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Intersection homology opérations

R. Mark Goresky*

§1. Introduction

In this paper we construct Steenrod squares in intersection homology,

Sql : IHn 1

for any topological pseudomanifold X. Hère, â and b are perversities ([GM1],
[GM2]) with

b(c)&gt;2a(c) for each c&gt;2.

Thèse homomorphisms are natural with respect to normally nonsingular maps,
and they agrée with the usual Steenrod squares on the normalization of X when
â b =Ô. They also satisfy a Cartan formula.

If X is an n-dimensional Z/(2)-Witt space ([S], [GM2]) then the &quot;middle&quot;

intersection homology group JHj(X;Z/(2)) satisfies Poincaré duality. Thus the
Steenrod square

Sql : IHrXX; 1/(2)) -&gt; H0(X; Z/(2)) -&gt; Z/(2)

may be used to define (in the usual way) a Wu class IveIH%(X;H(2^) and an
intersection homology Whitney class Iw Sq(Iv).

For piecewise linear pseudomanifolds X, we give a combinatorial formula for
this intersection homology Whitney class, and compare it with Sullivan&apos;s Whitney
class for Euler spaces.

The intersection homology Whitney class Iw does not normally lift to intersection

homology (even if X is a complex algebraic variety.) However the single
characteristic number

I*(X; Z/(2)) Iwn • Iw0 I rank IH^X; 11)2))
i

* Partially supportée by the Alfred P. Sloan Foundation and National Science Foundation grant
#MCS-820/1680
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486 R MARK GORESKY

détermines the cobordism class of X in the Witt-space cobordism groups of P.

Siegel ([S]).
The results in this paper on Steenrod opérations and Wu classes may be

considered as part of a program to describe ways in which the intersection
homology groups of certain singular spaces behave like the ordinary homology
groups of a nonsingular space ([CGM] §1). It remains as open question whether
there is an intersection homology - analogue to the rational homotopy theory of
Sullivan. For example, one would like to know when Massey triple products are
defined in intersection homology and whether they always vanish on a (singular)
projective algebraic variety (see [DGMS]).

I am grateful to C. McCrory, R. MacPherson, and R. Porter for valuable
conversations concerning cohomology opérations. I would especially like to thank
R. MacPherson for his help with the argument in §5.3, and N. Habegger for his

careful reading and criticism of the first draft of this paper.

§2. Intersection homology sheaves

In this chapter we summarize basic material from [GM1], [GM2] and fix
notation which will be used throughout this paper.

2.1. Let X dénote an n-dimensional topological pseudomanifold, with singular
set X &lt;= X. By sheaf we shall mean a sheaf of Z/2Z modules on X.

Choose a topological stratification

by closed subsets Xx of dimension &lt;i. ([GM1]), [GM]). Thus, each
has a fundamental neighborhood Ux which is homeomorphic (by a stratum
preserving homeomorphism) to IRlx cone(L) where L is the (topologically
stratified) link of the stratum Xl-Xl_1.

For any perversity â= (a (2), a (3), a (4),...) there is a bounded complex of
injective sheaves ICâ which is constructible with respect to this stratification and is

uniquely determined up to chain homotopy by the following conditions:

(a) IQ 0 for ail i&lt;0

(b) IC;|(X-2)sZ/(2)x_2
(c) For ail c&gt;2 and for any jc€X-Xn_c_l5

0 whenever i&gt;
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(d) For ail c&gt;2 and for any x€X-Xn_c_1?
%lc(Ux;IQ) 0 whenever i&lt;n~c + a(c) + 1.

(Hère Ux dénotes a fundamental neighborhood of x, of the type considered
above. 3€l dénotes hypercohomology and 3€[ dénotes hypercohomology with
compact support.)

The cohomology groups of the complex of global sections,

; IQ) -&gt; r(X; IQ+1) -&gt; • • •

are the intersection homology groups of X.

