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Cut locus and parallel circles of a closed curve on a
Riemannian plane admitting total curvature

Katsuhiro Shiohama(1)

0. Introduction

A Riemannian plane is a complète Riemannian manifold homeomorphic to a

plane R2. The total curvature c(M) of a Riemannian plane M is defined to be an
improper intégral $MGdv of the Gaussian curvature G with respect to the
volume élément dv of M. A well known theorem due to Cohn-Vossen [1] states
that if such an M admits total curvature, then -oo^c(M)^2tt. Since total
curvature is not a topological invariant but dépends on the choice of Riemannian
metric, it is natural to ask what is the géométrie significance of total curvature.
Indeed it was proved in [4] and in [5] that the existence of total curvature on a
Riemannian plane imposes strong restrictions to the mass of rays emanating from
an arbitrary fixed point. Moreover, for a finitely connected Riemannian 2-
manifold admitting total curvature the behavior of Busemann functions on it is in
some sensé controlled by total curvature (see [6], [7]).

The purpose of this paper is to investigate certain restrictions of the existence
of total curvature on M to the distance function à induced from the Riemannian
metric. Throughout this paper let M be a Riemannian plane admitting total
curvature, let © be a simply closed regular smooth curve on M and let Mt be the
complément of the open disk bounded by S. The cut locus C((£) of (S in Mt is
discussed throughout. Geodesics are parametrized by arclengths. For a point x on
Mx a minimizing géodésie cr:[0, a]^&gt;M is called a segment from x to (£ if
o-(0) x, &lt;r(a)e&amp; and the length L(a) of a is d(x,(S). Let p:M1-^R be the
distance function to ©. If (S is a géodésie circle around a fixed point p with radius
less than the injectivity radius of the exponential map expp : Mp —&gt; M at p, then p
is the distance function to p. A cut point x to Ê along a segment a is by définition
a point with the property that any extension of a beyond x is not a segment to (S.

Let L L((£), let s e [0, L] be the arclength parameter of S, and let N be the unit

1 Dedicated to Professor W Klmgenberg on his 60th birthday
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outer normal field to S. A point x on Mt is a focal point to E if x is a critical
value of the normal exponential map (s, r)-&gt;exp@(s) tN(s), se[0, L], f^O. For
each r^O set S(r): {xGM!;p(x) r} and B(0: {xeM1;p(x)&lt;t}. S(t) is a

smooth curve for ail sufficiently small t such that it is contained inside the eut
locus of GL

A complète description on the eut locus and focal locus of S on a Riemannian
plane which is not assumed to admit total curvature was established by Hartman
[3], and his results are the C°° extension of Fiala&apos;s results in which Fiala assumed
that a closed curve and Riemannian metric are analytic. Hère, the same notations
as used in [2] and [3] will be employed. A eut point x to (£ is called normal if
there exist exactly two distinct segments from x toK such that x is not a focal
point to © along any of the two segments. A eut point x to © is called anormal if
it is not normal. A number t&gt;0 is called anormal if there is an anormal point on
S(t). A number f&gt;0 is called exceptional if it is either anormal or if it is not
anormal and there is a normal point on S(t) at which the angle between the two
vectors tangent to the segments to S is tt. It was proved by Hartman [3] that the
set of ail exceptional values is closed and of measure zéro on [0, »), and that if
f &gt;0 is not exceptional, then S(t) intersects C(S) only at finitely many points and

S(t) is a pieeewise smooth curve, where the smoothness breaks at points of the
intersection C(Ê)flS(f). The continuity of the length L(t) of S(t) will break at
each exceptional value t where there exists a normal point on S(t) at which the
angle between the two vectors tangent to the segments to S is tt. The eut locus
forms a smooth curve in a small neighborhood of each normal eut point, and the

curve bisects the two segments to (L
Under the assumption that M admits total curvature, more précise observations

on the eut locus of (£ will be provided. The following notions play an

important rôle in our discussion on C(©). For each x e Mx at which there are

more than one segment to (£, let E(x) &lt;= Mx be the maximal compact set bounded
by a subarc of S and two segments from x to (£ such that every segment from x to
S lies on E(x) and that E(x) is homeomorphic to a closed 2-disk. The segments
lying in the boundary of E(x) will be denoted by &lt;r~, a* : [0, p(x)] —&gt; Mx. If there
is a unique segment ax from x to S, then E(x) consists of the points on the

