v 1 A

and consequently

Hence if A8 &lt; 1/2, we have

N

J=2

independent of N. With (6.12), that proves Lemma 6.3.

(6.14)
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The Jacobian of y (h) is the linear operator J(h) : If —&gt; I2 représentée!, with
respect to the basis {en}, by the infinité matrix

Because h —» y(h) is real analytic, J(h) is bounded for each h e \\.

LEMMA 6.4. For each h e l\, J(h) is one-to-one and onto, and hence

invertible.

By the Inverse Function Theorem, Lemma 6.4 implies that h —» y(h) is

bianalytic.

Proof. Fix h s II and let AN(h) be the finite square matrix

The proof of Theorem 2, and a reflection if h} &lt;0, show that AN{h) is invertible
and that

(6.15)

where c^h) does not dépend on N.

Also, by (5.2) and (5.4) and by the fact that yn is an odd function of f^, we
hâve

(6.16)

for some positive constant c2(h).
We now estimate the off diagonal entries dyjdhn, k ^ n for Max (k, n)&gt;N and

we choose N N(h) so that l/hj^l if /&gt;JV. Because we will be boundingIl, we assume hj&gt;0. Let

and

ù)(n(h),Tk,z).



302 JOHN GARNETT AND EUGENE TRUBOWITZ

The argument used to prove (5.4) shows that

Using the map z —* z2, we get the majorization

where c3(h) dépends only in sup, |/h,|, and hence

î(h). (6.17)f2
if Max (fc, n) &gt; N, with c4(h) independent of N.

Let x g II and write

BN(h) \/xN
\CN(h) (D

where xN Ya %£]&gt; ^n Zn+i Xj^p &amp;n has N rows, CN has N columns, DN is the

diagonal matrix {dyJdhJn^N and «N {^7k/^hn}n#fc,n,kS=N- Then

=N+i \n o

where Mt, (z»»n+i n^2}172. So by (6.17) and Theorem 3.3,

And for the same reasons,

k=N+lV l^&quot;n / k=NU tt

so that
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and

Write

/AN(h) 0 \ / 0 BN(h)\
N \ 0 DN(h)r N \CN(h) RN(h))&apos;

Then ||SN||&lt;c5(h)/iV2, while (6.15) and (6.16) show JN is invertible and H/^N
c6(h)N1/2, where the norms are those of B(l\, l2) and B(tf, l2) respectively.
Hence we see that

in invertible, by taking N large.

That finishes the proof of part (a) of Theorem 6.1. The proof of part (b) is
much like the arguments behind Lemma 6.2 and Lemma 6.3, and we only outline
it.

Let Unih, vv) co(ft(h), 0&lt;Re z&lt;n7r, w) and vn(h,w) un(h,w)-&lt;on(h,w).
Then for h€lR+, N&lt;œ

h, x + ix)

k2n-i(h) lim 2irx2i;n(h, x + ix).
X—*oo

Take 0&lt;Ôi&lt;Ô2&lt;ôi&lt;ô2, ek=ô[/2k as before and let WN(t) be the domain
defined in Lemma 6.2.

LEMMA 6.5. The fonctions Un(K w) and vn(h, w) on R^ extend to be analytic
in

k, l&lt;k&lt;N}n{Retn&gt;-en}

and harmonie in we WN(t). Moreover ^(t, w) and vn(t, w) are even functions of
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fk, fc ^ n. As functions of ^ they satisfy

v^b, w) Vni-t, w), W &lt; en, (6.18)

Consequently

v), Retn&gt;0

vn(-t,w), Retn&lt;0

defines a function analytic on {t e Cn : |Im tk \ &lt; ek, 1 &lt; fc &lt; N}.

By (6.18) and (6.1), fxn(h) limx_&gt;oo27rx2L/n(h, x + ix) is real analytic on IRN.

Proof: Write Fk {(fc - 1/2)tt &lt; x &lt; (fc +1/2)ir, y 0} and

w) o&gt;(,«(h), Ffc, w), 1 &lt; k &lt; n -1.
cro(h, w) co(fl(h), 0&lt;x &lt; u/2, w)

(n - l/2)ir &lt; x &lt; nir, w).

Then v^ =Zk=oO&quot;k+Ek=i ^&gt;k(h, w) and un un —^(h, w), and it is enough to
extend each ak analytically.

If kj^j the extension of ak with respect to h, proceeds as in Case 3 or Case 4

of the proof of Lemma 6.2, and if hk&gt;bk&gt; ôjk, then so does the extension of ak
with respect to hk. If hk &lt; bk, and if kj=n, we repeat Case 1 of that proof, except
that we start with the function vtr(t9z) o&gt;(At9RC\dAt9z).is) Thus for fc^n
crk(h, w) has an extension analytic in {feCN :|Im tk|&lt;ek, l&lt;k&lt;N}. Note that
crk(t, w) is an even function tj,j^k, and that if we continue a-k+a&gt;k through
hk =0, we start with the sum vv(u z) + v(t, z). Instead of (6.5) we hâve

v^t, z) + v(t, z)= f K(x, wt(z)) dx,

which, since t -&gt; wt(z) is even, is an even function of t. It follows that for k=£n,

crk(t9 w) + a)k(f, w), and consequently ^(t, w) and vn(t, w), are even functions of tk.

