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On the Kneser-Tits problem

Gopal Prasad and M. S. Raghunathan

Introduction

Let G be a semi-simple, simply connectée algebraic group defined, isotropic
and simple over a (commutative) field fc. Let G(fe) be the group of fc-rational
points of G and G(k)+ be the normal subgroup of G(fc) generated by the
k-rational points of the unipotent radicals of parabolic fc-subgroups of G. The
Kneser-Tits problem referred to in the title is the following: Is G(fc)+ G(k) for
every G as abovel The main object of this paper is to prove that for a field fc, the

Kneser-Tits problem has an affirmative solution iff G(fc)+ G(fc) for ail simply
connectée, ksimple groups G of k-rank 1. This réduction of the Kneser-Tits
problem is an immédiate conséquence of Theorem A proved below. After this
work was complète, we learnt from Armand Borel that Theorem A was conjec-
tured by Jacques Tits in a lecture at the Institute for Advanced Study (Princeton),
and was proved by him for some fields by a method différent from ours.

The proof of Theorem A dépends on a theorem on Galois cohomology
(Theorem B) which may be of some independent interest.

In case k is a local field, the Kneser-Tits problem has an affirmative solution.
This was essentially proved by V. P. Platonov [4] using the known results on
classical groups and detailed knowledge of classification. He also gave the first
examples of fields for which the Kneser-Tits problem has a négative answer (see

Tits [8] for a survey). In §2 of this paper we use the réduction of the Kneser-Tits
problem to rank 1 groups stated above to provide a simple proof of its affirmative
solution for the local fields. This simple proof devised by the first-named author
was the starting point of the présent work. We hope to corne back to the problem
for global fields in the near future.

1.1. Let k be a (commutative) field, 3C be a fixed separable closure of k and
let r Gal(3f/fc). Let G be a semi-simple, simply connected group defined over
k. Let S be a maximal fc-split torus of G. Let dim S r (:= fc-rank G). We assume
that r&gt;0 i.e., G is isotropic over fc; we also assume that G is fc-simple, i.e., it has

no proper connected normal subgroup defined over k.
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108 G PRASAD AND M S RAGHUNATHAN

1.2. Let T be a maximal torus of G containing S and defined over fc. Let &lt;P be
the set of roots of G relative to T. We fix a Borel subgroup B defined over 3£,

B^=&gt;T, and contained in a minimal parabolic fc-subgroup of G. This induces an

ordering on &lt;P; let A be the set of ail simple roots with respect to this ordering.
Let Ao be the subset of A consisting of those roots which are trivial on S. There is

an action of F on A (the *-action) defined in Tits [7: §2.3]; both Ao and A -Ao are
stable under this action. Since fc-rank G r, there are r F-orbits in A — Ao.

1.3. For a simple root a, let Ua and LLa be the root subgroups associated
with a and -a respectively; Ua and LLa are connected unipotent 3if-subgroups of
G, of dimension 1, normalized by T. Since G is simply connected, Va e A, the
subgroup generated by Ua and U_a is 3^-isomorphic to SL2; let Ta be its
intersection with T, then Ta is a one dimensional torus defined over 9f, and as G
is simply connected, T is a direct product of the Ta(aeA). For a subset 0 of A,
let T© be the subtorus generated by the tori Ta, ae0.

1.4. For a fc-subgroup H of G, as usual, H(fc) will dénote the group of
fc-rational points of H, and H(fc)+ will dénote the normal subgroup of H(k)
generated by the fc-rational points of the unipotent radicals of the parabolic
fc-subgroups of H.

1.5. For a F-stable subset 0 of A - Ao, let T0 be the identity component of
HeeeuAoKer 0. Let M&amp; be the centralizer of Te in G. Then Ms is a connected
reductive subgroup defined over fc; in fact it is a Levi fc-subgroup of a parabolic
fc-subgroup of G (cf. Tits [7: §2.5.4]). Let % be the derived subgroup of Ms.
Then &lt;$© is a semi-simple, simply connected, fc-subgroup of G, and hence it is a

direct product of its connected fc-simple normal subgroups. Let A© be the
product of ail connected fc-simple normal subgroups of &lt;§© which are anisotropic
over fc, and G© be the product of ail connected fc-simple fc-isotropic subgroups.
Then the fc-rank of G© is equal to the number of F-orbits in @, and ^e is a direct
product (over fc) of As and Ge. It is easily seen that Ms is a semi-direct product
of T0&gt; and ^0, where &amp; is the complément of © in A-Ao. Hence, the natural

homomorphism: Ms(3{) -+ (Jée/^e)W is surjective.
We shall dénote the centralizer of S in G by M and sometimes also by M. Let