segment. Let 0 : Mx —&gt; [0, 2tt) be defined as the angle between cr~(0) and â*(0)
measured with respect to E(x). Then (3(x) 0 if and only if there is a unique
segment from x to (£. A géodésie y : [0, oo) --&gt;. M is called a ray from @ if 7(0) e S
and p(y(0) t for ail t ^ 0. It is elementary that there exists at least a ray from @.

Let FcMi be the set of ail points on rays from (£. Then Fj= 0 and is closed since

the limit of a converging séquence of rays from K is a ray from (L The
complément Mx — F consists of a countable disjoint union UxeA^x °f relatively
open sets in Ml9 each DK is connected, noncompact and bounded by two (possibly
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one ray, if there is a unique ray from S) rays from (S and an open subarc (£x of (£,

where A is an index set. Each component of C((S) is contained in some Dk and
each Dk contains a component of C(©). Our first observation on C(S) is the
following

THEOREM A. Let Mbe a Riemannian plane admitting total curvature and let
S be a simply closed smooth regular curve on M. Assume that Mx — Fî 0. Then
there exists for each A g A a number tk and a curve x : [tk, &lt;») —» Dk H C((£) with the

properties:
(1) p(x(t)) tfort^tk.
(2) x(t) is smooth except at a set of measure zéro in [tk, °°).

(3) {E(x(t))} is monotone increasing and limt_^ooE(x(f)) Dx.
(4) lim^oo |3(x(0) 0, and in particular, if Ik is the domain of fëx and k(s) is

the géodésie curvature of S at S(s) with respect to N, then

-\ K(s)ds.

The statement (2) was already established by Hartman (see Proposition 5.6, p.
713, [3]). Note that the constant tk dépends on a small number taken less than
half of the length of fëx. The starting point of x is not clearly stated because there
are many (possibly infinitely many if tk is exceptional) curves with thèse properties.

A spécial choice will be made from a géométrie viewpoint as stated in
Lemma 1.1, (2). Roughly speaking x may be considered as a &quot;main street&quot; of cut
locus in Dk. Note also that {tk} contains a divergent subsequence.

THEOREM B. Let Mbe a Riemannian plane admitting total curvature and let
K be a simply closed smooth regular curve on M. Then there exist constants R1^-R2
with the following properties:

(1) If t&gt;Ru then S(t) is arewise connected.

(2) If t&gt;R2, then S(t) is homeomorphic to a circle.

The discontinuity of L{t) will occur at t when there are points on S(t) at each

point of which there are exactly two segments to S making an angle tt. Such a

point may still allow to exist on S(t) for r&gt;.R1. But there exists no such point on
S{t) if t&gt;R2. It is a natural conséquence of Theorem B that there exists a

constant JR3 ^ R2 such that p{x) &lt; it for ail xeM1 with p(x)&gt; R3. L(t) is continu-
ous for ail f&gt;JR3. Note also that if the metric and © are analytic, then L(t) is

continuous (see Théorèm 1, p. 326, [2]).
Now the function j3 will be discussed. It follows from Proposition 6.1 in [3]

that |3(x(t)) is smooth if x(t) is a normal point and that it is not necessarily
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continuous if x(t) is anormal. Whatever t is exceptional or non-exceptional, (3 has

the following uniform property and this property plays an essential rôle for the
estimate of the derivatives of L(t) for ail large normal values.

THEOREM C. Let Mbe a Riemannian plane admitting total curvature and let
(S be a simply closed smooth regular curve on M. For an arbitrary given positive e,
there exists a t(e) such that if t&gt;t(e), then

xeS(t)

Note that when t is a non-exceptional value, the left hand side in the above

inequality is a finite sum, and when t is exceptional, it is a countable sum. In fact,
let t be exceptional and let {x^; fx € A(f), x^eS(t), j3(xlJL)&gt;0}, where A(t) is an
index set. For each y, e A(t) if J^ is the closed interval corresponding to the subarc

EixJ OS of S, then J^ nj^=0 for jul± /tx/ and X^eA(t) meas (JJ^L. This means
that A(t) is at most countable. The proof of Theorem C requires topological
properties of S(t) as stated in Theorem B.

