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The fondamental group at infinity of affine surfaces

R. V. Gurjar and A. R. Shastri

§0. Introduction

The main motivation for the results of this paper is the following question,
which arose in connection with the results in [G]:

(*) Suppose V is a contractible affine smooth surface/C.

Can the fundamental group at infinity of V be a finite, nontrivial group? The
analogous topological question is

(**) can a homology 3-sphere X with nontrivial finite fundamental group be the
boundary of a smooth, contractible 4-manifold M?

An affirmative answer to (*) would hâve given an affirmative answer to (**),
which in turn, would hâve given an example of a homology 3-sphere with
nontrivial finite ttx other than the Poincaré-sphere. The Poincaré homology
3-sphere is the only known example of a homology 3-sphere with nontrivial finite
fundamental group. It is also known that it cannot be the boundary of a

contractible smooth 4-manifold. This further motivated the study of (*).
However, the answer to (*) turned out to be négative. We do not know any

answer to (**). (However, if M is not required to be smooth, the answer is yes;
see [F]).

It turns out, that the only possible finite nontrivial group in (*) and (**) is the
binary icosahedral group P (x, y \ x2 y2 (xy)5&gt;, being the only nontrivial,
finite perfect group that acts freely on a homotopy 3-sphere. See [M]. As in
[CPR] we are led to the study of a finite connected System of nonsingular rational
curves on an algebraic surface X whose dual graph is a tree. If N is a tubular
neighbourhood of this System of curves, it turns out that the fundamental group at
infinity of V is tt^ôN). (See [CPR] or §2 for précise définition of the fundamental
group at infinity). In §1 we classify ail such trees with Tr^dN^P, under certain
conditions which arise due to géométrie considérations. The method of proof is
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460 R V GURJAR AND A R SHASTRI

purely combinatorial and closely follows that in [CPR]. As such it turns out that
we need to classify trees with 7rx(dN) as a cyclic group of order =^5 and in

particular, the results of [CPR] about trees is also included. For ail this we need a

stronger group theoretic resuit than the proposition in III of [MU]. We find that
the proof of this proposition as presented in [MU] is incomplète. So we hâve

included the proof of this also in §1 (see Proposition 1).

Using the results in §1, (*) is answered negatively in §2. While this work was in

progress, thanks to M. Miyanishi, we received a preprint from him in which he

proves the following interesting resuit:

THEOREM [Miyanishi]. Let C2 A V be a proper morphism onto a normal,
affine surface V. Then V^C2/G for a small, finite subgroup G of GL(2; C). If V is

smooth, then V— C2. If the coordinate ring F(V) is a UFD9 then V is isomorphic to
the affine surface X2+Y3 + Z5 0.

Miyanishi has used the theory of logarithmic Kodaira dimension. As it turns
out, our method for answering (*) is readily applicable for giving a topological
proof of this resuit. This has been incorporated in §3. See also [G] for earlier
partial results in this direction. Finally in §4 we give some examples of normal,
affine surfaces whose fundamental group at infinity is P.

§1. Intersection trees

We shall use the terminologies of [CPR]. Consider the following géométrie
situation: Let X be any nonsingular, irreducible, surface/C and let FcX be a

Zariski closed subset of codimension one with irreducible components C1?..., Cn

satisfying the following conditions:
(i) For each i^j either CxCiC} 0 or Q C\C} consists of a single point at

which Q and C, intersect transversally.
(ii) For three distinct indices i, /, k, Cxf\C}r\Ck 0.
We shall call such a pair (X, F) a normal pair.
Associated to a normal pair (X, F) is its weighted dual graph T T(X, F)

defined as follows: The irreducible componeitfs {Q} are the vertices of T. Two
vertices Q and C, are linked in T if and only if QnC,^ 0. We express this by

writing [Q, CJ is a link in T. The weight at Q, denoted by jQq, is the self
intersection number of Q i.e.
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Hère we shall recall some generalities about weighted graphs. We shall
consider only finite, weighted graphs, and from now on simply refer to them as

graphs, and dénote them by T, T&quot; etc. Vertices will be denoted by m, v, w etc. A
vertex v of T is free if it is linked to at most one other vertex. It is linear if it is

linked to at most two vertices and it is a branch point if it is linked to at least
three other vertices. (Thus a free vertex is also a linear vertex).

A graph is connected if given any two vertices v and v&apos; there exists a chain of
links [u, ; t&gt;l+J, i 0,..., n, such that v v0 and v&apos; — vn+l. A connected graph is a

tree if there is no chain of links [vt; vl+l], i 1 • • • n, such that v1 vn+x. From
now on we shall consider only trees, though most of the terminologies can be used

for a gênerai graph also with suitable modifications.
Let T be a tree and ueTbe any vertex. By T — {v} we mean the subgraph of

T obtained by removing the vertex v and ail the links at v from T, and keeping
the weights unchanged. Obviously T-{v} need not be connected. Its components
are called branches of T at v. A branch © of T at v is called simple if it does not
hâve any branch points of T. An extremal branch point is a branch point at which
at most one branch is not simple. Clearly a finite tree always has an extremal
branch point. A tree is linear if it does not hâve any branch points. For instance a

simple branch is necessarily a linear tree.
Associated to T is the bilinear form B(T), on the real vector space spanned by

the vertices {vt} of T as basis, deflned as follows:

fl if [vt ; v.] is a link in T

10 otherwise for i^j.
The discriminant of this form will be denoted by d(T).

We say T is unimodular, or négative definite if B(T) is unimodular or négative
definite etc.

Clearly, if T=T(X;F), is a tree of a normal pair (X, F) then B(T) is the

intersection form of the set of curves {Q} in F.
The fundamental group ir(T) of a tree T is defined as follows: Fix an indexing

of the vertices arbitrarily. Let tt(T) be the quotient of the free group on {vt} by
the relations:

(a) [vt, v]] e if [ut; uj is a link
(b) vti - - • vlk - vn» 1 for each vertex v, where i^ &lt; • • • &lt; ik and {vtl,..., ulk} is

the set of vertices in T linked to v.