2.2 In this section we give an explicit construction of the sheaves ICj.
If A&apos; is a complex of sheaves and peZ, Deligne defines ([GM2]) the

complexes r&lt;pA* and t~pA* as follows:

fO for / &gt; p

(r&lt;pA)J =&lt; ker d for / p

lAJ for/&lt;p

!0
for / &gt; p + 1

Imd for/ p + l
AJ for / &lt; p

Clearly, tSpAct~pA and this inclusion induces isomorphisms on cohomology.
Now let I&apos; dénote a fixed injective resolution of the constant sheaf 2/(2) over

X. Let Ik dénote its restriction to the open set l/k=X-Xn_k. Define Ak
inductively by the rules

(a) A^ l2

(b) Ak+1 (T^a(k)ik*Ak) ® Ik+1

where ik : Uk —&gt; l/k_i is the inclusion. Then ICj A^+1 is the intersection homology

complex.

Remarks: 1. The tensor product with Ik+1 is formed in step (b) because it
injectively résolves the sheaf T&lt;a(k)i*Ik in a canonical way.

2. The truncation functor T^a(k) could be used instead of TSfl(k).
3. Indexing schemes: In this paper we will use &quot;cohomology&quot; notation for the

intersection homology groups and sheaves. This means that ICâ | (X-5)
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in degree 0. The hypercohomology of the complex IC&apos;à is denoted

If X is an n dimensional piecewise linear pseudomanifold then the intersection
homology groups IHf(X) defined geometrically in [GM1] may be identified with
the hypercohomology with compact support

as infGM2]. For compact X we shall use both notations IHf(X) and IH^~l(X).

2.3, Multiplication on the nonsingular part,

extends in a unique way to a product structure

whenever â+b is a perversity. If â+b ï= (0,1, 2, 3 then this product is a

Verdier dual pairing, i.e., the associated map

is a quasi-isomorphism. (Hère Dx is the dualizing complex in the derived category
of constructible sheaves of Z/(2)-modules on X). In particular, for compact X,

IHf(X; Z/(2)) Hom (IHBn_XX; 21(2)),

§3. Steenrod squares

In this chapter we show how to define, for any perversity â, mod 2 Steenrod

opérations

Sql : IHl(X; 1/(2)) -&gt; IHlB+&gt;(X; 11(2))

where b(c)&gt;2a(c) for each c. Thèse opérations are compatible with the usual

Steenrod opérations in cohomology.
The Steenrod squares do not usually define &quot;opérations&quot; on intersection



Intersection homology opérations 489

homology. This can be seen from a simple example: suppose X is a 6 dimensional
piecewise linear pseudomanifold with an isolated singularity x0 and suppose
v e IHH(X) is a homology class which is represented by a P.L. cycle Z which
contains x0. (Hère m is the &quot;middle&quot; perversity of [GM1].) Then Sq2(v) v • v is

represented by ZDZr where Z&apos; is a cycle transverse but homologous to Z
([MCI]). This means Z&apos; may also contain the singular point {x0}, so the intersection

ZdZ&apos; does also. However Z HZ&apos; is a 2-dimensional cycle and in order that
a 2 dimensional cycle represent an élément of IH%(X) it must not contain the
stratum {x0}. Thus, Sq2 does not lift to an opération on IH^iX) unless ail the
intersection homology classes of dimension 4 can be &quot;moved away&quot; from the

singular point {x0}, i.e., unless IH4(X, x — xo) 0.

3.1. In this section we review the construction of Steenrod squares as found in
Bredon [B] §20. Fix a topological pseudomanifold X, and let I* be an injective
resolution of the constant sheaf Z/(2) on X. Bredon defines a séquence of sheaf

morphisms

hm: ©
p+q n

which (do not commute with the difïerentials but) are determined &quot;up to
homotopy&quot; (see §3.6) by the conditions

(a) h0 is induced from multiplication

(b)

where r : F ® Iq -&gt; F ® F switches the factors.
The Steenrod squares are defined as follows: If U is any open subset of X, and

aeT(U9 F) is a section such that da 0 then

is also a cycle. Furthermore, if a db then

Sf(a) dhp-,(&amp; ® db) + dhv^x{b ® b) + 2dhp_l_2(b ® b).
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Using relation (b) above, it follows easily that Sf induces a homomorphism,

Sql:Hp(U)-*Hp+l(U)

which is the Steenrod squaring opération.