In the final section a sharp estimate for the derivatives of L(t) at non-
exceptional values greater than R3 will be obtained. And the following Theorem
D will be established as a direct conséquence of the estimate. The formula for the
derivatives of L(t) at a non-exceptional value was first established by Fiala [2] in
the analytic case and later by Hartman [3] in the smooth case. They are essentially
the same. Under the assumption that M has total curvature an essential improve-
ment for the derivatives of L(t) will be provided hère.

THEOREM D. Let M be a Riemannian plane admitting total curvature and let
S be a simply closed smooth regular curve on M. If L(t) and A(t) are the length of
S(t) and the area of B(t), then

Hartman proved this relation under a stronger assumption that JM \G\ dv &lt;o°.

I. The proof of Theorem A

The following Lemma 1.1 will be useful for the proof of Theorem A. This
lemma was recently proved by Shiga under the restriction that S is a géodésie
circle around an arbitrary fixed point with radius less than the injectivity radius of
the exponential map at that point (see Lemma C in [5]). For each A € A let
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Y\&gt; Yx : [0, °°) -* Mi be the rays from S which are contained in the boundary of
Dk.

LEMMA 1.1. Assume that M1-F^ 0. For any given positive e ihere exists a
constant jR(e)&gt;0 with the following properties:

(1) If xeMx-F satisfies p(x)&gt;R(e) and if crx :[0, p(x)]-&gt;M1 is a segment
from x to (S, then there exists a A g A such that one of the subarcs of Sx divided by
o&quot;x(p(x)) nas length less than e.

(2) If the length Lx of fëx is greater than 2e, then there exists for every t&gt;R(e)
a unique point x(t) on Dx nS(f)nC((£) such that there are at least two distinct
segments from x(t) to S and such that each length of the two subarcs of ©x taken
outside of E(x(t)) is less than e.

Proof of Lemma 1.1. If x eDK and if Lx is less than 2e, then the conclusion (1)
is trivial. If x e Dx and if Lx ^ 2e, then (1) is a direct conséquence of the fact that
Dx contains no ray from (S.

For the proof of (2), fix an e&apos;e (0, e). R(e) may be replaced by R(e&apos;). For each
t&gt;R(e&apos;) let ct:[0, l]-*S(f)nDx be a curve such that ct(0) yx(0, ct(l) yt(t)
and such that the image of ct bounds Dx-JB(f). Let J~: {mg[0, 1]; every
segment crCt(u):[0, f]—&gt;Mx from ct(u) to S has the property that the subarc of ©x
between yx(0) and crCt(u)(r) has length less than e}, and similarly let J+: {us
[0,1]; every segment crCt(u):[0, t]-^Mx from ct(u) to © has the property that the
subarc of Sx between crCt(u)(f) and y£(0) has length less than e}. Clearly /&quot;

(respectively, J+) contains a small interval around 0 (respectively, 1), and has the
property that if ueJ~ (respectively, mg/+), then [0, u]c:J~ (respectively,
[m, 1]c=/+). This is an immédiate conséquence of the facts that any segment from
xec(([051]) to S does not intersect ct([0,1]) at its interior and that any two
segments from distinct points on ct([0,1]) to © do not intersect each other. If
J~U J+ is a proper subset of [0,1], then a point ct(iï) with w&apos;e[0,1]- J~U/+ has
the desired property. if J~ U J+ [0,1], then J~OJ+=0 implies that one of them
is open and the other closed, and the point ct(uf) with u&apos; sup{u; ueJ~} has the
desired property.

The uniqueness of such a point x(t) ct(u&apos;) follows from the fact that for any
ue[0,u&apos;) and for any segment crCl(u) : [0, t] -&gt; Mt from ct(u) to S its endpoint
belongs to the subarc of Sx between yx(0) and o-~(t)(0, and the similar property
holds for any ue(w\ 1] and for any segment from ct(u) to S.

