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Non-rotational minimal sphères and minimizing cônes

Dirk Férus and Hermann Karcher(1)

Recently the study of minimal and constant curvature hypersurfaces in space
forms has produced many new examples of géométrie interest, see [4, 5, 6, 8].
They are constructed by rotation of planar curves with rotation groups of
cohomogeneity 2. Hence they carry a foliation with homogeneous leaves of
codimension one (except for some singular leaves), which projects radially onto a

homogeneous isoparametric family in the unit sphère.
In this paper we shall instead &quot;blow up&quot; isoparametric families of the sphère

to obtain in particular minimally embedded hyperspheres in the sphère. Our
emphasis, however, is on inhomogeneous isoparametric families (see [3] for
détails), and we call the resulting hypersurfaces non-rotational, since they cannot
be obtained by rotation group actions. For example, for n 16 there is at least

one, for n 8 fc ^ 24 there are at least 1 + [fc/2], and for n 16k 5* 32 there are at
least 5 + fc+[fc/2] such non-rotational minimal hyperspheres in Sn~\ We also

foliate (Rn by complète minimal hypersurfaces which are regular except for one
absolutely minimizing cône [2]. Constant curvature examples can also be obtained
in this way, but the emerging differential équations are somewhat more compli-
cated.

The content of this paper is as follows. In the first three sections we describe
the process of deforming sphères such that a given isoparametric family is

respected, and the situation is controlled by a &quot;generating curve&quot;. We compute
the curvatures of the resulting hypersurface, and show that prescribed mean
curvature leads to a second order differential équation for the generating curve.
This équation is, up to certain &quot;multiplicity constants&quot;, the same as obtained in
[4] and [8] by différent arguments. Section 3 contains the précise statements of
our main results. In section 4 we begin the analysis of the differential équation (in
the minimal case) with a study of the boundary behaviour of the solutions. In
section 5 we transform the équation to a vector field in 3-space, of which we then
give a rather detailed géométrie description. As an application we construct in
section 6 the minimal foliation of !Rn mentioned above. In the rest of the paper we

1 This author was supported by SFB 40 at Bonn and by an invitation to the I.H.E.S. at Bures.
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248 DIRK FERUS AND HERMANN KARCHER

finally use the shooting method to find solutions which give minimal hypersurfaces
in the sphère. In the course of this argument we need information about the
rotation of solutions around spécial ones, and for that purpose extend Sturm-
Liouville results for the linearized équation by a very neat géométrie argument to
the non-linear case.

We thank H. B. Lawson for drawing our attention to the minimal cônes.

1. liie basic construction

An isoparametric family in the sphère is a family of compact, parallel, constant
curvature hypersurfaces, which fill the sphère up to some focal manifolds. For
détails which we need about thèse families in the sequel, we refer to [3]. The
reader should carry in mind the example

cos &lt;pSp xsin &lt;pSq &lt;= Sp+q+1

which is given by the levels F~1({cos 2&lt;p}) of the quadratic polynomial

restricted to the sphère. Given functions r(s)&gt;0. &lt;p(s) on an interval J, the union
of blown up levels

r(s)(cos &lt;p(s)Sp xsin &lt;p(s)Sq) c=(Rp+1 x[T+1

is an immersed hypersurface (possibly with singularities, where 2&lt;p(s) is a multiple
of tt).

Our hypersurfaces are constructed in a similar way, but based on a quartic
polynomial

F(x): &lt;x, x)2-2Z &lt;Ptx, x&gt;2, m &gt; 1, (1)

where the Px :Rn —»IRn are self-adjoint endomorphisms which satisfy PxPt +PJPX

2dxlId. Such sets of endomorphisms are obtained from each orthogonal représentation

of the Clifford algebra of (Rw, -&lt;.,.)) on U&quot;12. The levels F~1({cos4&lt;p})n

Sn~\ 0&lt;&lt;p&lt;tt/4, form an isoparametric family, and hâve constant principal
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curvatures

À! cot&lt;p, A3 -tan&lt;p with multiplicities mx:=m,

A2 cot I &lt;p 4- — I, A4 —tan 1
&lt;p + — 1 with multiplicities m2 : -- m -1,

(2)

and mean curvature h(&lt;p)/(n-2), where

h((p) :=2mx cot 2&lt;p -2m2 tan 2&lt;p. (3)

&quot;Most&quot; of thèse families (beginning with n 16) are inhomogeneous, i.e. not the
orbits of a subgroup of Iso{Sn~1). The only exceptions occur for (ml9 m2) (5,2),
(6,1), (9,6), (1, fc), (2,2fc -1), (4,4k -1), where in the last case there exist
inequivalent représentations giving both, one homogeneous and several
inhomogeneous families. The case (1, k) is announced in [8]. The extremal levels
F&quot;1({±l})nSn~1 :M± are the focal manifolds of the family. M+
{xeS&quot;&apos;11 (Ptx, x) 0 for ail i} has a trivial normal bundle, and M_ is a sphère
bundle Smi+m2-*M_-&gt; Smi over Sms which is in most cases differentiably,
though not metrically, a product bundle.