3.2. The following construction is an important step in extending the Steenrod

opérations to the intersection homology sheaves.

Suppose Â* and B* are complexes of sheaves on a pseudomanifold X, and

suppose a séquence of sheaf morphisms

Jm: 0 Â
p+q n

have been defined for ail integers m, such that

(a) Jm=0 for ail m&lt;0

(b) dJm + 1 + Jm +1d=Jm+JmT

where t switches the factors. Let I&apos; dénote an injective resolution of the constant
sheaf Z/(2). Let A&apos; =Â* ® I* and B&apos; B* ® I* dénote the corresponding injective
resolutions of A&quot; and B&apos;.

DEFINITION. The sheaf morphism

Jm: © Ap®Aq^Bn~m
p+q=n

induced from {Jm} is given by the following formula: For any open set (/cX,

m

Jm((a ® m)® (b® t))) X J,rm-&apos;(a &lt;8&gt;b)&lt;8) hm^rm-&apos;(u &lt;8&gt; v)
1=0

whenever a,be F(U, A&apos;); u,veF(U, T) are homogeneous éléments such that

deg (a) + deg (u) p, deg (b) + deg (v) q.

(Hère, t switches factors, and hm are the sheaf morphisms of Bredon, see §3.1.)
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PROPOSITION. The maps Jm also satisfy the relations

(a) Jm=0 for ail m&lt;0

(b) dJm+1-hJm+1d Jm+JmT

Proof. Direct calculation.

3.3. In this section we will restrict the maps h™ of §3.1 to the nonsingular part
X — X of X, and show that they naturally induce maps on the intersection
homology sheaves.

Suppose à and b are perversities with 2a(c)^b(c) for each c. Let Ak and Bk
be the corresponding intersection homology complexes over the open sets Uk

X-Xn_k, as in §2.

PROPOSITION. Suppose sheaf maps

Jm,k:Ak®Ak-*Bk[-m]

hâve been defined for each m such that

(a) Jm,k =0 whenever m &lt;0

(b) dJm+XM + Jm+lMd Jm,k+Jm,kT (where t switches factors).

Then each Jmk extends in a natural way to a sheaf map

Jm,k+\ &apos;• Afc+i ® A&apos;k+l —&gt; B&apos;k+1[-m]

which is defined over Uk+1, and thèse maps also satisfy the équations (a) and (b)
above (but with k replaced by k ¦+¦ 1).

Proof. Apply ik* to each of the sheaves. We obtain a diagram

ik*(Ak)(g)ik*(Ak) ik*(Ak(8) Ak) —^
&gt; ik*Bk[-m]

But (T&lt;b(k)ik*Bk)[-m] is a subcomplex of ik*Bk[-m], and the image of c/&gt; lies in
this subcomplex. (This is obvious except when m 0. But h0 is a chain map so it
takes ker (d) ® ker (d) to ker(d!).) Thus we hâve found sheaf morphisms

Jm,k+1 : Ak+1 ® Ak+1 -&gt; Bfc+1[-m]
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satisfying (a) and (b) above, where

^)Jk*Afc and Bk+1

The construction of §3.2 now gives canonical extensions of the /m,k+i to the

injective resolutions,

Jm,k+1 : Ak+i ® A&apos;k+1 -» Bi+1[-m]

as desired.

COROLLARY. If 2â(c)&lt;fr(c) /or a» c, fhen fhe maps hm defined by Bredon
hâve canonical extensions

such that

(a) Jm=0 /or aH m&lt;0

(b) Jm + 1d + dJm + 1=/m+JmT

(c) Jm|(X-Z) hm|(X-5).