This complètes the proof of Lemma 1.1.

Proof of Theorem A. Let e &gt;0 be chosen so as to satisfy that 2e &lt;LX and set
*x :=!?(e&apos;) for some e&apos; in (0, e). (1) is obvious from the previous lemma. (2) has

already been established by Hartman, as stated in the introduction. To prove (3)
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let t1&gt;t2&gt;tk. Then o-~(tl)([0, tj) intersects ct2([0,1]) at o-&apos;^ih-12) which belongs
to the subarc of ct2 between ct2(0) 7X(t2) and x(t2). Therefore o-xi^ih) belongs to
the subarc of (£x between 7x(0) and o-~(t2)(t2). Similarly, o&quot;x(tl)(^i) lies on the subarc
of (£x between cr^(t2)(r2) and 7x(0). This proves E(x(tx))^&gt; E(x(t2)) and the

monotone property of {E{x(t))} is proved. Since e &gt;0 is any, lim,.^ E(x(t)) - D;
is obvious. This proves (3).

The existence of total curvature of M (and hence of Dk) is essential for the

proof of (4). The proof technique is based on the situation that yk and yk are
distinct. Taking account of the case where there is a unique ray from S, one uses
the preimage Dk c Mx of Dk in the fundamental domain of Mx under the covering
map tt : Mx —» M1? where M1 is the universal Riemannian covering. Set
S : tt&quot;1^. The boundary of Dk consists of two distinct rays 7X, yk : [0,0°) —&gt; Mx
from fê such that ttOyx) iriyt) 7\ and of the subarc (Ix of Ê whose endpoints
are 7x(0) and Âx(0). If there are more than one ray from S, then DK is identical
with Dk. Thus the arguments developed below covers the case where the

boundary of DK contains two distinct rays.
For a point x on Dk let xeDk be such that ir(x) x. Also let É(x) c Dk be the

compact domain such that ir(É(x)) E(x) and let &lt;r~ and â* be the preimages of
o-~ and o-J through x. Then lim^oo É(x(t)) Dx implies that the limit of &amp;(x(t)) as

t—»oo exists and satisfies:

c(Dk) c(Dk) lim c(JB(x(f))) lim j8(x(0)- f k(s) ds.

On the other hand for an arbitrary given 17&gt;0 and for a given divergent
séquence fy}, a monotone increasing séquence {QJ of compact domains in Dk will
be constructed below in such a way that lim,^^ Q Dk and that

(Q)âTJ- f K (s)ds.

If the above construction has been achieved, it will then follow that
limJ_^ooc(QJ) limt_^ooc(É(x(f))) and hence (4) will be proved.

The construction of {Ô,} is done as follows. Let dk :Dk xDx -&gt; R be the
distance function induced from the Riemannian metric on Dk. It is elementary that
dk ^ d°7r, and also that every two points x and y in Dk can be joined by a curve
in Dk whose length realizes dk(x, y). Such a curve will be called a dk-segment. A
dk-segment is not necessarily the preimage of a géodésie in Mx. If a dk-segment
does not pass through a point on (Sx, then its image under tt is a géodésie in Ml9
but not necessary minimi2dng. Note that every dk -segment does not intersect yk
and -yx at any point on their interior.

Choose an tîo&gt;0 sufficiently small such that if fo R(r\o), then every géodésie
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in M passing through a point on DknB(l)-E(x(t0)) intersects the boundary of
Dk-E(x(t0)) and goes out Dk beyond its intersection. This is possible because the
set is sufficiently narrow. For every j with f, &gt; t0 there exist large numbers t~ and
t,+ such that every dk-segment joining x(tj) to yk ~(t~) does not intersect fêx, and
such that every dk-segment joining x{t}) to ytitf) does not intersect SA. The
minimizing property of &lt;x~(tj), &lt;Xx(tj) and y^, yk implies that such a dy-segment
does not intersect them at any point on its interior, and hence ail interior points
on such a dk -segment lies in the interior of Dk. This observation shows that the
domain bounded by fëx, 7^([0, f,+]), two dk-segments joining x(f,) to yk(Ç) and to
Ya(*j+) anc* 7\([0» *j~D contains É(x(fJ)) as a proper subset. QJ is obtained by
choosing t~ and r,+ sufficiently large so as to satisfy that if f,+ : [0, l,+] —» Dx and