In the space forms Sn, (Rn, Hn we shall always use polar coordinates [0, tt]x
S&quot;&quot;1 resp. [O^xS&quot;&quot;1 with the metric of curvature K given by

g dr2+G2(r)d&lt;o2, (4)

where

G&quot;+GK 0, G(0) 0, G&apos;(0) l, (5)

and where cUo2 dénotes the standard metric on Sn~\ Consider now Sn~1 and

therefore ail distance sphères {rJxS&quot;&quot;1 endowed with an isoparametric family of
type (1). From any differentiable curve in S2, R2, or H2 with polar coordinate

représentation (r, &lt;p) and arc-length parametrization

(r&apos;)2+G2(r)(&lt;p&apos;)2= 1, 0^&lt;p(s)^7r/4, (6)

we obtain a hypersurface in Sn, IRn or Hn by taking

M:= U {r(s)}x(F~1({cos4(p(s)})nSn-1). (7)
seJ
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M is immersed except that it may hâve conical singularities over the focal
manifolds (p 0, &lt;p tt/4. It is immersed, if either &lt;p(J)e]0, ir/4[, or if r&apos;(s) O

whenever &lt;p(s)e{0, tt/4}. It is embedded, if moreover the curve (r, &lt;p) is injective.
Its topological type is as follows:

(i) M-S^regular level, resp. IRxregular level, if &lt;p(J)&lt;=]0, tt/4[.
(ii) M ~ normal bundle of M+ or M_, if just one end of the curve reaches 0 or

tt/4 with r&apos; 0.

(iii) M~ Sn~\ if the curve goes from &lt;p 0 to &lt;p tt/4 with r&apos; 0 at the ends.

(iv) M ~ normal dise bundle of M+ or M_ glued to itself, if the curve goes
from &lt;p 0 to &lt;p 0, or from &lt;p tt/4 to &lt;p tt/4 with r&apos; 0 at both ends.

2. Curvature computations

We shall compute the principal curvatures of M. Since the isoparametric
hypersurfaces in S&quot;&quot;1 are parallel to each other, they carry a family of normal

great circles. The pre-images of thèse great circles under the radial projection

or

are planar curves congruent to (r(s), &lt;p(s)), and perpendicular to the isoparametric
levels of the distance sphères. The principal normals

of thèse planar curves are hypersurface normals, and the curves are lines of
curvature: like meridians of ordinary surfaces of révolution. Their géodésie
curvature k with respect to the ambient space form is a principal curvature of M,
and computed as

The covariant derivative in the space form is
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where G G(r), and G&apos;= (dG/dr)(r). Hence

G&lt;p

In terms of

sin a : r\ cos a : G&lt;pf (8)

we obtain

(9)

The other principal curvatures equal those of the isoparametric level in {r(s)}x
Sn~1 with respect to the space form and to the normal v. We décompose

where g is the unit normal of the isoparametric family used in (2). With respect to
-d/dr the distance sphère WsftxS&quot;&quot;1 has principal curvature (Gf/G)(r(s)) in the
ambient space, and it has sectional curvature G~2(r(s)). The A,&apos;s from (2)
therefore change by a factor G&apos;HKs)), and from (10) and

g\ &apos; ~âr) G(ff C°S &quot;&apos; g^

we obtain the principal curvatures

G&apos;(r(s)) A,
cos a (s) —7-7-77-sin a(s) ¦

G(r(s)) v 7 G(r(s))

with multiplicities m,. Therefore /ï: (n-l)xmean curvature of M is given by

|^^™i«(.), (11)

where h is as in (3).
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3. The differential équation. Main resuite

Given a constant h, any solution of the following 3-dimensional first-order
differential équation produces by the previous section a hyper-surface of constant
mean curvature fi/(n — 1) in the space Sn, Rn, or Hn (related to the équation by its
curvature K via (4)).

r&apos; sin a

_ cos a
9&quot;GW (12)

_,_ ,r,,_. ,G&apos;(r) M&lt;P).:__ahHnl) cosasma
Spécial solutions are the distance sphères (r const., a 0), where h

(n —l)G&apos;(r)/G(r), and the so-called minimal cône with ft O and
(&lt;p &lt;p0, a tt/2), where &lt;p0 is the unique zéro of h in ]0, tt/4[, characterized by

tan22(p0 —. (13)
m2

Note that (12) is the same differential équation as derived from orbital geometry
in [4,8], except that h contains différent rn^s for inhomogeneous families. By
proving the existence of suitable solutions of (12) we shall obtain:

THEOREM 1. Bach isoparametric family of Clifford type (1) in Sn&apos;1 yields by
the above construction a minimally embedded Sn~1 in Sn, which is not an equator.
(Proof in sections 7-9.)