3.4. Suppose à and 6 are perversities such that

2a(c)&lt;b(c) for each c.

We define Steenrod opérations for any open set U X,

Sqr:IHsà(U)-*IHsg+r(U)

as follows: if a s r(U, IC&apos;S) let

The same calculation as §3.1 shows that Sf induces a homomorphism Sqr on
cohomology.

Remarks. 1. Suppose z eIHJ(X;Z/(2)). If r&gt;s then Sqr(z) 0. If r s then
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2. The method of [GM2] §4 can be used to show the homomorphism
Sqr : IHsâ(X) -» IHg+s(X) is topologically invariant and does not dépend on the
choice of stratification of X.

3.5. It is easy to see from the method of §3.3 that Jm is defined naturally as a

morphism

where b(fc) 2a(k)-m for each fc. (One must replace the complex Bk+1 by the

quasi-isomorphic complex r^bik)ik*B&apos;k in the proof of Prop. 3.3.)

Problem. Can one use this fact to (a) lift the Steenrod squares

to a perversity b &lt;2â and to (b) lift the corresponding Whitney classes of §5.2 to
intersection homology?

Now suppose â&lt;6 are perversities, and X is locally (â, fc)-acyclic, i.e.,

whenever L is the link of a codimension k stratum. This implies that the natural

homomorphism

is an isomorphism ([GM2] §5.5). For which perversities â&lt;fc is it possible to
multiply the Whitney classes of a locally (â, 6)-acyclic space X, and obtain
cobordism invariant characteristic numbers?

3.6. In this section we show that the maps Jm of §3.3 are essentially unique.

PROPOSITION. Let à and b be perversities such that 2a(k)&lt;b(k) for ail k.

Suppose A&apos; and B&apos; are complexes of injective sheaves which are quasi-isomorphic
to IC; and ICg respectively. Suppose Km :A* &lt;S&gt; A* -»B&quot;[-m] is a System of
morphisms such that

(a) Km=0 for ail m&lt;0

(b) dKm
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(c) Ko | (X — 2) induces the multiplication map on the cohomology sheaves over
the nonsingular part X-2 of X

K0\(X-2):22®Z2-*Z2.

Suppose Jm : A&apos;® A* —»B&apos;[-m] is another System of morphisms which also satisfy
(a), (b), and (c). Then there exists a System of morphisms

Dm:A*®A&apos;-*B&apos;[-m]

such that

(Consequently, if Ç is a section of A&apos; such that d£ 0 then Jm(£ ® f) -
so Sq*(£) is independent of choices.)

Proof. First we show that JQ and Ko are chain homotopic. The multiplication
on the nonsingular part X—2 has a unique lift in Dh(X) to a morphism

by [GM2] §5.1 and §1.15. Since A&apos; and B&apos; are injective, they are homotopy
équivalent to Kà and IC^ respectively. The morphism &lt;fi then corresponds to a

unique homotopy class of maps from A*® A&apos; —?B*. But /0 and Ko are both in
this homotopy class.

We now follow Bredon [B] §20.7. Let D1 be a homotopy between Jo and Ko.

Thus

or

Thus, J1~K1- Dx(\ + t) is a chain map and gives an élément of HomDb(x) (A* ®
A&apos;, B*[-l]). The same argument as [GM2] §1.15, §5.1 shows that this élément is

determined by its action on the cohomology sheaves over the nonsingular part of
X. But this action is 0. So H1-K1-D1(1 + t) is homotopic to 0 by some

homotopy D2. Continuing in this way the maps Dm can be defined inductively.
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3.7. In this section we show the Steenrod squares are compatible with the
canonical maps between intersection homology groups with différent perversities.

PROPOSITION. Suppose â&lt;c and b &lt;d are perversities such that 2â(k)&lt;

b(k) and 2c(k)&lt;d(k) for each k. Then the following diagram commutes:

IHsà(X) -2-

msE+r(x) -?-&gt; mrr(x)
Furthermore, if â b=Ô then Sqr :IHh(X)-&gt; IHsô+r(X) coincides with the usual
Steenrod square on the (ordinary) cohomology of the normalization of X.