&lt;8 be the derived group of M. Then M M0; % ^0 (where 0 is the empty
subset of A — Ao). &lt;ê is anisotropic over fc, and it is easy to see that As is a normal
subgroup of &lt;S for every F-stable subset 0 of A — Ao.

For a F-stable subset 0 of A — Ao, let S0 be the maximal fc-split torus of Ge
contained in S, and let JVd^ dénote the centralizer of S© in G©. Then M© is a
connected reductive fc-subgroup. Moreover, since ^© is a direct product of G©
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and Ae, the centralizer of S0 in ^e is just Ae • M&amp; (direct product). It is easy to
see, by considering the reductive groups S • G0 and S • ^0, that M&amp; =MC\GS
and M

1.6. Let @l? i l,..., r, be the F-orbits in A — Ao. Recall that GSi is a

semi-simple simply connected fc-subgroup of G of fc-rank 1; it is fc-simple since it
does not contain any connected normal k-anisotropic subgroup. It follows from
the Bruhat-decomposition that G(fc) M(k) • G(fc)\ Thus G(k)+ G(fc) if and

only if G(fc)+3M(fc). Similarly as Gs(k) Ms(k) • Gs(k)+, Ge(fc)+ Ge(fc) if
and only if Ge(fc)+ :=&gt; M@(fc). In view of thèse observations, the following Theorem
A implies that the Kneser-Tits problem for a field k has an affirmative solution if
and only if for every k-simple simply connected group G of k-rank 1, G(fc)+
G(k).

THEOREM A. Assume that k-rank G&gt;2. Then M(k) is generated by the

subgroups M@(fc) (1 &lt; i &lt; r).

1.7. Remark. If k is an infinité field, then G(fc)+ has no proper non-central
normal subgroups (Tits [6: Main Theorem]), in particular it is perfect i.e.

(G(k)+, G(k)+) G(fc)+. Now Theorem A implies that to prove that G(fc) is

perfect for ail k-simple, simply connected k-isotropic G, it suffices to prove that
this is so for ail k-simple, simply connected groups of k-rank 1.

We shall prove Theorem A using the following:

THEOREM B. For i&lt;n, let 4 be a F (-Gai (W/k))-stable subset of A~A0
such that Hr=i At 0. Then the natural morphism:

induced by the inclusion of &lt;ë in &lt;ëAi (1 &lt; i &lt; n), is injective (i.e., its kernel is trivial).

Now assuming Theorem B we shall prove Theorem A:

NOTATION. In the sequel we shall dénote the complément of 0X in A-Ao
by &amp;[ and A*., %;, Ge;, Me[, Me; and T@i by At, %, Gl9 A, M and Tx

respectively.

Proof of Theorem A. It is obvious from the Tits index ([7]) of G/fc that given a

connected normal k-simple subgroup of the derived group &lt;S of M, there is an
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i(&lt;r) such that GSi, and therefore Me,, contains it. Now since &lt;$ is a direct
product of its connected normal fc -simple subgroups, we conclude that the
subgroup generated by the M0i(k) (l&lt;i&lt;r) contains ^(fc).

The inclusion of M in M^ induces a fc-rational homomorphism M/^-*
n:=i MJ%9 and also a homomorphism .4C(fc)/«(fc)--»IÎIBl A(k)l%(k) of abstract

groups. We now observe that the fc-rational homomorphism Ml^ -&gt;IÏ=i Al%
is an isomorphism. In fact, as M^ is a semi-direct product of the torus Tt Te
and the normal semi-simple subgroup %, MJ% is isomorphic to Tt(=TSi)
and as M is a semi-direct product of TA_Ao and % M/^ is isomorphic to TA_Ao.