THEOREM 2. Bach isoparametric family of Clifford type (1) in S&quot;&quot;1 yields by
the above construction a foliation of Rn by complète minimal hypersurfaces, wfuch

are regular except for one absolutely minimizing cône. The foliation is invariant
under homotheties of Un. (Proof in section 6.)

4. Solutions extending smoothly over a focal manifold

We want to find solutions of the differential équation (12), for which r&apos; -&gt; 0 as

q&gt; —»0 or ir/4. Necessarily then lima^Omodtt. To be spécifie, let us assume

: lim&lt;p(s) 0, a(0): lima(s) 0, r(O): limr(s) r0, for
(14)
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Then, using (12) and (13)

and

(15)

whence

^^) 1. (16)

It follows that the initial derivatives of arbitrary order are uniquely determined,
and Hsiang states in his papers that one can show convergence of the resulting
power séries. We shall prove somewhat less, but by a hopefully simpler argument:
For each r0 there exists a unique smooth solution of (12), (14} which dépends
continuously on r0. We restrict ourselves to h 0, K e {0,1}, but the gênerai case

can be handled similarly.
First note that near s 0 one can take &lt;p instead of s as independent variable.

Then (12), (14) become

-ï-=G(r(&lt;p)) tan a(&lt;p)

aç
da (17)
— (n - l)G&apos;(r(&lt;p)) - tan a(&lt;p)h(&lt;p)
d&lt;p

r(0)=ro, a(0) 0.

To this we apply a modified Picard itération. We fix a natural number N, and let
rN(q&gt;), aN(ç) be N-th order polynomials, the coefficients of which are determined
by the differential équation as above, starting with rN(0) r0, aN(0) 0. In other
words, (rN, aN) is the N-th order Taylor polynomial of a prospective solution of
(17). For a fixed positive 4&gt; we consider the space

0t {(p, &lt;o): [0, #] -? M2 smooth | &lt;p(i)(0) o&gt;(0(0) 0, for 1 ^ î ^N}. (18)

The operator

(#i(p, co)((p), i?2(p, o&gt;)(&lt;p)) (19)
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with

: r0- rN(&lt;p) 4-1 G(rN + p) tan (aN + &lt;o)

J {(n-l)G&apos;

&lt;*&gt;

maps 31 into itself, and a fixed point (p, co) of j? will obviously provide a solution
a aN + &lt;o) of (17). On 0t we use the L°°-norm determined by

IM|: sup -^
where &lt;p e[0, &lt;f&gt;]. Note that this implies

|p(&lt;p)| ^||p|| &lt;p
+ |ct&gt;(&lt;p)|^||û&gt;||(p + on [0, &lt;P],

We now choose &lt;P small enough to guarantee

7T

8

on [0, &lt;P], and make the a priori assumptions

(21)

(22)

(23)

on [0, &lt;P]. If moreover
give

&gt;
then a few Unes of straight-forward computation

^ a
&lt;P

l, û)x) - (p2, co2)||,

where a 2 for K 1, and a 2(ro + 2) for K 0, and

i
IU?2(P1, «l)- ^2(P2, «2)|| «S 2 j^-j- ||(Pl) CO^ ~ (P2, C02)||.

If we choose N sufficiently large, we obtain

\\2(Pl, «0 - i?(p2, o)2)|| ^ q ||(Pl, o»t) - (p2, (24)
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with q&lt;l. Starting the itération with (p0, &lt;oo) (0,0), and assuming (23) for ail

i^j, we obtain from (22), (24)

&lt;ot)

Note that ||.|| dépends on &lt;f&gt; monotonically. Thus, choosing &lt;2&gt; small enough we
hâve (23) for ail i, and 5£ is contracting on this subset of &amp;t.

This gives the existence of a unique solution. As for the continuous depen-
dence: The Taylor ploynomials rN, aN dépend differentiably on r0, and therefore
the operator SB dépends (in the above norm!) differentiably on r0, and is uniformly
contracting with respect to r0. Hence the solutions are Lipschitz dépendent on r0.

Differentiable dependence can be proved, because the singularity of h in the

integrand does not get worse in the linearized équation, but we shall not need
this.

Remark. The above considérations give unique existence and continuity of
solutions of (17) on the interval 0^ro&lt;rr (resp. °°) including 0. This will be
needed later.