This présentation of tt{T) will be used heavily, in this section. It is easily seen

that tt(T) does not dépend, upto isomorphism, on the choice of indexing the

vertices, and the abelianized group, ab&gt;rr(T) is of finite order if and only if
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O and then its order |d(T)|. In particular T is unimodular if and only if
abiriT) is trivial.

We say T is spherical or cyclic or of order =^n if tt(T) e or cyclic of order =^n

respectively.
For a normal pair (X, F) such that ail the irreducible components of F are

isomorphic to P1, if T=T(X,F) is a tree then it is proved in [CPR] that
tt(T) — tt^ôN) where dN is the boundary of a small tubular neighbourhood N of
Fin X

Définition of &quot;blow-up&quot; and &quot;blow-down&quot;

Let [m; v] be a link in T. By &quot;blow-up at [m; d]&quot; we mean to obtain a new tree
T&apos; as follows: Introduce a new vertex w in T, delete the link [u; v] and introduce
links [u; w] and [w; v]. Define the new weights Cl1 by

ÎOX,
if x ^ u, v, w

Ox-1, if x u or v

-1 if x w.

Let now ubea free vertex in T. By &quot;blow-up at u&quot; we mean to obtain a new
tree T&apos; as follows: Introduce a new vertex w and a new link [v; w], and define the

new weights ftf by

ta»
1

I

Ul

if
if

if

x

x

X

v

w.

&quot;Blow-down&quot; is described precisely as the inverse process of blow-up and as such,

we need to hâve a linear vertex w with Ow -1 to perform the blow-down, on a

given tree T.

We say two trees are équivalent if there is a finite chain of blow-ups and

blow-downs to obtain one tree from the other. A tree T is minimal if it has no

linear (or free) vertex v with flv -\. Every (finite) tree is équivalent to a

minimal one (which may be an empty one). It is easily seen that tt(T) is an

invariant of this équivalence relation. If (X, F) is a normal pair with ail the

irreducible curves in F being nonsingular and rational, the blow-up and blow-
down opérations on T= T(X, F) precisely correspond to the géométrie &quot;blow-up&quot;

and &quot;blow-down&quot; on (X, F). In particular, if T is équivalent to T= T(X, F), then

there is another normal pair (X&apos;,F&apos;) with F&apos; T(X\F&apos;) and X-F-X&apos;-F&apos; as
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varieties. Finally, if V is obtained by blowing-up T once, then B{T)~

Remark. In [MU] it is proved that a nonempty, négative definite, spherical
tree cannot be minimal.

DEFINITIONS. We say T satisfies the hypothesis (E) if every positive
semidefinite subspace W of B(T) is of real dimension ^1. We say T satisfies the
hypothesis (H) if no tree équivalent to T has a subtree of the form

v4 v5

with nv3 -l and OVs^0.

Remarks, (a) It is clear that if T satisfies (E) then every subtree of T also
satisfies (E), and every tree équivalent to T also satisfies (E). Further, there can
be at most two vertices with nonnegative weights and if there are two of them
then thèse two vertices should be linked, and one of the weights should be zéro.

(b) If T T(X, F) where (X, F) is a normal pair obtained by resolving a

normal singularity p of a surface V, then it is known that T is négative definite.
On the other hand if V is a nonsingular affine surface and V&lt;=X is a projective
imbedding with X non-singular, so that (X, F) is a normal pair, where F
X- V= Ur=iQ and the irreducible curves Q are linearly independent in the
Neron-Severi vector space, then T T(X, F) has exactly one positive eigen-value.
Thus in both the above géométrie siutations T= T(X,F) satisfies (E).

(c) If T satisfies (H), then it does not contain a subtree of the form

with f2U3 0 and A&gt;4&gt;0. In particular if T=T(X,F) and H1(X,Ox) 0, then T
satisfies (H). (See [CPR] Lemma 6).

LEMMA 1. Suppose a tree T has a subtree of the form

w
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where v is a linear vertex in T, with Qv 0. Then T is équivalent to a tree with the

same number of vertices and links and only the weights at u and w changed to

flu +1 and ilw -1 respectively.

Proof. &quot;Blow-up&quot; [v;w] to obtain *—*—* * with weights /2U, -1, -1,U v/J 1/9 *»
and fïw —1 respectively. Now blow-down the vertex vt.

LEMMA 2. Let Tbe a minimal tree with a linear subtree © =*—*—* with a

nonnegative weight, r^2, and u, being linear in Tfor i 5=2. Assume that Ur is either

free or is joined to a branch point w in T. Then T is équivalent to a minimal tree T&apos;

obtained by replacing @ by a linear tree © *—* * * with the weight at
v i v

Ux^O, and perhaps the weight at w being altered. s

m

Proof. If OUl^0 there is nothing to prove. By induction we can assume

il^ ^—2, i&lt;k, OUk ^0. Blow up on the right of uk successively, till the weight at

uk becomes 0. Using Lemma 1, make the weight at uk^x 0. In this process we

may hâve introduced certain vertices on the right of uk with weight — 1. Blow
down as many times as possible, to obtain a minimal tree. This of course does not
change the weight at uk^x and so we can use Lemma 1 repeatedly, to complète
the proof.

LEMMA 3. Let T be a minimal tree with a branch point v. Let (S be a simple
branch at v, with some nonnegative weights. Then T is équivalent to a minimal tree

with © replaced by a simple branch ©&apos; with the free vertex having weight 0 and the

weight at v possibly being changed.

Proof. By Lemma 2 we can assume that the free vertex u of T in © has weight
52=0. If it is zéro there is nothing more to prove. Suppose it is &gt;0.

Blow up successively at the right of u till the weight at u has become 0. We now
hâve

with Ou =0, {2Ui -l. Blow up at the free end at u to obtain

U U Mi
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with weights —1, —1, and —1. Now blow down u to obtain

vv v2

with weights at u, 0, i 1, 2. By blowing down as many times as needed on the

right of v2 we can now obtain a minimal tree with the free vertex vx having weight
0. This complètes the proof of the lemma.