But TA-Ao is a direct product of the tori Tt since A — Ao is a disjoint union of the
0X (l&lt;j&lt;r). From this we conclude at once that the homomorphism

flUi^/^ is an isomorphism.
The commutative diagram

» % &gt; M &gt; jyçg &gt; X

i—&apos; n% — iia —i
1=1 1=1 »=i

gives the following commutative diagram involving Galois cohomology:

i
r r r r

FI %(k) &gt; ï\A(k) &gt; II UU%)(k) &gt; \[H\K%\
=1

in which the horizontal rows are exact. Now since Hx(k, S)—&gt;IÏ=i Hx(fc, %) is

injective (Theorem B), we easily conclude from the second commutative diagram
that the natural homomorphism J{(k)/&lt;S(k) —&gt;IÏ~i ^(k)/^(k) is surjective; now
since Çyx=\%-% it follows that the induced homomorphism ^(fc)/&lt;S(k)-»

flUi ^,(k)/(S,(k) is an isomorphism. It is évident from this that M(k) is generated
by the subgroups c€l: M(k)nf]j¥ilcêj(k) (i^r). But fWi % H,#i ^®; ~ ^s^
Therefore

(cf. 1.5).

As the subgroup generated by the MSi(k) (l&lt;j&lt;r) contains &apos;S(fc) and hence
also Aec(k) for 1 &lt; c :£ r (recall that Aec is a normal subgroup of &lt;§), we conclude
that M(fc)(= M(k)) is generated by the subgroups M^fc), l&lt;i&lt;r. This proves
Theorem A.
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§2. The Kneser-Tits problem for nonarchimedean local fields

We will now prove that the Kneser-Tits problem has an affirmative solution if
k is a nonarchimedean local (i.e. locally compact, non-discrete, totally discon-
nected) field. For such a field it is known that H1(fc, ^) is trivial (recall that ^ is

connected and simply connected): K k is a local field of characteristic zéro, this
was proved by M. Kneser ([3]) and then by Bruhat-Tits ([2]) for local fields of
arbitrary characteristic. Thus, for a local field, Theorem B is an immédiate

conséquence of this resuit. The first-named author originally proved Theorem A
for local fields and deduced the Kneser-Tits conjecture in that case, the déduction
is described below:

Let fc be a nonarchimedean local field and let G be a k-simple, simply
connected k-group of k-rank 1. Then ([1: 6.21(ii)]) there exists a finite separable
extension K of k and an absolutely simple, simply connected group G defined over
K, and of K-rank 1, such that G RK/k(G); K is again a nonarchimedean local
field and from the classification (due to Kneser in characteristic zéro and due to
Bruhat-Tits in arbitrary characteristic) of absolutely simple groups over such a

field we know that an absolutely simple, simply connected K-group of K-rank 1 is

one of the following (note that there are no rank 1 forms of exceptional groups
over a nonarchimedean local field):

(i) SL2tD, where D is a finite dimensional central division algebra over K.

(ii) SU(f), where / is a hermitian form, of Witt index 1, in 3 or 4 variables,
defined in terms of a quadratic Galois extension K of K.

(iii) The spin group of a o--quadratic form of Witt index 1 and rank 4 or 5, or
the symplectic group of a cr-antihermitian form of rank 2 or 3 and Witt index 1;

where a is an involution of the quaternion central division algebra D over K such

that the dimension of D&quot;, the space of symmetric éléments, is 3.

For each of the above groups G, it is known that G(K)+ G(K); see, for
example, [8].

§3

We shall now begin our proof of Theorem B. A standard argument which uses

the fact that there is a finite separable extension K of k and an absolutely simple,
simply connected group defined over K such that G is obtained from it by
restriction of scalars ([1: 6.21(ii)]), and Shapiro&apos;s lemma in Galois cohomology
(Serre [5: 5.8(b)]), allows us to assume that G is absolutely simple (and of fc-rank

^2). The proof (of Theorem B) uses the classification of absolutely simple groups
in terms of Tits index (see Tits [7]); we shall assume familiarity with it.