r;:[0, l;]^DK are d,-segments with fJ+(0) fJ-(0) x(rJ), t,^) 7^),
T,&quot;(lr) 7x (*,&quot;), then Q is the domain bounded by Êx, 7^([0, t&quot;]), 7x&quot;([0, t^]),
Tj+([0,1,+]) and t,&quot;([0, !,&quot;]), and the angles of the corners at yt(tf) and at 7x(^D are
less than 17/2. Such a choice of t* is seen as follows: If 0(f) is the angle between
yt(t) and the tangent vector to a dk-segment joining x(t,) to y^(t), then the
function r-d^(x(rj), yt(t)) for r^f0 is Lipschitz continuous with the Lipschitz
constant 2 and bounded above by dk(x(tj), 7x(f0))- This function is expressed as

f [1-cos ô(u)] du +{ro-4(x(fJ),

Therefore liminf^oo [1-cos 0(u)~\ 0, and the existence of a desired constant is

verified. The original idea of this technique was developed by Cohn-Vossen [1],
Thus a monotone increasing séquence {Q,} of compact domains is obtained by

choosing a suitable subsequence, and lim^oo Q, =Dk is obvious from the
construction.

Finally

c(Dx)=-J K(s)ds

is obvious from (1) and limt_&gt;oop(x(r)) 0.
This complètes the proof of Theorem A.

II. The proof of Theorem B

The idea of the proof of Theorem B (1) is summarized as follows: Suppose
that there is a divergent séquence fy} such that for each / S(tj) is not arcwise

connected. For each j the value t, is replaced by a t\ ^ t} in such a way that S(t[) is

not arcwise connected and that there exists a compact component of Mt — B(tj)
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which has a nonempty interior. Thus one may suppose that for each j Mj-J
contains a compact component W(tj) having nonempty interior. Then it will be

possible to find for each / a géodésie 7, :[0, 2/,]--» Mt such that 7,(0), 7,(2/,) are

on S and hits orthogonally to (£. Then the compact domains {D,}, each D, is

bounded by 7J([0,2i,]) and a subarc of S, hâve an infinité subsequence {Dk} which
is monotone increasing and lim^ooDk Dk for some À g A. Then it will turn out
that Dk does not admit total curvature, a contradiction. The proof technique of
deriving the nonexistence of total curvature on Dk has already been employed in
the proof of Theorem A.

For each t&gt;0 let ct :[0,1]—&gt; S(t) be a simply closed curve which bounds the

unique unbounded component of Mt — B(t). The proof of Theorem B, (2) will be

achieved if the image of ct coincides with S(t) for ail t&gt;R2. The same idea as

used in the proof of (1) will be employed for the proof of (2).
The following Lemmas 2.1 and 2.2 will be useful for the proof of Theorem B.

LEMMA 2.1. Assume that there exists a monotone divergent séquence {*,} such

that for each j M—B(tj) has a compact component W, with nonempty interior. Then
there exists for each j a géodésie 7, :[0,2i,] —&gt;MX with the following properties:

(1) The endpoints of 7, are on (£ at which 7, hits orthogonally to S.

(2) 7,([0,21,]) and a subarc S, {having the same endpoints as 7,) of some Sx(j),

\(j)gA, bounds a compact domain in Mt which is homeomorphic to a closed

2-disk and which contains W, in its interior.

(3) 7,(1,) is a eut point to S along 7,, and in particular l} is exceptional.

Proof. Fix a number j and let i/f, :[0,1]-» W, -int (W,) be a simply closed

curve. M-int(W,) is homeomorphic to a closed half cylinder S1x[0,00) whose
fundamental group is generated by [1^], where [1^] represents the free homotopy
class of ail closed curves in M—int(W,) containing 1^. There is a k(j)eA such

that W,c:Dx(j).
It is asserted that there exists a point y on i^,([0,1]) such that the boundary

dE(y) is not homotopic to 0 in M—int (W,). In fact, if otherwise supposed, then a
contradiction is derived as follows: Note first that every segment from a point on
^j([0&gt; 1]) to S does not pass through any point on int(Wj). If V
Uueto, i]^(^j(w)), then VczMx —int(Wj). It follows from the supposition that
E(t^(w)) is homeomorphic to a closed 2-disk for each m €[0,1] with j8(i/f,(M))&gt;0.