LEMMA 4. Let T&apos; be any tree, ueT&apos; be some vertex. Let T be obtained by

joining the tree * * to T at v:

Then

(i) 7T(T)-

(ii) B(T)^E(T&apos;)0L j where I dénotes the hyperbolic space

(iii) T satisfies (E) if and only if V is négative definite.
(iv) T is minimal and satisfies (H) implies T&apos; is minimal.

Proof. (i) and (ii) are obvious and (iii) foliows from (ii). To see (iv) we note
that T&apos; may fail to become minimal only if v is linear in T&apos; and flv -1. Since T
is minimal t; is not a free vertex in T&apos;. Hence T will hâve a subtree of the form

with Ov -1 contradicting (H).

LEMMA 5. Let T be a minimal tree satisfying (E) and (H). Suppose T has a

simple branch © with nonnegative weights and tt(©) is finite. Then T is équivalent
to a tree T obtained from T by replacing © by a tree of the form

^ ^
0 0

-2 and the vertex with weight zéro at the right end being free in T.
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Proof. From Lemma 3 we can assume that © has the free vertex v with weight
zéro. Since tt(©) is finite it follows that © is not *0. Let the vertex adjacent to v in
T be u. If fîu &lt;0, blow up at the free vertex v to obtain

u v

-i
and then blow-down the vertex v, to obtain

o

Repeat this process till the weight at u becomes zéro. On the other hand suppose
Qu &gt;0, then, first blow up the link [m, v] to obtain

u

i7M-l -1 -1

and then blow-down the free vertex v to obtain

Repeat this process till the weight at u becomes zéro.

Notation. By joining * * to E8 at eight différent vertices i\, i 1,2,..., 8

we obtain eight différent trees El8. e.g. El is shown below:

-2*- -2 -2 -2 -2 -2 -2** * * * *

*0

*o

*
-2

Weshall dénote by E4 the following tree:

-5

-î -2
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Note that tt(E4) — P and B(E4) has one positive eigen value.
The main resuit of this section can be stated now.

THEOREM 1. LetTbea minimal tree satisfying (E) and (H). Suppose &lt;rr(T)

is a cyclic group of order ^5 or is isomorphic to P, the binary icosahadral group.
Then either T is linear or is équivalent to E4 or E8 or one of the El8 or

-2 -2 -2 -2 -2 -2 -2

to *0 or to

*0 *0

We shall prove a séquence of lemmas, studying trees with increasing complex-
ities, before proving the theorem.

LEMMA 6. Let © be a linear tree of the form

Ti ST2
with Tt having weights ^-2, and T^0i l, 2. If |d(©)|^5, then -

Proof. Using Lemma 2 of [CPR] it is easily seen that d(©)
PiP2^ + Pi% + P2^i for some positive integers p1? p2, &lt;h, (\i such that (p,, q,)= 1,

and 0&lt;ql/pl&lt;l, i l,2. Now one can easily see that |d(@)|^5 implies -2^

LEMMA 7. Let © be a Jinear free o/ rhe /orm

with T, nonempty and having weights ^-2. Suppose d(©) 2, 3 or 5. Tften © is

one o/ ffie following trees, with ir(©) isomorphic to the cyclic group of order shown

in the bracket:

I. * * * *-2 -2 -2 -2
(5)

II * * * * * *
-2 -1 -2 -2 -2 -2
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T * * * * * *- -3 -1 -2 -2 -2 -2

(2)

V- -F3 (5)

VI. _*_X—?5 (3)

Proof. Use the Lemma 6 and compute directly.

For the study of trees with branch points we need a stronger version of a

group theoretic resuit due to Mumford. Let Gl9..., Gn be any nontrivial groups,
aleGl i - 1,..., n, be any éléments. Let t(Gu Gn) dénote the quotient of
the free Gt*- - *Gn by the single relation ax*- - -*an e. For n 3, and

G, ^Z/CA,), and ax e Gr the generators, r(Gu G2, G3) is denoted by r(Al9 A2, A3)

where Al2*2 are some integers. Thèse are classically known as triangle groups.
They are ail nontrivial, noncyclic and those which are finite among them are ail
known. In particular, order al Al in t(A17 A2, A3). Thèse facts will be used

heavily.

PROPOSITION 1. Let Gl9..., Gn be any nontrivial groups, aleGl be any
éléments. Then

(i) For n^4, r(Gt,..., Gn) is infinité
(ii) r(Gl9..., Gn) is nontrivial for n^3.
(iii) T(Gi, G2, G3) is finite =&gt;Gt are cyclic groups generated by al9 i 1, 2, 3.

Proof. We shall repeatedly use the following basic fact which is a direct

conséquence of Schreier&apos;s construction of amalgamated products.
&quot;Suppose K is a subgroup of the groups G and H. Then both G and H are

subgroup of GkH. If K is a proper subgroup of both G and H then G%H is

infinité&quot;.

Now (i) follows from the fact that t(G1? Gn) is isomorphic to the amalgamated

product of Gx * G2 and G3 * • • • * Gn over the infinité cyclic subgroups
generated by a21*aï1eG1*G2 and a3 * • • • * a» e G3 * • • • * Gn.

Assume n 3. If one of the al is trivial then rCG^ G2, G3) is a free product
and hence nontrivial. So, let 2^ order al At ^oo? £ 1, 2, 3.

Consider the three cyclic subgroups (a,)çG,, i 1, 2, 3; and form the group
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T((ax), (a2), (a3)) =* tCA^ A2, A3). Since order at kx in t(Ku A2, ^3), it follows that
r(Gu (a2), (a3)) is an amalgamated product of Gx and T^ai), (a2), (a3)) over the
cyclic group (ai). In particular T^a^, (a2), (a3)) is a subgroup of r(Gl9 (a2), (a3))
and hence order a2 A2 in t(G1? (a2), (a3)). As before it follows that
r(Gu G2, (a3)) is an amalgamated product of t(Gu (a2), (a3)) and G2, and simi-
larly, t(G15 G2, G3) is an amalgamated product of r(Gl9 G2, (a3)) and G3. Thus we
hâve

A2, A3) - TttaO, (a2), (a3)) &lt;= t(G1? (a2),

(a3)) c t(G15 G2, (a3)) c G2, G3)

and hence t(G19 G2, G3) is nontrivial. Finally, if r(Gu G2, G3) is finite, then ail
the groups in above séquence are finite. Since rda^, (a2), (a3)) is not cyclic, (ax) is

a proper subgroup of r((ax), (a2), (a3)). Hence (ax) Gx. Similarly (a2) G2, and

Remark. The first and the second part of the above proposition are due to
Mumford. However, we note that the proof of it as presented in III of [MU] is

incomplète and needs modification.