From the Tits index of absolutely simple fc-groups of k-rank &gt;2 we see that if
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the Tits index is not one of the following six:

(i) 2E6,2: 0—f4&quot;

(ii) xEl%: &lt;&amp; 1 1 Q)l
(iii) X

&lt;B $ 1 h(iv) Ej%: 0 (D 1 1 1 €)

(v) El*: l
L

(vi) E&amp;: © 1 1 1 1 h—€&gt;,

then there exists a F-orbit in A - Ao such that if 0 is its complément in A - Ao,

then, in the notation introduced in 1.5, Ge has at most one connected normal
fc-simple subgroup which meets &lt;S non-trivially and this connected normal k-
simple subgroup is fc-isomorphic to i?K/k(G), where K is a Galois extension of k
(of degree ^2) and G is an absolutely simple K-isotropic group of inner type A.
We know that % is a direct product of Ae and GB (and Ae is a factor of cê).

Hence, the natural map H1(fc, A©) -* H\ky &lt;§&amp;) is injective. Now it is not hard to
see that to prove Theorem B for a group with Tits index différent from the 6
indices listed above, it is enough to prove the following:
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3.1. PROPOSITION. Let G be an absolutely simple, simply connected group
of inner type A which is defined and isotropic over a field K. Let S be a maximal
K-split torus of G and H be a connected normal K-simple subgroup of the derived

group of the centralizer of S in G. Then the natural map H^K, H) -» H^K, G) is

injective.

Proof. There exists a central division algebra D over K such that G is

K-isomorphic to the group SLmCh where m fc-rank G+l. We identify G with
SLmD and for S take the K-split torus such that

S(K)

0&apos;

0 &apos;K

À, € Kx, HA, 1

Then the centralizer of S is the diagonal subgroup of SLmD, and there is a positive
integer i ^ m such that H is the subgroup of the diagonal group consisting of the
éléments whose j-th diagonal entry is 1 for ail j£ i; H is clearly k-isomorphic to
SL1D. In the sequel we shall identify SLUD with H.

Now we consider the group GL^o. We embedd GLlD in GL^d as the
subgroup of the diagonal group consisting of the éléments with the j-th diagonal
entry 1 for ail j^i. H is now the kernel of the reduced norm map Nrd : GL1D—&gt;

Mult. The commutative diagram of K-groups:

î î
1 &gt; SLlD &gt; GL1D -££* Mult &gt; 1

gives the following commutative diagram in which the horizontal rows are exact in
view of the vanishing(1) of H^K, GL^o) for ail n &gt; 1:

1 &gt;SLm(D) &gt;GLm(D) -^ Kx &gt;H\

î î i i
1 &gt; SLt(D) &gt; GLx(D) -22U Kx &gt; H\K, SLUD) 1.

From the theory of Dieudonné déterminants it is obvious that the image of
GL^D) in Kx equals that of GL^D), from this and the above commutative
diagram we conclude at once that H\K, SLltD) -» H\K, S^o) is injective, i.e., in
the notation of the proposition, the natural map H1(K, H) -» H1(K, G) is injective.
This proves the proposition.

1 This vanishing is a well-known theorem of Hilbert and Speiser.
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§4

We shall now prove Theorem B for groups with Tits index the first of the six

exceptional ones listed in §3 i.e.,

Let 0 be the unique distinguished F-orbit consisting of 2 simple roots. Then the
Tits index of %(= &lt;ëe) îs the following:

cMoreover, the Tits index of ^ (&lt;= &lt;ge) is •£ Now let l be the quadratic Galois

extension of fc such that ^/l is an inner form of a split group. There is an
anisotropic hermitian form / in 4 variables, defined in terms of the nontrivial
automorphism a of i/fc, such that &lt;§ is fc-isomorphic to SU(f), whereas ^ is

k-isomorphic to SU(f± h), where h is the hyperbolic form in 2 variables. Now we
consider the following commutative diagram in which the horizontal rows are
exact:

x ^ u(f± h)

i i
&gt; SU{f) &gt; Uif) &gt; ïï &gt;1;

where &amp; is the torus of dimension 1 defined and anisotropic over k which splits
over l (then ^(k) {xe/x | xa(x) 1}) and Uiflh)-*^, as well as U(f)-*&amp;,

are the déterminant maps. It is obvious that both U(f±h)(k)—&gt; 3&quot;(fc) and

U(f)(k)-* 3~(k) are surjective. Therefore, the natural morphisms H\k,SU(f±
h)) -» H\k, U(/± h)) and H\k, SU(f)) -^ H\k, U(f)) are injective. On the other
hand, Witt&apos;s cancellation theorem (for hermitian forms) implies at once that
H\k, U(f)) -^ H\k9 U(f± h)) is injective. Now it is obvious that H\k, SU(f)) -*
H\k,SU(J±h)) is injective, i.e., H\k, &lt;ê)-^H\k, «e) is injective. From this
Theorem B follows for groups of type 2JB6 2.