5 The contribution to ak from Fk\At can be extended in hk using Case 3 or Case 4 of Lemma 6.2.
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To continue an(h, w) through hn 0we use Case 1, but we start with

¦-r wt(z)) dx. (6.19)

Then the proof of Lemma 6.2 yields analytic extensions of u^ and un to
{Re tn&gt;-en}n{|Im tk\&lt;ek, 1 &lt;fc &lt;N}. Since the other terms are even in ^, (6.18)
holds if and only if

^(^ W) + O)n(tn, w) O&quot;n(-tn, W).

But, expanding JC(x, wt(z)) in powers of x and wt(z) and using (6.5) and (6.19),
we obtain v^(t, z) + v(t, z) v^(-t, z), which implies (6.18).

The extension to N variables is exactly the same as in the proof of Lemma
6.2.

Lemma 6.5 shows that iin(h) is a real analytic function of finitely many
variables. To complète the proof of Part (b) of Theorem 6.1, we must show

is a real anlytic map from \\ into l2. Recall from the proof of Theorem 3.4 that
where

ak(h) lim lim 2ttx2 f - arg £ &lt;k)(N\x + ix, £);

h g (/f)+. With small changes, the proofs of Lemma 6.2 and Lemma 6.3 show that
whenever hel\ and Vh is defined by (6.11), ak(h) has a continuation ak(t)
analytic on Vh and

sup |ak(t)|&lt;Const. (\hk\ + ek)(y*k(h + ekck) + c/k2). (6.20)

Consequently the séries defining c(h) converges uniformly on Vh, and so c(h) is a

real analytic function in II, and fln(h) is real analytic in the first N variables. Now
defîne

N&gt;0 teVh
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LEMMA 6.6. Ifhe II then

By an argument like the one immediately after the statement of Lemma 6.3,
Lemma 6.6 implies that £Ln is a real analytic map from \\ into l2, which is

statement (b) of Theorem 6.1.

Proof of Lemma 6.6. By (6.10) and (6.1) we may assume hn&gt;0, so that

By (3.8) and the proof of Lemma 6.3,

N&gt;0 teVh

and by (6.20), supN&gt;0 \c(tw)-c(tM)\el2.
In the proof of Theorem 3.4 we obtained the décomposition.

given by (3.9), (3.10) and (3.11). Using (6.10) and the estimâtes on Bn and Cn

from Section 3, we get

N&gt;0 teVh

and (6.20) includes such a bound for Dn. That proves Lemma 6.6.

7. A final remark

In this section we want to give a différent approach to the analysis of the

mapping

{band spectra} -* {gap lengths} c l2.

In fact it was the following line of reasoning that led us to conjecture Theorem 2.

# Let jutn(q), n&gt;l and vn(q)9 n&gt;l be the Dirichlet and Neumann spectra
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respectively of q e Lr[0, 1]. We hâve the real analytic map

The numbers jmn(q)- vn(q), n &gt; 1 are the signed gap lengths of q g Eo, because \xn

and vn lie at the ends of the nth gap when q is even. € cz JB, the even subspace of
J-îr[0, 1]» is a real analytic hypersurface since (dldg)\o fô never vanishes. The
aim is to try to use a covéring argument to verify that the map is one-to-one.

Let €N c ig be the subspace of ail q e &lt;£ with fx,n(q) ^n(^f) f°r ail n&gt;N. The
gradients(6)

— (ixn - i/n) gl(x9 q)- h^(x, q), n&gt;N,
dq

are normal vectors to €N at q. They are independent in the sensé that no one of
them is in the closed linear span of ail the others. It is easy to check this
independence by verifying the orthogonality relations

and

• 1

(gl-hl)(gnhnydx

for ail m/n. A simple Fredholm argument now shows that €N is an N dimensional

real analytic submanifold of €.
Consider the restricted map

The flber of this map over 0eUN consists of just one point, namely q 0. This is a

5
hn is the normalized eigenfunction corresponding to vn.
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classical resuit of Borg [see 1]. Next we observe that the identity from [7]

Ao+ I A2n + À2n_1-2jutn(O,

where fxn(O ^(T^) and Ttq(x) q(x 4-1), gives us a bound on the supremum of
\q\ in terms of the gaps lengths. Precisely, if q e €n

sup

I 7n(q).

It follows that the fibers are compact since they are closed and bounded by the
above estimate. Finally, the invertibility of the Jacobians proved in Section 5 can
be used hère to show that the map is a local homeomorphism. Therefore the map
is globally one to one by a covering argument.

Appendix

Let Eo be the subspace of ail even functions in Lr[0, 1] with mean zéro, i.e.,
Jj q dx 0, and S the Hilbert manifold of ail strictly increasing real séquences
an, n &gt; 1, of the form

where Zn^i^n&lt;00- The manifold structure on S is induced from l2 by the
correspondence between a and &lt;j. The purpose of this Appendix is to sketch, for
the convenience of the reader, part of the proof of

THEOREM 4.2. The map

q -» /m(q) (fxx(q), ^2(q),.

is an analytic isomorphic between Eo and S.