Proof. Let A^, B^, C^ and D^ dénote the corresponding complexes of sheaves

on the open set Uk (see §2). One checks by induction that the following diagram
of sheaf maps commutes:

The case k 2 is trivial. The maps /3 are inclusions of complexes, so the inductive
hypothesis is easily verified.

Now suppose that X is normal and à b Ô. The injective complexes I&apos; and

IQ are quasi isomorphic. Thus there is a homotopy équivalence &lt;f&gt; : I* —» IC^ and a

homotopy inverse i//:ICâ—»I*. Apply the uniqueness resuit (§3.6) to the Systems

of morphisms {Jm} (from §3.3) and {&lt;£hm*/&gt;}. We conclude that they détermine the

same Steenrod squares.

3.8. In this paragraph we show that the Steenrod squares satisfy a Cartan

formula.

PROPOSITION. Suppose à and b are perversities such that b(k)&gt;2a(k) for
each k. Suppose £eHl(X) and r|GlH|(X). Then the following equality holds in

IHrg+s+t(X).

Proof. The proof is similar to [B] §20.11.
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Consider the family of morphisms of sheaves

which assigns to a homogeneous section u ® a ® v ® b the section

m

Km(u &lt;2&gt; a ® v &lt;8&gt; b) X h.T&apos;(

1=0

A direct calculation shows that

and that Ko induces the multiplication map on the cohomology sheaves over the

nonsingular part X—X of X.
Let &lt;f&gt; :T®lCà-*lCa be the quasi-isomorphism which is induced from

multiplication on the nonsingular part of X (and which induces the product H*®IH* —?

IH*). If we apply the uniqueness resuit (§3.6) to the Systems of morphisms,
Jm°(cf&gt;® &lt;f&gt;) and &lt;t&gt; ° Km, we obtain morphisms

*). If we apply the uniqueness resuit
(cf&gt;® &lt;f&gt;) and &lt;t&gt; ° Km, we obtain morphi

such that

Now suppose u and a are sections of F and IC^ respectively, and that du 0 and
da 0. Then

Sqr([u] • [a]) [Js+U&lt;t&gt;(u ® a) ® &lt;^(u ® a))]

where [a] dénotes the homology class represented by the section a.
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§4. Open questions on the geometry of Steenrod opérations

4.1. A homology opération which doubles perversity can be constructed using the
géométrie technique outlined by McCrory [MC2] §6, i.e., by dualizing the
construction in [SEJVIÏ.1. Does this agrée with the opérations Sql defined in §3?

An investigation of this question might lead one to study a Smith theory of
involutions for the intersection homology groups.

4.2. It would be interesting to study the relationship between the opérations Sqr
and the &quot;brandi point&quot; opérations of [MC2] and [HMC]. Intuitively, Sq*(Ç)

represents the Whitney class of the &quot;normal bundle&quot; of a cycle £ in a space X. (It
is precisely this when £ and X are manifolds.) The &quot;branch point opération&quot;

S*(£) represents the Whitney class of the &quot;inverse tangent bundle&quot; of £. One
might hope for a Whitney duality formula relating thèse opérations.

4.3. The following question is due to R. MacPherson:
Steenrod opérations (in ordinary cohomology) arise as an obstruction to

finding a cochain-level représentation of the cup product which is both commuta-
tive and everywhere defined. If we take an everywhere defined product (as in
sheaf theory, or by using front and back faces of simplices in the singular theory)
then it fails to be commutative, and the amount by which it fails is precisely the
Steenrod square. If instead we take a commutative product on the cochain level
(as in the géométrie intersection of transverse cochains [G], [GM1]) then it fails to
be everywhere defined. Is it possible to use this second choice of product to give a

géométrie construction of the Steenrod opérations in intersection homology, as

the amount by which the product fails to be globally defined?