§5

In this section we shall complète the proof of Theorem B by proving it for the

groups of the remaining five exceptional types. We begin with the following two
lemmas.
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5.1. LEMMA. Let P be a parabolic k-subgroup of a connected reductive
k-group G, and M be a maximal reductive k-subgroup of P. Then the natural
morphism

H1(k,M)-*H1(k,G)

is injective.

Proof. Since the natural map G(k) -» (G/P)(k) is surjective (Botel-Tits [1:
4.13(a)]), the morphism

is injective. Therefore, to prove the lemma, it suffices to observe that if U is the
unipotent radical of P, then U is defined over k and P M K U (a semi-direct
product), and hence the natural morphism

H\k, M)-*H\k,P)
is injective.

5.2. LEMMA. Let G and M be as in the preceding lemma. Let &lt;§ be the
derived subgroup of M and S be the central torus of M. Let ^q and *%* be two
connected normal k-subgroups of &lt;§ such that &lt;ê is an almost direct product of ^0
and &lt;§*. Let &lt;€ be the finite group scheme ^nS^. Then the kernel of the natural
morphism

is contained in the image of

Proof. Since the morphism Hx{k, M) -» H\k, G) is injective (Lemma 5.1), the
kernel of H\k9 »0) -* H^fc, G) coincides with the kernel of H1^,^)-*
H\k, M). But C : Ker (H\K %) -* H\K M)) is clearly contained in the kernel
of the morphism H\k, &lt;S0) -» H\k, M/SSJ induced by the fc-homomorphism

^o-^M/S^^. Now as the natural homomorphism %!%-*MI$&lt;§* is a fc-

isomorphism, we conclude that C is contained in the kernel of H^fc, ^0) ~^
H1(fc, ^o/^)» and from this the lemma is obvious.

Before proceeding further with the proof of Theorem B in the remaining
exceptional cases, we shall recall some of the basic notions of the theory of
quadratic forms.

5.3. Let p be the characteristic of k. If p 2, let p(k) {x + x21 x e fc}; p(k) is

a subgroup of k.
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A quadratic form is said to be nondefective if the associated bilinear form is

nondegenerate.
The rank (or the dimension) of a nondefective quadratic form is by définition

the dimension of the underlying fc-vector space, and the Witt index (over fc) is the
dimension of a maximal isotropic fc-vector subspace.

For a quadratic form f/fc, the discriminant (when p 2, it is also called the Arf
invariant) d(f) will hâve the usual meaning. We recall that if p^2, d(f) is an
élément of fcx/fcx2, and if p 2, d(f) is an élément of fc/p(fc). We shall say that a

quadratic form f of rank 2n has trivial signed discriminant if its discriminant
equals that of the hyperbolic form of rank 2n, or, equivalently, if the spécial

orthogonal group SO(f) is of inner type over fc.

Let q be a nondefective anisotropic quadratic form over k, of rank 2, and K be
the quadratic Galois extension of fc over which it is hyperbolic, then d(q) is the

image (in fcx/fcx2 if p^ 2 and in fc/p(fc) if p 2) of the norm of any élément of K*
of trace zéro if p^ 2 and of trace 1 if p 2. Since q is a multiple of the norm-form
of K/k, we conclude that the discriminant d(q) détermines q up to a scalar

multiple.
If over fc, f is an orthogonal direct sum of the nondefective quadratic forms qn

1 &lt; i &lt; n, of rank 2, then d(f) is the product of the d(qt) (1 &lt; j &lt; n) if p^2, and it is

the sum of the d(qt)&apos;s if p 2.