5. Qualitative description of the vector field

Our aim is to get a qualitative picture of the solution curves of (12). We
restrict ourselves to h=0. It is obviously irrelevant that the solutions are paramet-
rized by arc-length. The description becomes simpler, if no vanishing de-
nominators occur, and we therefore discuss the vector field Y determined by the

équivalent System

r G(r)sin4&lt;p sina

&lt;p sin 4&lt;p cos a
à (n - l)G&apos;(r) sin 4&lt;p cos a - sin a(4m1 cos2 2&lt;p - 4m2 sin2 2ç)

(n - l)G&apos;(r) sin 4&lt;p cos a - (n -2) sin a(cos 4&lt;p - cos 4&lt;p0),

where &lt;p0 is given by (13).
To simplify notation we normalize the curvature in the case K&gt;0 to K= 1.

We think of the r-axis as pointing vertically upward, and consider the following
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&quot;fundamental domain&quot;:

[O,«tx[o,j]x[Ofir], if

[O&gt;irlf if K=l.

In its interior we hâve r&gt;0. In the neighbouring domains -ir^a^O and

7r^a^27r ail essential features are the same, but r&lt;0.

a) The vector field vanishes on the four vertical edges &lt;p g {0, ir/4}, a e {0, tt},
which correspond to points over the focal submanifolds with sin a 0, i.e. with
dr/d&lt;p 0. The results of section 4 about the singular initial value problem show:
Solution curves of (25) in the interior of the fundamental domain will-in the
limit, of course, - start from (or end at) thèse vertical edges if and only if the
initial vector (or the négative of the &quot;final&quot; vector) of the corresponding solution
of (17) points into the interior. Therefore, if K^O, solutions start into the interior
from (&lt;p 0, a 0) and (&lt;p tt/4, a tt) for arbitrary positive r, but no solutions
from the interior end on the vertical edges. If K= 1, we hâve interior solutions
starting at (0 &lt; r &lt; tt/2, &lt;p 0, a 0) and (0 &lt; r &lt; tt/2, &lt;p tt/4, a tt), and ending
at (tt/2 &lt;r&lt;rr,&lt;p tt/4, a 0) and (tt/2 &lt; r &lt; tt, &lt;p 0, a tt).

b) The faces &lt;p 0 and &lt;p ir/4 are filled with straight solutions without
géométrie interest: r const., &lt;p g {0, tt/4}, à const. sin a.

c) On the horizontal face(s) r 0 (and r TT, if K 1) the vector field Y is

horizontal (r 0), with a horizontally attractive fixed point (r, &lt;p, a) (0, &lt;p0, tt/2).
For K 1 (tt, &lt;p0, tt/2) is a horizontally répulsive fixed point. The minimal cône
solution starts vertically upward from the bottom fixed point:

r(t) sin 4&lt;p0G (r(t &lt;p t) &lt;p0, a (t) ^.

If K 1, it ends at the top fixed point.
d) On the two remaining faces a 0 and a tt the vector field is in the case

K^O transversally inward. For K 1 one has equator sphère solutions r(f) tt/2,
cp(O cos a sin 4&lt;p(f), a g{0, tt}, dividing the faces into the lower halves, where Y
is transversally inward, and the upper halves, where it is transversally outward.

To describe Y inside the fundamental domain, we study its behaviour along
several surfaces.

e) The planes &lt;p const.: For ae]0, tt/2[ the field is transversal toward
growing &lt;p, for a e ]tt/2, tt[ toward decreasing (p.
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f) The planar pièces

0&lt;&lt;p&lt;&lt;po, &lt;*=| (26)

~, a=|. (27)

The flow is transversal toward increasing a on (26), and toward decreasing a on
(27).

Therefore the flow moves around the minimal cône solution.
g) The cylindrical levels

L (&lt;p, a) : sin™1 2&lt;p cosm* 2&lt;p sin a const. (28)

The fonction L is zéro on the vertical boundary of the fundamental domain, and
maximal on the minimal cône solution. We hâve

~L(&lt;p(0, a(0) (n - l)G&apos;(KO) sin 4&lt;p(t)
cos2a(t)

dr si
L

sina(t)

If K^O, then G&apos;3* 1, and we hâve dL/dt^O inside the fundamental domain, with
equality only for a tt/2. But to the latter set the flow is transversal. This shows:

For K^O the function L is strictly increasing along the solution curves inside the
fundamental domain, i.e. the minimal cône solution attracts the others. If K 1,

then G&apos;(r) cos r. Therefore the minimal cône solution attracts the others below
r - tt/2, and repells them above.