LEMMA 8. Let T be a minimal tree with at most one branch point. Suppose T
satisfied (E) and (H) and tt(T) is cyclic of order ^5. Then T is either linear or is

équivalent to

-2 -2 -2

*0 *o

*0

Proof. Let v be the branch point of T. Since T satisfies (E) it follows that at

most one of the branches at v has nonnegative weights. Since a minimal linear

tree with négative weights cannot be spherical at most one branch at v can be

spherical. On the other hand putting v e in the présentation of tt(T), we obtain
a quotient of tt(T) of the form r(Gl9..., Gn), with G, - ir(Tt) where T, are the

branches of T at v. Since ir(T) is finite cyclic, using the Proposition 1, we

conclude that except possibly for two, say Gx and G2, ail the G, are trivial, i ^3.
From the above observation it now follows that n 3. In particular, T3 is the

spherical branch at v9 and carries some nonnegative weights. By Lemma 5, we can
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assume that T3 is of the form

0 0

Ux U,

with [v; u^ being a link in T. But T3 is spherical implies r 0, and hence T has

the form

i * i

*0

*0

Then tt(T) — tt(©) where © is the horizontal linear subtree above. Lemma 7 now
—2 —2 —2 —2 ~2 —2 ~2

shows that © *—*—* or *—*—*—*. Hence the resuit.

Remarks, (a) The argument used in the above lemma is very typical and

occurs repeatedly in what follows; viz., constructing the quotient of tt(T) by
putting a branch point v — e. The basic fact we use about P is that the only
nontrivial quotient of P is r(2, 3, 5) which is isomprohic to A5. We shall be much
brief, in using the above argument, in what follows.

(b) The following two trees are équivalent

2 -1 -2 -2 -2 -2 -2 -2

*0

—2 —1 —2 —2
at the free vertex with weight +1 to obtain * * *—*For, blow up

and use Lemma 1 with weight 0 at v.

v*0

LEMMA 9. Let T be a tree with a single branch point v and weights on each

branch at v^-2. Suppose 7r(T)==P. Then T is either E4 or E8.
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Proof. Hère we use the fact that the only nontrivial quotient of P is

r(2, 3, 5) —A5. Thus putting v - e in tt(T) it follows that there are exactly three
branches at v, say T\, T2 and T3, with tKT,) of order 2, 3 and 5 respectively
i 1, 2, 3. (Since Tt hâve weights =^-2, tKTJ are nontrivial finite cyclic groups).
Thus the possible choices for T, can be listed as follows:

-5 or * -* or *¦-2 -3 -2 -2 -2 -2
Taking différent choices for Tx and joining them at v, we obtain différent choices

for T. Since * * can be joined essentially in two différent ways, we obtain the

following eight possibilities for T. Out of thèse only the first and the last hâve

discriminant ±1, for flv -2 and -1 respectively. One can directly check that thèse

two graphs T do hâve ir(T)=*P. (a A,):

-2 -2 -2

-2 -3

-2
a

-3 -2 -2 -2

-2

-2 -2

-*2

-2 -2

-(30a + 59) 1 if a -2.

d(T) -(30a + 47) ^±1

-2
±1
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-2 -3 * d(T) 30a + 37

-3 -2 -3

o

-(30a + 31) -l if a -
Remark. In particular, when JB(T) is négative definite and has exactly one

branch point and tt(T)^P, then T E8.

LEMMA 10. There is no minimal tree T satisfying (E) and (H) with tt(T) as a

cyclic group of order ^5 or tt(T)~P and T having the form

T2 T4

with Tt nonempty simple branches with négative weights.

Proof. We first claim that v and u are linked. If not let © be the linear subtree
between v and u, © 7^ 0. Putting u 6 and using the Proposition 1, we conclude
that the nonsimple branch T&apos; at v is cyclic of order ^5. By Lemma 8, it follows

that © is spherical. So we can as well assume ©= * &apos;by Lemma 5 of [CPR].
Arguing as above at 1; as well as at u, and using Lemma 8 and the Remark (b)

below it we see that T is équivalent to

+ 1

,*-2

V
-2*&apos;

V
with discriminant -11. This is absurd.
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So u and v are linked. Let 8V be the discriminant of Tt and Al9A2 dénote the
discriminants of Tt * T2 y,and T3 * T4 y2 respectively. As in
[CPR] one can easily see that |d(T)| l^i^-ô^Mj- Since weights on T, are
^-2, we hâve |ô,|^2.

Consider the case when T is cyclic of order ^5. Putting v e (and respectively
u e) in tt(T), we obtain that ©2 (respectively ©j) is spherical. Le. |zlx| |42| 1.

Hence |d(T)|^7 which is a contradiction.
On the other hand, when tt(T)-P, |d(T)| 1 Hence it follows that \AXA2\^

7. But, as before, |4,|^5. Hence |A,| i= 1. This means each of ©, is cyclic of order
2, 3 or 5. Thus (3, is one of the six linear trees listed in Lemma 7. This implies
that at least two of the 8t are greater than or equal to 3 in absolute value. Hence
\8iô2S3Ô4\^36. This mean |z\i^12|^35 which is absurd since |AJ^5, i 1,2.

LEMMA 11. There is no minimal tree T, with tt(T) of order ^5 or u(T)^P
and T having the form

where Tt are simple branches with négative weights.