5.4. The Witt invariant w(f) of a nondefective quadratic form f/fc of even rank
is by définition the class of the Clifford algebra of f in the Brauer group of fc ; it is

an élément of order 2 in the Brauer group. We recall that if f is a quadratic form
of rank 2n, with trivial signed discriminant, then the Witt invariant of f has the
following useful description: Let h be the hyperbolic form of rank 2n and let
Spin(h) and SO(h) be respectively the spin group and the spécial orthogonal
group of h. Then since the discriminant of f equals that of h, the quadratic form f
is obtained from h by twisting by a Galois cocycle with values in SO(h). Let c

dénote the cohomology class in H1(fc, SO(h)) determined by the cocycle. Now
consider the natural central isogeny:

1 -» |i* -&gt; Spin (h) -» SO(h) -» 1,

where |i2 is the kernel of the endomorphism x »-&gt; x2 of GLt (it is a finite group
scheme defined over fc). It gives rise to the following exact séquence:

HHk, Spin (h)) -* H\k9 SO(h)) A H2(fc, |t2),

then w(f) Ô(c) in the natural identification of H2(fc, |i2) with the subgroup of the
Brauer group of fc consisting of the éléments of order 2.
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Now we observe that if f is an anisotropic quadratic form of rank 6 which has

trivial signed discriminant, then its Witt invariant is the class of a division algebra
of degree 4 (i.e. of dimension 16). This follows immediately from the fact that
Spin (h), where h is the hyperbolic form of rank 6, is isomorphic to SL4 over the
base field, and the only anisotropic inner twists of SL4 are of the form SLlCh D a
central division algebra of dimension 16 over the base field.

5,5. Now we assume that G is an absolutely simple, simply connected
algebraic group of type one of the remaining five: 1El%, JEf^, Ej%, El% E%% Let
^ be (as in §1) the semi-simple anistropic kernel of G. Let ^0 be the unique
connected normal fc-subgroup of ^ of type Dn in 4 or 6) and in case G is of
type E72, let «S* be the connected normal fc-subgroup of ^ of type Al9 in ail the
other cases let ^* be trivial. Then ^ is a direct product of ^0 and &lt;§*.

5.6. Let a be the simple root corresponding to the vertex in the Tits index
marked with a cross (in §3) and let 0 be the set of distinguished simple roots ^ a.

To establish Theorem B in the cases under considération, it clearly suffices to
prove that the natural morphism

H\k9 %) -&gt; H\K G{a}) x H\k, Ge)

is injective.
Let S{a} (resp. Se) be the maximal fc-split torus of G{a} (resp. Ge) contained in

S, and let Z «onS{a}, 2£ cSonSecë*. Then it is easily seen, using the Tits
indices, that both Z and 2E are fc-isomorphic to the group scheme |jl2. Moreover,
the center of % is a direct sum of Z and 2f.

Now we observe that there is a nondefective, anisotropic quadratic form f/fc
with trivial discriminant, f of rank 12 in case G is of type E%% and of rank 8 in ail
the other cases, such that % is fc-isomorphic to Spin(f) and the kernel of the
natural central isogeny ir : Spin (f) -* SO(f) is Z % H S{a}). This follows from the
fact that % is the semi-simple anisotropic kernel of the simply connected,
absolutely simple group G{a}, and G{a} is the spin group of a nondefective

quadratic form, of Witt index 1, which has trivial signed discriminant, since its Tits
index is

CB 1 « 1 »v
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in case G is of type E|f2»

(B •

in ail the other cases. We shall identify ^0 with Spin (f) in the sequel.

5.7. LEMMA. If G is of type E|62, then the Witt invariant of f over k is trivial

Proof. Any connected absolutely simple algebraic group of type E8 is simply
connected and is isomorphic to its automorphism group. Therefore, as the
semi-simple anisotropic kernel of a fc-form of type Et% is an absolutely simple,
simply connected group of type D6, it is obtained from the split group of type Es
by twisting by a Galois cocycle with values in the spin group of the hyperbolic
form h of rank 12 (the spin group embedded as a maximal semi-simple fc-

subgroup of a parabolic fc-subgroup of the split group of type E8). Hence, f is

obtained from h by twisting by a cocycle whose cohomology class lies in the image
of the natural morphism.

Hl(K Spin (h)) -&gt; H\k, SO(h)).