Thus V is homeomorphic to S1 x[0,1], and in particular Mx VU int (W,) leads

to a contradiction that Mx is bounded.
Since dE(y) is not homotopic to 0 in M-int (W,), it belongs to [i//,]k for some

integer fc. Since dE(y) has no self-intersection, fc l. Clearly ^,([0,1]) &lt;=

E(y)DDk(]).
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If (3 (y) 77, then the desired y} is nothing but the géodésie a y
*&lt;t~ :[0, 2fJ—»

i which is defined as

where i, tr
Consider the case where j3(y)^ tt. Since ^([0,1]) intersects E(y) only at the

point y and since d£(y) is homotopic to i/r,, W, is contained in E(y). It is asserted
that 0(y)&gt;7r. In fact, if otherwise supposed, then for a sufficiently small fi&gt;0,

d(a~(h), &lt;jy(h))&lt;2h. It follows from 0(y)&lt;7r that for some h&gt;0 the segment t
joining cr~ (h) to o-J(h) passes through a point in int (W,) and the length of a curve
obtained by joining o-~([h, rJ)UTUcTy([h, tj) is less than 2tp a contradiction.

As is seen in the above paragraph, /3(y)&gt; rr and a y *cr~ can be replaced by a

shorter curve in Dx(j)-int(W,) which is freely homotopic to it. Then a standard
length-decreasing déformation procédure in Dx(j) — int (W,) is carried out to this
broken géodésie with endpoints on S, and the Unit of the déformation exists and
is a géodésie y} : [0, 2JJ —&gt; Dx(j), where ij &lt; rr This 7, has the properties (1) and (2).

If y,^) is not the cut point to S along yp then there is a segment o-:[0, f,&apos;]—^A^

from 7,0,) to ® and /; &lt; ^ and its image is in Dx(l). Clearly cj([0, /;]) H W, f 0 and

one of the two broken geodesics or*y} \ [0, ïj and cr*7, | [ip 2JJ together with the
corresponding subarcs of K is freely homotopic to i//p and they bound a closed
2-disk containing W, in its interior. By iterating this procédure, the desired
géodésie satisfying (3) is obtained as the limit of length-decreasing déformations.

This complètes the proof of Lemma 2.1.

For each j let D, &lt;^DK(j) be the compact domain bounded by 7,([0,21,]) and
the corresponding subarc (S, of SÀo)- Recall that D, contains W, in its interior.

LEMMA 2.2. Under the same assumption as in Lemma 2.1, there exists a
monotone increasing subsequence {Dk} of {D,} such that lim^ooDk =DK holds for
some keA.

Proof. It follows from the property (3) of 7, that if j£ k, then either DjnDk
0 or else one is contained in the other as a proper subset. If there are infinitely
many disjoint D/s and if I} is the domain of the subarc (S,, then

7T-J K(S)ds

holds for each /, and hence the sum of c(Dj) over ail disjoint members is ». This
contradicts to the assumption that M admits total curvature. Therefore, except a

finite members of {DJ it is monotone increasing. Let {Dk} be an infinité
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monotone subsequence of {£&gt;,}. Then {Ik} is also a monotone increasing séquence
of intervais and there is a A 6 A such that Ik c Jx for ail k.

It is asserted that {lk} is divergent. Let L* : supk_*oo Ik and let lim^c» Ik -I*.
Suppose that l* &lt;«&gt;. It is elementary that there exists a géodésie y* : [0, 2i*] -&gt; Dx
such that 7* is the limit of {7k}. Since Dk contains Wk and since {Dk} is monotone
increasing, the domain D* bounded by (£(!*) and 7*([0,2Ï*]) contains a divergent
séquence, a contradiction to the assumption that M is homeomorphic to a plane.

Finally D* Dx is an immédiate conséquence of the facts that the boundary
of D* contains two (or possibly one) rays from S and that DK contains no ray
from S.