§5. Witt spaces and Wu classes

5.1. Throughout this chapter we shall assume X is a locally compact n-
dimensional pieeewise linear pseudomanifold.

DEFINITION. [S], [GM2] X is a Z/(2)-Witt space if, for some (and hence for
every) stratification of X, and for every stratum of odd codimension c in that

stratification,

4( 0

where L is the link of that stratum and c 21 +1.
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Remark. It follows ([S]) that the natural map

IH*(X; 1/(2)) -* IHt(X; 1/(2))

is an isomorphism, so IH%(X; 11(2)) is self-dual.
For the rest of this chapter IH* will be used to dénote the intersection

homology with middle perversity, IH%.

DEFINITION. A Witt space with boundary (X, aX) is a compact
pseudomanifold X with collared boundary dX such that both X-dX and dX are

Z/(2)-Witt spaces. We shall say two compact Z/(2)-Witt spaces X1 and X2 are
cobordant if there is a 1/(2) Witt space with boundary (X, SX) such that
aX X1UX2. The technique of [S] gives:

PROPOSITION. The cobordism group of n-dimensional l/(2)-Witt spaces is

(0
for n odd

1/(2) for n even.

The cobordism class of a compact n-dimensional Witt space X is determined by the

single characteristic number

IX(X; 1/(2)) s £ rank IH1 (X; 1/(2)) (mod 2)
t=0

Remark. The cobordism groups of rational-Witt spaces were calculated [S] to
coincide with the higher Mischenko-Witt groups of Q, [R] [Mis].

Remark. It is interesting to compare the 1/(2) - Witt space cobordism groups
to the 1/(2) - Euler space cobordism groups of Akin and Sullivan [A]. The

Z/(2)-Euler space cobordism class of an Euler space X is completely determined

by the (usual) mod 2 Euler characteristic of X. McCrory showed [MC3] that each

Whitney class defînes a homology opération in Euler space bordism theory. We
do not know whether there is an analogous opération in Witt-space bordism
theory.

5.2. In this section we define Wu classes in intersection homology and Whitney
classes in ordinary homology for Z/(2)-Witt spaces, using the original method of
Wu. We will allow the n-dimensional Witt space X to be noncompact in this

section, and use IH*(X) to dénote the intersection homology with compact
supports.
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Let a :IH*(X)-» 1/(2) dénote the augmentation, i.e., a(£) 0 unless Ce
IH&quot;(X) and in that case a(£) is the number of points in any cycle représentation
of £. This augmentation is defined for any perversity.

DEFINITION. The intersection homology Wu class, Iv*eIH*(X) is the
unique class such that, for ail ÇeIH*(X) the following formula holds:

where

Sq l + Sq1 + Sq2 + •• •

Following Wu we deflne the intersection homology Whitney class to be

IW(X) Sq(Iv*) e Hf (X) H

The Whitney class is an élément of the (Borel-Moore) homology of X with
closed supports. If X is compact we shall write IW,(X) for the component of
IW(X) in

Remarks. 1. Iv*(X) and Iw(X) are topological invariant of X since the
squaring opérations on the intersection homology sheaves are topologically
invariant.

2. Iv](X) 0 for ail /&gt;n/2.
3. If X is a Z/(2)-homology manifold then lu*(X) and IW(X) agrée with the

usual Wu and Whitney classes.

4. Iw(X) does not necessarily lift to IH*(X), even if X is a complex algebraic
variety. For example take X to be the Thom space of the négative line bundle
E-+CP4 whose first chern class is -2. Then IW2(X) is nonzero in H2(X).
However, the map IH8(X) ~» H2(X) is zéro, (see also §5.5)

5.3. In this section we calculate the pullback of the intersection homology
Whitney class under a normally nonsingular map.

THEOREM. Suppose X and Y are 1/(2)-Witt spaces, and /:X-&gt;Y is a

normally nonsingular map ([FM], [G], [GM2]) with normal bundle v. Then the

following équation holds in JH*(X):

f*(IW(Y)) W(v) • IW(X)

where W(v) is the Whitney class (in H*(X)) of the normal bundle v.
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Proof. We will prove this formula for compact X in two spécial cases,

Case 1. F is a normally nonsingular inclusion

Case 2. / is a projection MxY-*Y where M is a smooth manifold.