h) The cylindrical level

f(a, &lt;p) (œs4&lt;p0-cos4&lt;p)n-fcncosa=0, &lt;Po&lt;&lt;P&lt;-£&gt; and 0&lt;a&lt;-, (29)

where k :=(l + cos4&lt;p0), connects the minimal cône solution to the edge &lt;p

tt/4, a 0. For K 1 we shall eventually count the intersections of a solution

(r(t), cp(t), a(f)) with this surface. Now, on it

— f(a(t), (p(t)) n(cos 4(p0-cos 4&lt;p)n&quot;1k~n4sin2 4&lt;p kn cos a
dt

+ (n - l)fcn sin 4ç sin a cos a cos r

+ (n -2)kn sin2 a (cos 4&lt;p0-cos 4&lt;p)
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(cos 4&lt;p0-cos 4&lt;p){(2(nfc~n)1/2(cos 4&lt;p0-cos 4&lt;p)n~1 sin 4&lt;p

-((n -2)fcn)1/2 sin a)2 + (4(n(n -2))1/2 + (n -1) cos r)

x (cos 4&lt;p0 - cos 4&lt;p)n~1 sin 4&lt;p sin a} &gt; 0.

Hence the solutions intersect (29) transversally and always in the same direction.
At this point the qualitative picture of the solutions of Y is reasonably

complète. To construct the minimal sphères we need quantitative estimâtes for
the rotation of the solutions around the minimal cône. We postpone this, and

prove Theorem 2 first.

6. Proof of Theorem 2: Foliations of Un by complète minimal hypersurfaces

In this section we assume K^O. For any ro&gt;0 there exists a solution of (12)
with h — 0, which starts at (&lt;p 0, a 0) or at (&lt;p tt/4, a 7r) into the interior of
the fundamental domain. The solutions cross the cylinders (28) toward the
minimal cône solution; therefore r&apos;(s) sin a (s) is bounded away from 0, and r
increases monotonically to +°°: We obtain complète minimal hypersurfaces, which
are embeddings of the normal bundle of the focal manifold M+ (resp. M) into IRn

or Hn. For IRn we can show that they form a foliation: they do not intersect each

other nor the minimal cône. To prove this, we need in addition to the qualitative
picture of section 5 some further information obtained from an intégration of
(12). We first show: If &lt;p(0) 0, then &lt;p(t)&lt;&lt;p0 for ail t. As long as &lt;p &lt;&lt;p0 we hâve

a &lt;ir/2 by f) of section 5. Therefore &lt;p&apos;&gt;0, and we can choose &lt;p as independent
parameter. From (17) we obtain, using K 0,

dr
— r tan a
dcp

~=(n-l)-htma. (30)
d(p

We substitute cr : *= r 1
dr/d&lt;p tan a, and obtain

cr(0) 0.
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As in (15), (16) we get

dcp
&apos;

dcp

d(p2

whence

The function

is a lower bound for cr, as we shall show below. Therefore

In (r(&lt;p))-ln (r(0)) J cr^ J /, (31)

and the right-hand side goes to o° as &lt;p goes to &lt;p0, see the définitions of / and h.

Hence &lt;p(t)&lt;&lt;p0 along the complète solution curve. A similar argument works for

Now a^f is a conséquence of /&apos;(&lt;p)&lt;S(f(&lt;p), &lt;p), &lt;p^0. For &lt;p 0 we hâve
0) (n-l)/2m1&lt;cr&apos;(0). For cp&gt;0 the inequality is équivalent with

- remember n — 1 1 + 2mx + 2m2 -, or

3(mx + m2) + 6m1m2&lt;4m1(m1-l) cot2 2&lt;p +4m2(m2-1) tan2 2&lt;p +^+ m2+ m|.

The inequality

m^mr 1) cot2 2q&gt; + m2(m2-1) tan2 2&lt;p ))1/2

gives the sufficient condition

3(m1 + m2)4-6m1m2&lt;8(m1m2(m1-l)(m2-l))1/2 + 4 + m? + m
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This is obviously satisfied for the lowest-dimensional inhomogeneous Clifford
family (ml5 m2) (3,4). Ail others hâve 3^ mx &lt; m2 and rtii + m2^ 11. Then

or, equivalently,

1 + m2) + 6m1m2&lt;8(m1 —

This a fortiori implies (31). Hence the minimal hypersurfaces given by initial
conditions on the edges (&lt;p 0, a 0) and (&lt;p tt/4, a tt) do not meet the
minimal cône. Equation (30) is invariant under r-*\r9 ÀelR+. Therefore the
minimal hypersurfaces do not intersect each other, and together with the minimal
cône form a foliation of W1. To show that the minimal cône is absolutely
minimizing, we define the (n - l)-form

€0(1?!,..., un_i) : det (v, vu vn-.x),

where v is the unit normal field of the foliation. Then, by minimality,

The 1/r-singularity of &lt;o at 0 is integrable. If Nn~x c[Rn has unit normal tj and the

same boundary as some portion C of the minimal cône, then

vol(C)= f ù&gt;= f o&gt;= f &lt;^,Tï&gt;(±dN)^vol(N),
*C *N *N

where equality holds only for v ±tî, i.e. for N a leaf of the foliation.