This complètes the proof of Lemma 2.2.

The proof of Theorem B. Suppose (1) is false. Then there exists a divergent
séquence {*,} such that for each j, M1-B(t]) has a compact component W, with
nonempty interior. There is a ÀeA and an infinité séquence {Dk} of compact
domains, the boundary of each Dk containing the géodésie 7k with the properties
(1), (2) and (3) in Lemma 2.1, and limDk Dx. Therefore

c(DK) lim c(Dk) 7T - k(s) ds.
k~*°° •&apos;ix

This contradicts to Theorem A, (4).
Suppose (2) is false. Then there exists a divergent séquence {*,} such that

tj &gt;Rx for ail / and such that ^([0,1]) is contained in S(tj) as a proper subset. As
is proved in (1), S(f,) is arcwise connected, and hence there exists a nontrivial
curve bj :[0,1]—» S(f,)-ctj([0,1]). Since no point on the image of b} is on the
boundary of Mx — B(f,), p takes a local maximum on each point of the image of br
Let N be a small bail around a point q b,(l/2) which is contained entirely in the
interior of B{t}) such that N is divided by b,([0,1]) into two components Nt and

N2. Every segment from a point on N1UN2 to S does not intersect 6,([0,1]), and
hence there exist two distinct segments from q to (£ which makes an angel tt at q.
In particular f, is an exceptional value. This means that for each / there exists a

géodésie y} :[0,2f,]—&gt;Mt having the properties (1), (2) and (3) in Lemma 2.1.
Thus a contradiction is derived by developing the same arguments as in the proof
of (1).

This complètes the proof of Theorem B.
The following Corollary is a direct conséquence of the above arguments, and

the proof of it will be omitted hère.

COROLLARY TO THEOREM B. Assume that a Riemannian plane M
admits total curvature and let S be a simply closed regular smooth curve on M.
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Then there exists a constant R3^R2 such that P(x)&lt;it holds for ail x with
p(x)&gt;R3. Or equivalently, the function p has no critical point on the set Mx-
B(R3).

III. The proofs of Theorems C and D

The proof of Theorem C is based on the fact that if t&gt;R3 and if {x^ ; /x e A(t)}
is the set of ail cut points to © on S(f), where A(t) is an index set, then the set

E(t):= LLeA(t)£0O *s strictly monotone increasing with t. This fact will be

guaranteed by the property that p has no critical point on M!-BCR3). The
monotone increasing property of {E(t)} will be established in Lemma 3.1 below.
Assuming Lemma 3.1 for the moment, Theorem C is proved as follows.

The proof of Theorem C by assuming Lemma 3.1. For each t&gt;R3 let
©t : E(t) H © and let I(t) c [0, L] be such that ©(1(0) ©t-

Let e be an arbitrary given positive number. Then there are at most finite
éléments Al5 À2,..., Am in A such that

_ &lt;e/2.
XeA

Theorem A implies that there is a number trB&gt;max{tkl,..., fXm, R3} such that for
each t&gt;tl

&lt;e/2.

It then follows that lim^œ I(t) Ux€a 4 and that linv^ E(t) UxeA^x- In
particular, there exists a number te such that for every t &gt; te,

J \K(s)\ds&lt;s/2

and

O)- I c(Dx) &lt;e/2.

Applying the Gauss-Bonnet theorem for each E(x,J, fxGA(r) and summing up
over A(t), one obtains

Z P(xm-)= Z c(^(^))+ K(s)ds&lt;£
neA(t) uteA(t) ¦&apos;l(t)

This proves Theorem C.
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LEMMA 3.1. If a eut point p satisfies f := p(p)&gt;R3, then every point y in E(p)
has the property that p(y) ^ t, and p(y) t holds if and only if y p. In particular
C((£) H E(p) H S(t) {p}. Moreover there exists a unique curve Xp : [0, oo) -»
C(Q)C\DK such that Xp(0) p and such that {JE(Xp(w))} is monotone increasing with
u and p(Xp(w)) u + p(p) for ail u^O.