Proof. Let @ and ©&apos; dénote the nonsimple branches of T at u and w
respectively. Putting v e (or w e) in rr(T) we conclude that © (or ©&apos;

respectively) is cyclic of order =^5. Now putting w e (or v e) in tt(©)
(in 7r(©;) resp.) one concludes that To * is spherical. Since To has weights
^-2, f2M -1. By Lemma 8, it follows that © (respectively ©&apos;) is équivalent to a

linear tree. Clearly, this is possible, only if ail the weights on To are =-2 and then
© can be blown down to T3 *,- T4 with weight at w changed to Qw + r +1.
By Lemma 6, we hâve -2^f2w + r+1^0. Similarly, we conclude that -2^
¦0,, + r+l^O.

By putting u e in ir(T), it is seen that both Tt * T2 and

T3 *-- —T4 cannot hâve fundamental groups of order &gt;5. So we may assume

that 7\ * T2 is of order «£5. Again by Lemma 6, it follows that

~2^nv^0. Together with -2^Qv + r +1^0, this implies r=l and Ov

~2. In particular, Tx * T2, having at least three vertices with weights

^-2, it is of order ^4. Now again purring u e in ir(T) we conclude that

I\ * T4 is of order ^3. Hence, by Lemma 7 Ow ~h contradicting
the earlYer observation that f2w + r 4-1 ^0. This complètes the proof of the lemma.
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Proof of the theorem

Let fc dénote the number of branch points in T. We shall induct on fc. Clearly
if fc 0, there is nothing to prove. So assume k ^ 1.

We first observe that at a branch point v, *0 cannot occur as a branch. For if so
let Tx,..., Tn be the other branches at u, n 5*2, with vertices ul9..., vn linked
to v. Then tt(T) is isomorphic to TriT^xir^)*&apos; • -*ir(Tn) and hence 7r(Tl) (e)
for i ^ 2, say. Also each Tt is négative definite. Hence, as in [MU], it follows that
OVi — — 1, i 22=2. In particular, by the minimality of T, ut are not linear in T. Hence
T has a subtree of the form

0

which contradicts hypothesis (H).
It is enough to show that T is E4 or E8 under the additional hypothesis that ail

simple branches of T at any branch point of T carry négative weights. For if there
is a (unique!) simple branch with nonnegative weights, using Lemma 5, we see

that T is équivalent to a tree T obtained by joining * * to a tree T&apos; where ail
simple branches of T&apos; carry négative weights. Moreover, number of branch points
of T k and hence number of branch points of T&apos; =^ fc. Ail the hypothesis of the
theorem are satisfied by T&apos; also. So T&apos; is either linear, or E4 or E8 according to
the above claim. But, clearly T&apos; is négative definite and so it is not E4. If it is E8

then T is one of the El8 and so we are through. If T&apos;is linear, since T should hâve

a branch point, T&apos; has at least three vertices. The only minimal négative definite
linear trees with at least three vertices and of discriminant less than or equal to 5

in absolute value are * * * and * *—* * Joining * * to
them we get the other two possibilities for T.

Thus we shall assume that ail simple branches of T at any branch point hâve

négative weights and show that T is E4 or E8.
First consider fc 1. Let v be the branch point and put v e in tt(T). Using

Proposition 1, we conclude that tt(T) cannot be cyclic and so tt(T) — P. Lemma 9

now says that T is either E4 or E8.
We shall claim that there is no tree T satisfying ail the conditions of the

theorem with fc ^2, by induction on fc. So consider first the case fc 2. Let u and

v be the branch points of T. If possible let there be more than two simple
branches, say at v. Putting u e in tt(T) we obtain the nonsimple branch © at m

is of order =^5. © has a branch point v of which there are at least three simple
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branches carrying négative weights. Clearly © is minimal and hence cannot be of
order ^5, by Lemma 8, a contradiction. Thus T is of the forms

as in Lemma 10, and case k 2 is done.

Now assume k ^3. We first claim that at an extremal branch point there are
exactly two simple branches. If not let v be an extremal branch point and

7\,..., Tn, n ^ 3 be the simple branches at v, © be the nonsimple branch. Since

ail Tt hâve négative weights, iriT^^e and hence by the Proposition 1, putting
v e in tt(T) we conclude that tt(@) e. By induction hypothesis, it foliows that
there is a vertex ueS, linked to v in T, linear in ©, with flu -1. Further, there
is exactly one simple branch To and one nonsimple branch ©&apos; of T at u.

- - * * -
/tt U

Putting u e in tt(T), it now follows that ©&apos; is spherical. Hence T looks like

Suppose To has r vertices, r ^ 1. Then it follows that after successive blow-downs

beginning at the vertex m, the entire branch To U {u} of © should disappear to give
the tree ©&apos;&quot;:

T&apos;

o

*(
with the weight at w f2w + r+l r^l. In particular, ©&apos;&quot; is minimial. Being
équivalent to ©, it is spherical. By induction hypothesis, (and Lemma 8) ©&apos;&quot; is
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linear. But Tq and ©&quot; are nonempty and hence |d(©&apos;&quot;)/^ 1. This contradiction
shows that at an extremal branch point there are exactly two simple branches.

Further, let v be any extremal branch point, Tl9 T2 be the simple branches, and
© be the nonsimple branch at v. Then putting v e in tt(T), it follows that, since
© is of order =^5, there is a vertex u in © with f2u — 1, m is linked to v in T and
m is linear in ©.

In other words, we hâve: (*) At each extremal point v of T we hâve the

following configuration for T:

with Tt being simple, and flu -l.
We shall dispose of the case k 3 now. From the above observation (*) it

follows that if v and w are the two extremal branch points of T, then T has the

following configuration:

¦#,

Hence we are in the situation of Lemma 11 completing the case k 3.