1. Proof of Theorem 1

We consider the case K 1, h 0. The fundamental domain is then a

&quot;fondamental cube&quot;. We concentrate on solutions of (12) with (singular) initial
conditions (r r0, &lt;p 0, a 0), 0 &lt; ro&lt; tt/2. (See section 4 for the handling of this

singular initial value problem.) We show in section 8, that for r0 sufficiently close

to 0 thèse solutions intersect the planar pièce (27) at least once below r tt/2, and

at least once above. In particular they intersect (29) at least twice. By contrast, we
show in section 9 that either there exist solutions which do not intersect (29) at
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ail, or that for r0 close enough to tt/2 the first intersection of solutions with (27) is

above r 7r/2; since thèse intersections are transversal we find in particular a

solution which reaches (27) at r tt/2 and then continues symmetrically to end at

tt — r0 on the edge (&lt;p 0, a ir) - clearly intersecting (29) only once.
How can a transversal intersection with (29) disappear? Limits of solutions -

which we consider until they hit the boundary of the fundamental cube (necessar-

ily above tt/2, see (28)) - are again solution curves of the vector field, and the end

points on the boundary of the cube are either singular points or points of
transversal intersection.

By the above there exists r*€ ]0, tt/2[ such that solutions with ro&lt;r* hâve at
least two transversal intersections with (29) while for r0 r* there is at most one.
The end point of this limit solution has to be on the compact surface (29) and the
boundary of the cube-but bounded away from the minimal cône solution
(r* &gt; 0). This forces the end point to be on the vertical edge (&lt;p tt/4, a 0). The
basic construction of section 1 performed with this solution of (12) gives a

minimally immersed (n-l)-sphere in Sn which is embedded since r is strictly
increasing along each solution in the fundamental cube.

8. The rotational behaviour near the minimal cône

First we study the linearization of (12) with K= 1, h 0, along the minimal

cône solution &lt;p &lt;p0, a tt/2, and r&apos; sin 4&lt;p0G(r). Hère r is a good independent

parameter, and from

dç _ cos a
*&quot;

(32)
da ~G&apos; h(&lt;p)- (n-l)-cot«-—

we obtain the linearized équation (&lt;P &amp;p, A 6a)

dr~ G

^ ^ -2)^. (33)
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For later comparison with (32) we need to change one coefficient slightly:

d&amp; _A
dr~ G

dA ..G&apos; „,$— -(n-l) —A + c(n-2) —.
car G Cj

where c is close to 4. This yields

and, substituting ^ir:= Gk&lt;P with 2k —n and G sin, we get

^&quot; + (fc + 2c(fc - l)-(fc - l)(fc -2c) cot2 r)^ 0. (34)

LEMMA 1. For k ^ 8 smallest value of interest for inhomogeneous families)
and c sufficiently close to 4, each solution of (34) fias at least two zéros in each of
the interoals ](ir/2)-l,ir/2[ and ]ir/2,(ir/2)+l[.

Proof. By continuity we can restrict ourselves to c 4. If fc 8, then (34)
becomes ¥&quot;+64^ 0, and every solution has at least two zéros in each open
interval of length &gt;tt/4. For fc&gt;8 (fc 12 is the next value of interest) we can
reparametrize with s : (9fc - 8)1/2(r - (ir/2)), and want to show that each solution of

(35)

has at least two zéros in ]0,8[. This will imply the lemma. By Sturm-Liouville the
number of zéros does not increase, if we decrease the coefficient. We use

tan2x^x2/l-x2 to find

fc2-9fc + 8 2 s (fc-l)(k-8)s2 s2
tan ^ ^—

9fc-8 (9k-8)1/2 (9fc-8)9(fc-8) 81

and we change (35) to
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Computer intégration of (36) with #&quot;(0) 0, ^&apos;(OHl gives 3 zéros in [0,7.1[,
and, using séparation of zéros, therefore at least 2 zéros in ]0, 8[ for arbitrary
initial conditions. For a theoretical estimate note that the différence between
consécutive characteristic parameters, i.e. s-values with ty(s) Q, W(s)
Jq0V(s), W(s) 0, W(s) -y/qo¥(s) of the équation V&quot; + qV 0 with
qo: minq&gt;0 is less than 7r/(4y/q0). Apply this to (36) on the subintervals
between 0, 0.79, 1.59, 2.41, 3.26, 4.15, 5.11, 6.20, 7.74. This proves Lemma 1.