The gênerai case follows from thèse because any normally nonsingular map
can be factored into a composition of thèse two types.

Case 1. By restricting to a tubular neighborhood of X in Y, we may suppose
that / is the inclusion of the zéro section X into a vector bundle tt : Y —? X
(which, therefore, coïncides with v). Then it suffices to show that

rW(Y) ir*(W(v)) • tt*(IW(X))

(Hère IW(Y) is an élément of the closed support homology of Y or, equivalently,
of the relative homology H*(Y, Y-X).

Let a : IH*(X) -&gt; 11(2) be the augmentation.

LEMMA 1. Define ReIH*(X) to be the unique class which satisfies the

foïlowing équation for ail /3 e IH*(X),

Then tt*(R) is the Wu class of Y.

Proof. Let a&apos; dénote the augmentation on IH*C(Y). Let &lt;f&gt; : IH*(X) -&gt; IH*(Y)
be the Thom isomorphism, with Thom class U=&lt;f&gt;(l). For any |3&apos;eIH*(Y) we
can write 0&apos; &lt;(&gt;(($) tt*O) • U for some 0 e IH*(X). Therefore,

a&apos;(Sq(P)-W(v))

Q.E.D.

It follows that IW(Y) 7r*Sq(jR), so we must show that the following équation

holds on IH*(X):

Sq(R)=W(v)-Sq(Iv(X)).
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LEMMA 2. The nondegenerate bilinear pairing

(which is given by (a, b) a(a- b)) is compatible with the nondegenerate bilinear
pairing

IH*(X) x IH*(X) -&gt; 1/(2)

(which is given by (a, b) a(a • b)) with respect to the canonical maps
H*(X) -4 IH*(X) -5&gt; H*(X).

Proof. Obvious.

Remark. It follows that (A(a), b) (a, B(b)) for any aeH*(X) and be
IH*(X). Thus, A and B are adjoints with respect to thèse inner products.

We may unambiguously define the adjoint

Sq* : H*(X) -&gt; IH*(X)

by the fonnula

for any b€H*(X) and aeIH*(X).

LEMMA 3. Sq(R)=W(v) • Sq(Ic(X))

Proof. We shall show that for any |3eH*(X), the foliowing formula holds:

&lt;ft Sq(R)) (fr W(v) • Sq(Iv(X))).

We shall use W to dénote the cohomology class Sq~x(W(v)). This is well defined
because Sq is invertible when considered as an opération on ordinary
cohomology. Now calculate

O, Sq(R)) O, Sq Sq* W(i^)&gt; since 1? Sq*W(v)

&lt;Sq Sq*P, SqW) since W Sq(W)

a(Sq(Sq*(p) • W)) by Cartan formula

a(Sq*(P)&apos; W-IvOO)

&lt;Sq*O),W-It;(X)&gt;

O, w(v) - Sq(Iv(X))) as desired.
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This concludes the proof of Case 1.

Case 2. Suppose /:MxY-&gt;Yis the projection to the second factor, where
M is a smooth manifold. Then v~l tt*(TM) so we must show IW(MxY)
/*(IW(Y)) • tt*(W(M)) where tt:Mx Y-&gt;M is the projection to the first factor.
From the Kunneth formula for middle intersection homology ([GM2]) and the
Cartan formula for Sq, it follows that the intersection homology Wu class of
M x Y is the product of the Wu classes of M and Y and, therefore, (by the Cartan
formula again) the intersection homology Whitney class is the product of the

Whitney classes of M and of Y. This complètes the proof in Case 2.

5.4. In this section we give a combinatorial formula for the intersection homology
Whitney class of a compact piecewise linear pseudomanifold.