This implies the lemma (see 5.4).

5.8. We now note, for future use, that the Witt index of the quadratic form f
is even over any extension of k : this is seen easily from the classification of inner
fc-forms of types £s6, JE7 and E8 in terms of the Tits indices given in Tits [7].

5.9. Now let c be an élément of the kernel of the natural morphism

H\k9 %) -* H\k, G{a}) x H\k, Ge).

We shall prove that c is trivial, this will establish Theorem B (see 5.6).
Let Z and 2t be as in 5.6. From Lemma 5.2 applied in turn to G G{a} and

G G0, we conclude that c lies in the intersection of the images of the following
natural morphisms:

and

Hence, in particular c is mapped onto the trivial élément of H\k, SO(f)) under
the central isogeny (% Spin (f) -» SO(f) (whose kernel is Z).

We fix an élément cg H1(fc, 3£) which is mapped onto c g H1(fc, ^0)- Since â? is

k-isomorphic to jjl2&gt; there is a natural identification of Hx(k, 2t) with kx/fcx2. Let
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s g kx be such that, in the identification of H1(fc, SE) with fcx//cx2, c corresponds to
s. Now we observe that under the central isogeny Spin (f) —» SO(f), 2t is mapped
onto the center of SO(f) and from this we conclude that the image of the
cohomology class c in Hx(k, SO(f)) corresponds to the quadratic forai sf. But
since the image of c in Hl(k, SO(f)) is trivial, sf is équivalent to f over k.

5.10. LEMMA. Let &lt;pbe a nondefective anisotropic quadratic form such that (p

is équivalent to sep (s e kx). Then there is a nondefective subform qof &lt;p of rank 2
such that q is équivalent to sq.

Proof. If s is a square in fcx, the lemma is obvious, so we shall assume that s is

not a square.
Let V be the fc-vector space underlying &lt;p and be the bilinear form

associated with &lt;p. We fixaueV such that &lt;p(v) j= 0. Then since &lt;p — sep, there is a
v&apos;eV such that &lt;p(v&apos;) s&lt;p(v). Now if (v, vr) ^ 0, let w v&apos;; if (v, vr) 0, choose a

vosV such that &lt;u0, v) • {v0, v&apos;)^0, and let

w vTT^o-&lt;PKV0)

Then &lt;p(w) &lt;p(v&apos;) s&lt;p(t&gt;) and (u, w) ^ 0. Also since s is not a square, w is not a

scalar multiple of v. Let q be the restriction of the quadratic form &lt;p to the
2-dimensional subspace X spanned by v and w. It is easily seen that q is a

nondefective quadratic form. The fc-linear automorphism of the vector subspace
X defined by ui-&gt;w, w »-&gt; sv provides an équivalence of the quadratic form sq
with q.

5.11. PROPOSITION. There exist nondefective subforms q,, q[ (i 1,2 if G is

not of type E%% and i 1,2, 3 if G is of type El%) of f, of rank 2, such that f is the

orthogonal direct sum of the q/s and q[&apos;s, and for each i

(1) q^sq» q&apos;^sql

(2) q[ is a scalar multiple of qt ; in particular SO{qt) is k-isomorphic to SO(q[).

Proof. According to the preceding lemma, there is a nondefective subform qx

of f of rank 2 such that qx - sqt. Now let K be the quadratic Galois extension of fc

over which qx is hyperbolic, then q! is a multiple of the norm-form of K/fc. Let qt
be the orthogonal complément of q! in f. Then since the Witt index of f over K is

even (5.8), qt is isotropic over K. Therefore, there exist vectors u, w in the

subspace corresponding to qf and aeK-k such that

qt(v + aw) f(u + aw) f(v) + a(v, w) + a2f(w) 0.

Now since a is separable, we easily conclude that the restriction qi of qt to the
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2-dimensional subspace spanned by v and w is a nondefective quadratic form of
rank 2 which is isotropic (and hence hyperbolic) over K. Therefore, qi is a

multiple of the norm-form of K/fc. As qx is also a multiple of the norm-form of
K/k and qx~$qu we conclude that qi is a multiple of qt and qi^sqi.