From it we conclude that the solutions (r, &lt;P(r),A(r)) of (33) rotate around the
minimal cône solution (&lt;£&gt; 0, A 0) intersecting the surfaces (27) and (29) at
least twice, once below r ir/2, and once above. We want to show that the same is

true for those solutions of the non-linear équation (32), which between (tt/2)- 1

and (tt/2) + 1 stay close enough to the minimal cône solution. We control the
distance from the minimal cône using the function L of (28). To compare the
linear with the non-linear case, we take a solution (r,&lt;P(r),A(r)) of (33), and
think of it as generating a helicoidal surface {(r, k&lt;P(r), AA(r) | A &gt;0} around the
minimal cône solution. Its forward normal is given by

N(r, À&lt;f&gt;(r), ÀA(r)) {&lt;t&gt;&apos;A - &lt;PA&apos;, -A, &lt;t&gt;)

&lt;t&gt;2

2) ,A,*). 07)

In coordinates (r, &lt;f&gt; &lt;p - &lt;p0, A a - (tt/2)) the vector field of (32) reads

where

H(4&gt;) : 2mv cot 2(&lt;î&gt; + &lt;p0)- 2m2 tan 2(&lt;ï&gt; + &lt;p0).

If we can show that &lt;X, N)&gt;0, then the solutions of (32) intersect the helicoidal
surface always in the forward direction, and hence they spin around the axis at
least as fast as the surface. They therefore intersect (27) and (29) once below, and
once above r tt/2.
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Now

G

Since H&apos;(0) 4(n-2), we can choose c 4—2tj&lt;4 such that Lemma 1 holds,
and then choose e &gt;0 such that

,,-||&lt;e

implies

—- c(n-2)

and

-^tan

Then

Using

r,(n-3)

we see

which is positive for (A, &lt;#)^(0,0), if we choose e &gt;0 sufficiently small to force
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LEMMA 2. Assume K=l, h 0. If ro&gt;0 is sufficiently small, then the

solutions of (12) with iniria{ conditions (r0, &lt;p 0, a 0) intersect the surfaces (27)
and (29) at least twice, once below r tt/2, and once above.

Proof. It follows from the remark at the end of section 4 that for r0 —» 0 the
solutions of (12) on s&gt;0 converge to a solution in the bottom face, which by c)
and g) of section 5 is attracted by the fixed point (r 0, &lt;p &lt;p0, a tt/2). Hence
we can first sélect e &gt; 0 sufficient for the above considérations, and then choose
ro&gt;0 sufficiently small so that the solutions of (12) will enter the cylinder
L(&lt;p, a)^L(&lt;p0, ir/2)-e below r 0r/2)-l, and stay in it beyond (tt/2) + 1. The
rest of the proof was given above.

9. Solutions with little rotation

In the previous section we proved the existence of solutions which intersect
the surface (29) (at least) twice. Now we want to find solutions which intersect it
at most once to guarantee the existence of (at least) one solution from the edge
(&lt;p 0, a 0) to the edge (&lt;p tt/4, a 0), see section 7. As in section 8 the proof
combines an a priori estimate for solutions of the non-linear équation with
properties of the System obtained by linearizing along the equator solution
(r ir/2, a 0). We still suppose K 1, h 0.

We know already that solutions which start with sufficiently small r0 from the
edge (&lt;p 0, a 0) intersect the planar pièce (27) at least once below r tt/2, see

Lemma 2. If there should exist ro€ ]0, tt/2[ such that the corresponding solution
does not meet (27) before leaving the fundamental cube through the face a 0,
then it would not intersect (29) at ail, and we would find even two minimally
embedded sphères. Since we hâve no indication for this better fact to be true, we

may assume that ail solutions (with roe ]0, tt/2[) meet (27). The first intersection
r*(r0) dépends continuously on r0, and we shall prove that r*(r0) &gt; tt/2 for some r0

sufficiently close to tt/2. This implies the existence of a solution with r*(r0) tt/2;
the symmetry properties of (12) with respect to the axis (r tt/2, a tt/2) imply
that this solution continues symmetrically and ends at r 7r-r0 on the edge
(&lt;P 0, a tt). Apart from giving another compact embedded minimal hypersur-
face in Sn it also intersects (29) only once and therefore complètes the proof of
Theorem 1.

Either r*(r0) &gt; tt/2 for ail r0 sufficiently close to ir/2, or else there are values

ro&lt;7r/2 arbitrarily close to tt/2 such that the solutions of (12) starting at r= r0 on
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the edge (&lt;p 0, a 0) satisfy

«([0, s]) c |o, |]=&gt; K[0, s]) c: [o, |[. (39)

We can dérive a contradiction from this last possibility.