LEMMA. Suppose X is a compact J./(2)-Witt space. Then

rW0(X) IX(X; Z/(2)) X rank IHl (X; Z/(2) (mod 2).
i

Proof. If n dim (X) is odd then Ix(X) 0 by Poincaré duality, while
IWo(X) 0 by remark (2) above. If dim (X) is even (say n 21) then JWO(X)
Ivl - Ivl and I*(X) rankIHl(X;Z/(2)) (mod 2). By Milnor [Mil], JHl(X; Z/(2))
breaks into an orthogonal direct sum

where (ex) is a one dimensional subspace generated by a vector ^ such that ef 1,

and where H is hyperbolic. (i.e., h • h 0 for ail h e H.) This means that H is even
dimensional, and Ivl =e1 + e2+ • • • -\-er. Therefore, rW0 e^ + el+ • • • +e? r
rank (IHl(X)) (mod 2) as desired.

THEOREM. Suppose X is a compact n-dimensional Z/(2)-Witt space. Then

IW(X) equals the Whitney class W*(f) which corresponds to the constructible

function f(x) IX(X, X-x) £r=o rank IH?(X, X- x ; 1/(2)) (as defined by Fulton
and MacPherson [FM]).

Proof. The proof is almost the same as [FM] §6.3.2 which was due originally
to R. Thom [T].

First we check that IW0(X) W0(f), i.e., that both Whitney classes hâve the

same Euler characteristic. Consider the spectral séquence for IH*(X) which is

associated to the complex of sheaves IC* ([GM2]). We hâve Eïq Cp(X;IHq)
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where IHq represents the local intersection homology sheaf. By the preceding
lemma, IW0(X) Ix(X) x(EPiQ) lP,q rank Cp(X;IHq) (if thèse are ail finite
dimensional). Choose any triangulation of X to compute thèse cochain groups.
Each simplex cr will contribute a tern

X rank IHq (X, X-&amp;)= /(cr)

where â is the barycentre of t. Therefore,

which is the formula for W0(f) in [FM] §6.1.1.

Now we shall show, for each cohomology class £eH*(X;Z/(2)) that
&lt;è IW(X)&gt; &lt;£, W*(/)&gt;. By cobordism theory, £ is the Thom class of some

normally nonsingular map g : Y —&gt; X with some virtual normal bundle v. Therefore,

by§5.3

- (w(v) - W(g*(/)), [Y]) by induction

by[FM]
Q.E.D.

COROLLARY 1. 1/ X is a complex algebraic variety then 1WJ(X)
whenever j is odd.

Proof. Let / be the constructible function

f(x) Ix(X,X-x).

Then

C*(/)(mod2)

where C^ is the homology chern class of MacPherson [M].

COROLLARY 2. Let Kf be the first barycentric subdivision of any triangulation

of a compact Witt space X. Then 1W,(X) is represented by the chain which is
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the sum of ail the j-simplices creK&apos; such that Ix(X, X—x) 1 for any point x in the

interior of a.

COROLLARY 3. Suppose a compact Witt space X can be stratified with even
dimensional strata {Sa}. Then there exist numbers {FJ and {Ga} (in 1.10)) such

that

and

(Hère W* dénotes the Sullivan Whitney class [Su] of a mod 2 Euler space.)

Proof. For each stratum Sa consider the Z/(2)-valued constructible functions fa
and g^ which are supported on the closure Sa and are defined by

Sa-x) (mod 2)

&amp;, (x) xiSa, Sa - x) (mod 2)

for any x € S«. If x g Sa then fa(x) g^x) 1. Therefore, {fa} and {&amp;,} are both
bases for the space of Z/(2)-valued functions on X which are constructible with
respect to the stratification {Sa}. Therefore, we can find numbers Fa and Ga so

that

and

However, each Sa is simultaneously a Z/(2)-Witt space and a Z/(2)-Euler space so

each of the functions fa and g,, satisfy the local Euler condition of [FM].
Therefore, we can apply W* to each of thèse équations, which gives the desired

formula.
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