Now let f1 q1±q/1. Then the discriminant of fx is trivial. Let f2 be the
orthogonal complément of fx in f. Then the discriminant of f2 is trivial and as

fi — -sfiJ by Witt&apos;s cancellation theorem f2 — sf2. We shall now consider the cases

where f is of rank 8. Let q2 be a nondefective subform of f2 of rank 2 such that
&lt;te~ sq2 (Lemma 5.10) and q2 be its orthogonal complément in f2. Then the
discriminant of q2 equals that of q2 and hence q2 is a scalar multiple of q2 (5.3), in
particular q^ — sq^-

Now we consider the case where f is of rank 12, then G is of type E%%, f2 is an

anisotropic form of rank 8 and trivial discriminant. We claim that the Witt index
of f2 over any quadratic Galois extension of fc is even. To prove this we consider a

quadratic Galois extension l of fc such that f2 is isotropic over /. Then as the
discriminant of f2 is trivial, the Witt index of f2 over l can not be 3; assume, if
possible, that it is 1. Then since the Witt invariant of f/k is zéro (Lemma 5.7), the
Witt invariant of fx/i equals that of |2/l. Now since by hypothesis f2/i is of Witt
index 1, over l it is an orthogonal direct sum of the hyperbolic form of rank 2 and

an anisotropic form of rank 6. Therefore, the Witt invariant of f2/f is the class of a

division algebra of degree 4 in the Brauer group of l (5.4). But since fx/fc is an

anisotropic form of rank 4 of trivial discriminant, it is a multiple of the norm-form
of a quaternion division algebra D, and its Witt invariant is the class of D in the
Brauer group of fc. Therefore, the Witt invariant of jjl is the class of D ®k L We
conclude thus that the class of a division algebra of degree 4 (in the Brauer group
of 0 contains D &lt;8&gt;k l. This is absurd, and hence the Witt index of f2 over l can not
be 1. This proves that the Witt index of f2 over l is even. Now since f2 is of rank 8,

we can prove, as before, that there exist 4 nondefective quadratic forms q2, q2, q3

and qr3 of rank 2 such that f2 is an orthogonal direct sum of thèse; q, — sqt, q[ — sq[

and q[ is a scalar multiple of q, (i 2, 3). This proves the proposition.

5.12. We fix a set of nondefective subforms ql9 q[, of f, of rank 2, as in the

preceding proposition. Let ft SO(qt)(c:SO(ï)) and fl&apos; SO(ql/)(c=SO(f)). Then
(for ail 0 Tt and T[ are isomorphic fc-tori of dimension 1. Let tt : Spin (f) —» SO(f)
be the usual central isogeny and let Tx tt~\Tx) and T[ ir&apos;^T,&apos;). Then for ail i,

T, and T[ are isomorphic fc-tori.
FI, (% x f&apos;t) is a maximal torus of SO(f) and there is a unique fc-embedding of

|jl2 into f,, as well as in f[. The center C of SO(f) is the &quot;diagonally&quot; embedded

1*2 in rut xf;).
Let 6t be a fixed fc-isomorphism of Tt onto T[ (note that there are exactly two
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distinct fc-isomorphisms of T, onto T&apos;), we shall let dt also dénote the induced
k-isomorphism of Tt onto T[. Let $x {x • 6t(x) \ x e fj, ïïx {x • 0,(x) | x g TJ,
and let # 11 ^«, 3T II ST.- It is easily seen that Vi, the restriction of tt to ÏÏX is

an isomorphism onto 3~t and hence the restriction of tt to ïï is an isomorphism
onto ST. Also, if necessary after changing the isomorphism 0, for any one i, we can
ensure that 3t&lt;^ST. We shall assume in the sequel that this is the case. Now we
assert that cCeH^k, 3?)) is mappedonto the trivial élément of H1(fc, 3&quot;) under the
morphism induced by the inclusion 2£ -&gt; ST. To see this, we observe that the
image of c in H1^, 3T) is trivial: this is a simple conséquence of the fact that for
Vi, qt — sqt. Now since tt \&amp; : 3&quot; —&gt; 3~ is a k-isomorphism which maps 3? onto C, our
assertion follows. It is obvious now that c, being the image of c in H1(fc, ^0)&gt; is

trivial because ££ c: STc &lt;$0. This complètes the proof of Theorem B.
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