LEMMA 3. (A priori estimate for a assuming (39)) Given &lt;p*g[0, tt/4[ and
e g ]0, tt/2[ fhere existe S e ]0, ir/2[ such that for roe [(tt/2- ô, tt/2] rhe correspond-
ing solution satisfies a(&lt;p)^e on [0, &lt;p*]. (This will be used for one fixed e, e.g.

Proof. Assuming a([0, s])&lt;=[0, tt/2[ we can use &lt;p as independent parameter
and obtain - first for q&gt;^&lt;p0- from (17)

&lt;*(&lt;p)=| a&apos;^J (n»l)cosr(r)dt^(n-l)cosr0&lt;p=:a*(r0,&lt;p). (40)

Secondly, on [&lt;p0, ir/4[ we hâve

— (sin a sinmi 2&lt;p cosm2 2&lt;p) (n -1) cos r cos a sinm* 2&lt;p cosm2 2&lt;p

acp

^ (n -1) cos r(&lt;p0) sinmi 2&lt;p0 cosm2 2cp0,

whence

sin a(&lt;p)^ (5^)^(5^)%™ «(„„) +(n -1) cos r(&lt;p0) (&lt;p -&lt;
\sin2&lt;p/ \cos2&lt;p/

&quot;»

(B_ }

Clearly (40), (41) prove the lemma with explicite estimâtes under the assumption
r(&lt;p)&lt;ir/2.

Again using (39) the solutions meet (27) below r tr/2 and therefore meet
&lt;p &lt;Po below r tt/2. We shall now for &lt;p ^ &lt;p0 estimate the growth of r (for r0

close to tt/2) by comparison with solutions of the linearized équation along the

equator solution (r tt/2, a 0).
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The linearization yields (R 8r, A 8a)

d&lt;p

d&lt;p

As in section 8, to achieve a comparison we hâve to change the coefficients a

little. Eventually the pôle of h is the essential feature; we multiply the other
coefficients by \ (any other positive number &lt;1 would do, too) and study the

System

(42)

with the initial conditions

R(&lt;po) -1, A((po) 0 (43)

on the interval [&lt;p0, ir/4[.

LEMMA 4. There exists &lt;p* € ]&lt;p0, tt/4[ such that R(&lt;p*) 0.

Proof. (42), (43) imply

d2R^ hdR n-lR
d&lt;p*~ d&lt;p 4

(44)
dR, rt d2«, n-1

1 °

Therefore K(&lt;p0) is a local minimum and every other négative critical point of R is

also a local minimum: As long as R stays négative, JR is strictly increasing. We
choose &lt;Pt &gt; &lt;p0 sufficiently close to &lt;p0 such that R is négative on [&lt;p0, &lt;Pi]; we hâve

dRldç&gt;0 at &lt;px. Again, as long as jR is négative

d2R dR
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or

— In (—- sinm* 2&lt;p cos™2 2&lt;p ^ 0,
dw \d(p /d&lt;p \d(p

hence for

dR /sin2&lt;pA m* /cos2&lt;pi\m2 dR
d&lt;p \sin 2&lt;p / Vcos 2(p / d&lt;p

The left-hand side has an unbounded intégral as &lt;p goes to tt/4. Therefore JR(&lt;p)

cannot stay négative on [&lt;p0, W4[.
We call &lt;p* the first zéro. For this &lt;p* we choose ôg]0, 1/2] accx&gt;rding to

Lemma 3 such that a^-rr/4 on [0, &lt;p*] for ail ro€[(7r/2)-ô, tt/2[. Still assuming
(39), we will finally show that solutions of (12) with ro€[(7r/2)-Ô, tt/2[ reach

r ir/2 on [&lt;p0, &lt;p*]; since they also hâve a ^ tt/4 this contradicts (39), as desired.
(42) corresponds to the vector field

X=(èA, 1,-^1?-

The helicoidal surface corresponding to proportional solutions (compare section

8) hâve the upward normal field

N= (a, ~-^A2-~^R2~

The non-linear System (12), written in appropriate coordinates (R r —(tt/2), A
a) is given by the vector field

Y (cos R tan A, 1, -(n -1) sin R - h tan A). (45)

Therefore

(N, Y) (cos R tan A -%A)A + (n - l)(i# -sin K)(-.R)
+ h(A- tan A)(-K). (46)

As long as the solutions of (45) stay négative they satisfy -|^-ô^jR&lt;0 and
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therefore

Because of (39) they are at &lt;p cp0 above the helicoidal surface déterminée by the
initial conditions (43); they cannot intersect this surface from above because at
intersection points &lt;N, Y&gt;&gt;0 from (46). This shows that the solutions of (45) with
ro€[Or/2)-8, ir/2[ reach R(&lt;p) 0 before the solution (43) of (42), i.e. before
&lt;p cp*, as we claimed.
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