PSroo/. The first conclusion is obvious if there exists a unique segment from p
to S. (In this case p is an isolated focal point to (S). For the proof of the first
conclusion assume that the interior of E(p) is nonempty. Suppose that there is a

point in int(£s(p)) at which p is greater than t. Then there exists a point in
int (JEs(p)) at which p takes a local maximum, contradicting to the Corollary to
Theorem B. Assume that p(y)=f holds for some yeE(p). Suppose that y^p.
Then y must belong to int (E(p)). It follows from Theorem B, (2) that there exists

a proper subarc of S(t) containing in JE(p) whose endpoints are p. This means that
S(t) has a self-intersection at p, a contradiction to Theorem B, (2).

For a point peCi®) with p(p)&gt;.R3, let xp : [0, œ) -* C(S) n DK be the curve
obtained in Theorem A such that Xp(0) p. The monotone property of {JE(Xp(u))}
has already been established in the proof of Theorem A. The uniqueness of xp is

seen as follows.
Suppose that there are two curves xp, xp:[0,oo)-» C(&amp;)nDk having the

properties required. Note that there is no closed curve in C((£) which bounds an

open bounded set. Therefore if {u,} is a decreasing séquence such that lim ^
wo^0, and such that Xp(iO ^ x&apos;Jiu,) for ail i 1,2,..., and that Xp(u0) Xp(u0),
then Xp(u) ^ x&apos;p(u) holds for ail u &gt; u0. It follows from what is supposed that there
is a mo 0 such that Xp(u) ^ xp(u) for ail u &gt; u0 and such that xp(u) xp(u) for ail

ug[0,uo]. Without loss of generality one may assume that wo&gt;0. Then there
exists a small bail N around Xp(w0) which is divided by the curves xp([0, w0]),

jtp([wo&gt; Mi]) and Xp([w0, «J) for some ux&gt;u0 into three components. There are at
least three distinct segments from Xp(w0) to S each of which passes through points
on each of the three distinct components in N. Two of the three curves in
C(d)r\N pass through points in the interior of E(Xp(u0)). But this contradicts to
the first conclusion since p(Xp(w)) p(xp(w))&gt;p(p) holds for u&gt;u0.

This complètes the proof of Lemma 3.1.

Note that if p, q e S(t) fl C(6), pf q and if t &gt; R3, then there exists a number
mo&gt;0 such that xp(u)fx&lt;l(u) for 0^w&lt;mo and xp(u) xq(u) for ail u^uo.

The proof of Theorem D. The continuity of L(t) for t&gt;R3 is a direct

conséquence of the fact that

lim S(t 4- h) lim S(t - h) S(t).
h 10 H 40
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As was already shown by Hartman L(t) is difïerentiable at each non-exceptional t.

The derivative of L(t) at such a t was first given by Fiala (see p. 330, [2]) as

follows: Let t be a non-exceptional value and let xx(t),..., xk(t) be ail the normal
cut points on S(t) and let m(t) be the number of components of S(t). Then

2n
at

- £ [2tanO(xl(f))/2)-/3(x,(r))].
1 1

For an arbitrary given e in (0, tt) let T&apos;(e):=max(jR3, r(e)), where t(e) is a

constant obtained in Theorem C. If t&gt;Tr(e) is non-exceptional, then m(i)=l
follows from Theorem B, and from Theorem C one obtains

0^ t [2tan(|3(xl(r))/2)-|8(xl(r))]&lt;8.
i=i

Therefore if t&gt;T&apos;(e) is non-exceptional, then

e&lt;^27rat

On the other hand the area A(t) of B(t) is given as

A(t)-A(T) [ L(u)du.

Now, if c(M) -oo, then lim^oo dL(t)/dt », and the proof of Theorem D in
this case is an immédiate conséquence of the L&apos;Hospital theorem.

Consider the case where c(M)&gt;-oo. Let T&quot;(e) be a number such that
|c(B(0)-c(M)|&lt;e holds for ail t&gt;T&quot;(e) and set T(e): max(T&apos;(£), T&quot;(e)).

Then it is clear that for every f&gt;T(e)

27r-c(M)-2e^lim—^2tt-
and

Since E is any positive, this complètes the proof of Theorem D.
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