Now assume k ^ 4. Consider the case wherein for ail extremal branch points v,

Ov -1. Let vt and t&gt;2 be two distinct extremal branch points (k 5*4). By (*) there
are vertices Mi and u2 with 17^ -1, and links [i^; wj and [t&gt;2; &quot;2! Since k ^4 it
also follows from (*) that Di is not linked to v2 or u2 and u2 is not linked to ux. In
particular ul ^ u2. If ux is not linked to u2 then it follows that v1 -f ux and u2+ W2

will span a two dimensional positive semidefinite subspace of B(T) contradicting
(E). Hence [ux\ u2] is a link. Thus T has the following configuration

To n

* *-
y&apos;vt

~T4
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with T, nonempty simple branches with weights ^—2 Let © dénote the non-
simple brandi at vx Then putting vx e in it(T) ît follows from case k 3, that
ail the weights on To are -2 and if r number of vertices on To, then © îs

équivalent to (S

U2

with the weight at u2 changed to ù&apos;u% /2U2+r-»-l r^l But ir((S) — ir(@) is of
order «s5 and hence putting v2 e m 7r(&lt;§), ît follows that Té * with
Q&apos;U2=r^l has to be sphencal, which is absurd

Hence there exists an extremal branch point v m T with Ov ^ — 1 In particular
Tx * --- T2 is not spherical Hence putting u e in tt(T) yields that ©&apos; is of
order ^5 By induction, ît follows that there is a vertex weS;, linked to u, m T,
linear in ©&apos; with f2w -1 T looks hke

To

i ©&quot;

with ilu -1, /2W -1, ©&quot; having at least one branch point of T Putting v e9

the nonsimple branch © at v has to be of order =^5 Since u is the only vertex
which is linear and with llu -1, ît follows that © is équivalent to a minimal tree
©o obtamed by successively blowmg down at u But then the weight at w will
become ^0 and hence @0 will hâve at least two branch points (but fewer than fc),

contradicting the induction hypothesis This complètes the proof of the theorem

§2. A generalization of C. P. Ramanujam&apos;s theorem

We will begin with the following

PROPOSITION 2 Let V be a normal, quasi-projectwe, irreduable surface/C
and VcX with X a normal, projecttve surface containing V as a Zanski-dense
open subset Assume that X is smooth in a neighbourhood of X-V and X is a

minimal, normal compactification of V Further assume that for a smooth, projective
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surface Y birational with X, q(Y) O. Then the weighted dual graph of X-V
cannot be Els for i 1,..., 8.

Remark. If the dual graph of X- V is JE8 and if V is actually affine, then using
a slight generalization of the Lefschetz hyperplane section theorem, we can see

that actually tt1(Y) (1) where Y, is as above. Thus the condition q(Y) 0 is

automatic in this case.

Proof of the Proposition. Assume that the weighted dual graph of X- V is E8
for some i and Cl5 C2 are the non-singular rational curves with C\ 0 C\ and

Ci joined to the jE8-configuration at the ith vertex.
Let Y-2» X be a resolution of singularities such that Y — cr~1{p1,..., pr}~»

X-{px,..., pr} is an isomorphism, where {pl5..., pr} is the singular locus of X.
Then we can think of the El8 configuration lying on Y. Thus it suffices to assume
that V and hence X is smooth.

From Ci+C2- K -2, we get C2 • K -2 and hence \nK\ 0 for ail n^ 1.

We hâve now Pg(X) 0 q(X). By the Riemann-Roch Theorem,
dim H°(X, Û(C2))^2 and from the exact séquence 0 -» H°(X, 0) ~»

«^(^^(CzW-^^C^^C^I^-^O, it follows that |C2| has no base points. By
taking a 2-dimensional subsystem of \C2\ containing C2, we get a morphism
X-^P1 which is a P1-fibration. C2 is one fiber of &lt;p and Ct is a section of &lt;p. Since

the JB8 configuration occurring in E8 is connected and disjoint from C2, the E8

configuration is contained in a single fiber F of &lt;p. &lt;p is obtained from a minimal P1

fibration over P1 by successively blowing-up points. It follows that F contains at

least one exceptional curve of the lst kind. Blowing-down such a curve still gives

a P1 fibration. The new fibration will also hâve a singular fiber containing an

exceptional curve of the lst kind. Blowing down this new curve also gives a

P ^fibration, and so on until we get a minimal P1-fibration. Since each curve in the

E8 configuration has self-intersection-2 it can be easily seen that starting from (p

the above process of blowing down exceptional curves will not yield a minimal
P1-fibration. This contradiction shows that the dual graph of X- V cannot be JB8.

Our next resuit is the following:

THEOREM 2. Let Vbe an affine, irreducible, non-singular surface/C. Assume
the following conditions:

(i) The co-ordinate ring F(V) of V is a U.F.D. and ail the unit in F(V) are

constants.

(ii) for some non-singular, projective compactification VcX, Fg(X) 0 and

(iii) the fundamental group at infinity of V is finite.
Then V«C2 as an affine variety.
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COROLLARY. Let V be a nonsingular, contractible affine surface/C. If the

fundamental group at infinity of V is finite then V«C2 as an affine variety.

Remark. The authors do not know whether a contractible affine nonsingular
surface is necessarily rational.

Proof of Theorem 2

Embed VcX where X is a nonsingular, projective surface such that the dual
graph of X-V is minimal and normal. F(V) is a U.F.D. implies that PicX is

generated by the line bundles [Q],..., [Cr], where C, are the irreducible compo-
nents of X-V. Also PicX is finitely generated implies that ffHX, 0) (0)
(actually, it will follow soon that ttx{X) (1)). Since F(V) has no nontrivial units,
PicX is freely generated by the line bundles [Cjls£l^r• Pg(X) 0 implies that
H2(X, Z) is freely generated by the cohomology classes of the 2-cycles C1?..., Cr.

Let F X- V U[=i Q. The fundamental group at infinity of V can be found
as follows. Let N be a sufficiently small tubular neighbourhood of F in X, such
that F is a strong déformation retract of N and N is a strong déformation retract
of N — F, where N is the closure of N. Then iri(dN) is the fundamental group at

infinity of V (see [CPR]). Since tt^N-F) surjects onto tt^N), by the hypothesis
it follows that tt^F) is finite. Hence each Q—P1 and (X, F) is a normal pair and

T= T(X, F) is a minimal tree. Note that the connectivity of F follows from the
affineness of V.