We are going to follow the présentation given in [4] which contains a full
proof. We will limit ourselves to verifying that the map is onto.
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Proof. The first step is to compute the Jacobian of our map at q 0. That is,
the linear transformation

Eo-(T(Eo))q-o3^ (doigte), n ^ 1)e T(S)(n2^nSl)-12,

where do(|mn)(u) dénotes the directional derivative of ixn at q 0 in the direction
u; i.e.

Let gn(x, q), n&gt;l, be the normalized Dirichlet eigenfunction, with gn(0, q)&gt;0,

corresponding to fxn(q). Denoting (d/de)gn(x, eq)|e=0 and (d/de)jULn(eq)|e=0 by gw

and juLn we hâve

Taking the inner product of both sides of the équation with gn(x, 0) we obtain

(-gn, gn) + fe gn)= ^n(gm gn) + M&apos;n(gm gn)-

But

(~gn, gn) (gn, ~g&apos;n) fXn(0)(gn, gM)

so that

Therefore,

doiJLn(v) v(x)2 sin2 nirx dx

f1
- v(x) cos

since gn(x, 0) J2 sin mttx and Jju(x) dx 0.

It follows from elementary Fourier theory that the Jacobian has a bounded
inverse. Therefore, a neighborhood of 0 in Eo is mapped onto a neighborhood of
(n2TT2, n &gt; 1) in S by the Inverse Function Theorem.
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Of course, the preceding argument is formai in the sensé that we hâve not
checked that /x(q) is actually a differentiable function of q in the topologies on EQ

and S. However, it can be shown that /ul is actually real analytic. Briefly, each
individual eigenvalue jmn(q), n&gt;l, is, by the Implicit Function Theorem, a real
analytic function of q, because

y2(l,,*n(q),q) 0

and

^y2(l, A, 4)1

Hère y2(x, À, q) is the solution of -y&quot; + gy Ay with initial data y(0) 0, y&apos;(0) 1.

To go on and show that the map

is real analytic one simply notices that the estimate

M&apos;n(q) n27T2- (cos 2-n-nx, &lt;

holds uniformly on a complex neighborhood of every point in Eo. It then follows
that the map is locally bounded and hence real analytic, by the uniform bounded-
ness principle.

We hâve seen that an open neighborhood of the séquence (n2ir2, n &gt; 1) is

covered by /x. To see that ail of S is covered we construct flows on Eo.
Let q e Eo, and set

,„(*, t, q) yl(x, ^ + 0 +
*(1&apos;^^ + ° y2(x, ^ + 0,y(l jLL + r)

n &gt; 1, for ail t such that

(take m&lt;o(&lt;ï) -°°) and set(7)
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An important property of o&gt;n is its strict positivity, i.e. eon(x, t, q)&gt;0. The
argument is by contradiction: suppose con vanishes at a point (x, t) with (x, /utn +
t) g [0, l]x (|ULn, jutn+1)—the case of a root in [0, l]x(nn_u |mn) can be handled in the

same way.
Let A be the smallest point in (ju,n, fxn+1) such that for some x, a&gt;n(x, A) 0. It is

easy to see that &lt;on(-, Â) has a local minimum at x, i.e.,

But

(x)&apos;n(x, A) (Â- jOgn(x)T?n(x, Â)

Thus, either gn(x) or T]n(x, Â) vanish, since Â^ |ULn. But the roots of gn and î]n(-, Â)

being ail simple,

0 con(x, Â) grt(x)r,;(x, Â) - g;(x)r,n(x, Â)

implies that both gn(x) and Tîn(x, Â) vanish. This further implies that

with c^Oby Taylor&apos;s rule. But this contradicts the fact that co^(-, A) has to change
sign at x.

Thus, o&gt;n has no roots in [0, l]x(|mn_1 jmn+1).

It is now possible to define the flow

^n(q) q(x)-2 -—2 log &lt;on(x, r, q)
ax

for |LLn_1(q)&lt;fxn(q) + t&lt;fxn+1(q). By direct calculation it can be checked that

Even though it is not too hard to verify the last statement we will not do so hère it
would take us too long

We are ready to prove that jul maps Eo onto S. For any séquence aeS, define
the modified séquence crN by

crm, m&gt;N
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If N is chosen large enough crN will be inside the neighborhood of (n2rr2, n ^ 1)

given to us above by the Inverse Function Theorem. Therefore,

For some qeJB0 near q 0. Now use the flows W), (ç/&lt;N) to move /2tt2 to av
However, care must be taken to avoid crossing of eigenvalues. To be safe, first
shift tt2, N2rr2 to the far left, i.e., ail below au and then move them into the
desired positions beginning with jlln.

Added in proof : The approach in Section 7 can be carried through to yield a

simpler proof of the analyticity in Section 6. See [4].
(Feb. 9, 1984)
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