By Poincaré duality, it follows that the intersection form B(T) has déterminant
±1. Hence abv^T) — HxidN) is trivial. Thus dN is a homology sphère of dimension

3. It follows that tt(T) irx(dN) is either trivial or P, the binary icosahedral

group.
If irxOO^e) then by [CPR] V-C2. We shall show that tt^^^P. So if

possible, let ttx(T)^P.
By Hodge index theorem it follows that B(T) has exactly one positive eigen

value. As seen above H1(X,6) 0 and hence T satisfies (H). Hence from
Theorem 1, it follows that T is équivalent to E4 or Els for some i 1,..., 8. The
latter cases are not possible by the above Proposition 2. Hence T is équivalent to
E4 i.e. Ui i Q nas the following configuration:

with C? -1, Cl -2, C| -3
and Cï -5.

C3 C4
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Ci can be blown-down to a smooth point on a projective surface Xt. The image
of C2 in Xt is an exceptional curve of the lst kind, which can be blown-down to a

smooth point on a smooth projective surface X2. Hère the image of C3 is an

exceptional curve of the lst kind. Blowing-down this curve, we get a smooth
projective surface X3 in which the image of C4 is a rational curve C with exactly
one singular point p. C is defined locally at p by Z\-Z\ Q. Also C2= 1. Now
X3- C~ V, so Pic X3 is generated by [C]. Pg(X3) 0 and the topological Euler-
characteristic of X3 is 3. From thèse observations, we deduce easily that X3^P2
and C is a Une in P2, a contradiction. This complètes the proof of the theorem.

Proof of the Corollary

Assume that V is contractible, nonsingular and affine. It was proved in [G]
that under thèse hypothesis F(V) is a UFD and for any smooth compactification

VcX, Pg(X) 0. Clearly tt1(V) (1), hence F(V) cannot hâve nontrivial units.

Now the corollary follows from Theorem 2.

§3. A resuit of Miyanishi

THEOREM 3. (See [G] and [MI]). Let V be a normal, affine surface/C and
C2 -^ V be a proper morphism onto V. Then

(i) V — C2 as an affine variety if V is nonsingular.
(ii) If {pi, ...,pr} is the set of singular points of V(r^l) then TTiCV-

(Pi * &apos; &apos; PrY) is nontrivial
(iii) V — C2/G, where G is a small finite subgroup of GL(2,C) (acting in the

obvious manner on C2).

(iv) V is isomorphic to the affine surface X2+ Y2 + Z5 0 in C3, if T(V) is a

UFD (and V is singular).

Proof of (i). Assume V is nonsingular. Under thèse hypothesis it is proved in

[G] that V is contractible, Since ir :C2-&gt; V is a proper morphism, the fundamen-
tal group at infinity of V is finite. Now appeal to the above corollary to conclude

that V-C2.

Proof of (ii). So, if possible let V V-{p1 - - • pr}, r ^ 1, be simply connected.

Since Pic (C2- ir^ipt--• pr}) is trivial, it follows that Pic V is finite. Any
nontrivial torsion Une bundle on V defines a nontrivial unramified cover of V.
Since V is simply connected it follows that Pic V is trivial. This implies F(V) is a

UFD.
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It is proved in [G] that V is contractible. Let Ux be a small neighbourhood of
pt in V, i 1 • • • r. Let U \JUi Ut. Then V=V&apos;Ul/, and using the Meyer-
Vietoris séquence for the couple {V, U} it is easily seen that Hi(V&apos;) 0 H2(V),
and H1(U-{p1 • • • pr}) 0. Hence H1(Ul-{pl}) 0. As before tt^LT-{Pl}) are
finite and nontrivial (since u is a finite proper map). Thus it foliows that
TTi(^i~{Pi}) — P- It is also known that under thèse circumstances, the singularities
pt are locally defined by x2+y3 + z5 0 and the weighted dual graph of the
minimal resolution of singularity at pt is E8.

Let VczX be a normal projective, compactiflcation such that X is smooth
outside px,..., pn and X- V has minimal, normal dual graph. Let W: Y—&gt;X be

a minimal resolution of singularities of X, Ft tf/~1(pl)i^r, Fr+1 *I~1(X— V)
and F^Uil^. Since V:Y-F^V is an isomorphism, H^Y-F^
H2(Y-F) 0. By Lefschetz duality H3(Y, F) 0 H2(Y, F). Hence by the
cohomology exact séquence of (Y, F) it follows that H2(Y)-*H2(F) is an

isomorphism. In particular, the intersection matrix of the curves in F is unimodu-
lar. Since each Ft is a connected component of F, it follows that the intersection
matrix of the curves in Ft is unimodular, for each i. Also by Hodge index theorem
it follows that the intersection of Fr+1 has exactly one positive eigen value.
Further, it follows that the fundamental group at infinity of V is Tr^diV), for a

sufficiently nice neighbourhood N of Fr+1, and tt^ôN) — (e) or P. If tt^ôN) — (e)
then using the resuit of [CPR] (viz. the proposition and Lemma 5), we can assume
that Fr+1 ^(P1 with self intersection F2+1 1. Using the fact that P%(Y) 0 q(Y)
and using Riemann-Roch theorem, we see easily that the rational map given by
the linear System |Fr+1| on Y gives an imbedding of Y&lt;=P2 such that Fr+1 is a Une.

Then Y-F is C2 which means V is nonsingular.
Now let TTxCdAO^P. By Theorem 1, the weighted dual graph of Fr+1 can be

assumed to be E4 or Egl) for some î 1 • • • 8. By the Proposition 2, Egl) are ruled
out. Thus we can assume that the weighted dual graph of Fr+1 is E4 and as in the

proof of Theorem 2, by successive &quot;blowing-down&quot; at Fr+1 we obtain a smooth
surface Y&apos; containing a rational curve C with C2 1, with a unique singular point
qeQ such that C has local équation z\-z\ Q at q. Also Y&apos;-C^ Y-Fr+1. As
before, we see that the linear System \C\ has dimension at least 2 (i.e.
dim H°(Y\6(C))^2). Take a 2-dimensional linear subsystem «S?c|C| containing

C. Since C is irreducible, C2 1, SE has a unique base point which is a simple
point of every member of ££. Blow-up this base point to get a projective surface
Y. Let E be the new exceptional curve and C be the proper transform of C so

that C2 0. Using % we get a morphism Y-^P1. &lt;p is an elliptic fibration and C
is a (scheme theoretic) singular fiber. Since E - C= 1, E is a section of &lt;p. Since

Y-(CUE)^ Y-FT+1, we can treat F, as Systems of curves on Y(l^i^r). Let
Si,..., Si be the singular fibers of &lt;p other than C. Then it follows that each Ft

(for l^i^r) is contained insome S, (&amp; hence 1^1).
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Now xtopCfr) 4 + 8r, because H2(Y) is freely generated by C, E and the 8r
irreducible curves in UUi^r Also one has the formula, XtoPC^)

Y!]=iXtop(S]) + Xtop(C)- H one of the singular fiber S, contains some of the

Fl5..., Fr, say s of them, then from the list of singular fibres of &lt;p given by
Kodaira in [K] it follows that S, should hâve at least one more curve so that
Xtop(Si)2*8-s + 2. Since *top(C) 2, the equality 4 + 8r Xj_1xw($) + xtop(C)
shows that there is exactly one singular fiber Sx (other than C) and ail F,, 1 ^ i ^ r,

are contained in Sx; and there is exactly one more curve L in Sx other than
U[=i^V i.e. S^Ui-i FiUL. Since S! is connected, L should meet each F,

transversally. Again looking at Kodaira&apos;s list of possible fibers of &lt;p, it is easily
inferred that r 1 and Sx has the following configuration:

with each curve having self-intersection -2. Let &lt;p(C) peP1,
then clearly for any small neighbourhood Ue of q in P1, (p&quot;x(l/c) is a strong
déformation retract of Y—C. Since JE is a section, &lt;p~\UB) — E is also a strong
déformation retract of Y-(CUE). One can choose [/c such that &lt;p~1(C/6)

Ui U t/2 where L/i is a tubular neighbourhood of L and t/2 is a tubular
neighbourhood of Fx. Also it is easily arranged that U2(^E 0, and ^ H t/2 is a

strong déformation retract of Ux — E. Hence it follows that U2 is a strong
déformation retract of ç^iUJ-E. Hence Tr^Y-iCUEUF^^Tr^cp^iUj--
(EUF^^TTiiUj-Fj^P. But Y-ICUEUFJ-V and hence is simply
connected by assumption. This contradiction complètes the proof of (ii).

(iii) Suppose pl5..., pr are the singular points of V. Then C2-
&apos;n&quot;~1{Pi &apos; * * Pr) &quot;^ V~iPi * • * pr} is a proper morphism. Since C2- ir~x{p\ • • • pr} is

simply connected, it follows from Hopf&apos;s theorem that the fundamental group of
y~{Pi&apos; &apos; &apos; Pr} is finite. Let W be the universal covering space of V—{pi • • • pr}.

The map tt factors as C2-7r&quot;Hpi &apos; • &apos; Pr) ^ W&apos;-^V-ipx • • • pr}. W can be

imbedded in a normal affine surface W such that ir&apos; extends to a proper morphism
C2—&gt; W (since W—&gt; V is a finite, proper morphism and C2 is normal). From (ii),
it follows that W is nonsingular. From (i) it follows that W —C2. Hence the group
of covering transformations G of W extends to a group of algebraic automorph-
isms of W and V is the quotient.

But any finite group of automorphisms of C2 can be conjugated to a subgroup
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of GL(2,C). It is also well-known that G can be assumed to contain no
pseudoreflections.

This complètes the proof of Part (iii) of Theorem 3.

(iv) Now assume that V has a singular point and F(V) is a UFD. By Part (iii)
above, V~C2/G, G &lt;= GL(2, C) and G contains no pseudoreflections. Clearly the
point p in V which is the image of 0 g C2 is the unique singular point of V. For a

small neighbourhood Ubç, tt^U-ç) is finite.
Let VçX be an embedding such that X is smooth in a neighbourhood of

X-V and X is a minimal, normal compactification. Let Y^Xbea minimal
resolution of singularity at p. Then ail topological 2-cycles on Y are algebraic and

using the fact that F(V) is a UFD, we see easily that Pic Y is freely generated by
the line bundles given by the irreducible curves occurring in tfr~1(p) and

V~\X-V).
As before, we see that the dual graph of ^~x{p) is Es and ir1(l/-p) is

isomorphic to P. From the known list of finite subgroups of GL(2, C), we know
that G^P and C2/G is the affine surface given by X2+ Y3 + Z5 0 in C3.

This complètes the proof of Theorem 3.

§4. Some examples

(1) Consider the affine normal surface V given by X2+ Y3 + Z5 0. If X is a

minimal, normal compactification of V, then the weighted dual graph of X- V is

équivalent to E4.

For, by using the arguments before, we see that the fundamental group at

infinity of V is either trivial or isomorphic to P. If it is trivial, we can get a

contradiction as in the proof of part (ii) of Theorem 3. But the dual graph cannot

be équivalent to E(8l) for i 1,..., 8 by the Proposition 2. Thus it is équivalent

to E4.
(2) Consider the curve C:X2Z-Y3 0 in P2. Choose simple points

Pu p8 on C such that no three of the p, lie on a line and no six of the p, lie on

a conic. Blowing-up P2 at pl9..., p8 we get a nonsingular rational surface X
containing the proper transform C of C, C&quot;2=l. The map C-* C is an

isomorphism. Also X- C is an affine surface V. By blowing up X at the singular

point of C and then at suitable infinitely near points on the blow-up, we get a

configuration of curves Ci c4 with weights as in the E4 tree. Thus we

get a smooth projective surface Y and an E4 configuration on Y such that

Y- (Jf=i Q is a nonsingular, affine surface.
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