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Total positivity and algebraic Witt classes

Dennis R. Estes, Jurgen Hurrelbrink, and Robert Perlis

This paper is in three parts. In the first part we give a criterion for an élément
of an algebraic number field F to be totally positive. Part two contains simple
reformulations of this criterion in terms of Brauer groups, the Milnor K-Group
K2(F), and sums of squares. Part three contains an application, due to P. E.
Conner. It characterizes the totally positive éléments of F as those éléments a for
which the rank one quadratic form aX2 is Witt équivalent to the trace form of
some finite extension E of F. As a corollary, it is proved that every Witt class in
the Witt ring W(F) is represented by a trace form when the base field F is purely
imaginary.

We take this opportunity to acknowledge the generous contribution of P. E.
Conner, and we thank him for many discussions.

I. The Norm Theorem

Let F be an algebraic number field. An élément a in F* is said to be totally
positive (relative to F) if a is positive in every possible ordering of F. In
particular, if F has no real embeddings, then every élément of F* is totally
positive.

NORM THEOREM. Let &lt;x# 0 be an élément of an algebraic number field F.

Then there is a positive rational number qsuch that —q is a norm from F(y/cc)/Fifand
only if a is totally positive. Moreover, the existence of one positive rational number q
with —q a norm from F(va)/F is équivalent with the existence of infinitely many
rational primes q with -q a norm from F(y/a)/F.

Proof. We may replace a by at2 with t¥= 0 in Z without affecting the statement
of the theorem, and therefore we can assume that a is an algebraic integer.
Suppose that a is totally positive, and set m 8*NF/Q(a). Then m is a positive
integer. Let £m be a primitive m-th root of unity, and let N be the normal closure

over Q of F(Vâ, £m). Fix an embedding of N into the field of complex numbers, so

we can talk about complex conjugation acting on N. By Cebotarev&apos;s Density
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Theorem, there are infinitely many prime numbers q, unramified in N, having a
prime factor Q in N whose Frobenius automorphism is complex conjugation. Of
thèse infinitely many q take any one which is relatively prime to m. We claim that

-q is a norm from F(\/â)IF.

This can be checked locally. Let P dénote a prime of F. If P is infinité, then
FP(Vâ) FP; this is obvious if P is complex, while if P is real this follows from the
fact that a, being totally positive, is positive in the real embedding of F associated
with P. In either case, we see that -q is a norm from the trivial local extension.
Now consider finite primes P of F. There are several cases. If P does not divide
mq, then -q is a unit in the local unramified extension FP(Vâ)/FF and therefore

-q is a local norm (see [Lang], Lemma 4, p. 188). It remains to consider finite
primes P dividing mq.

First, we claim that -q 1 (mod m). For this let Q, from above, be the prime
of N lying over q whose Frobenius automorphism &lt;f&gt;Q is complex conjugation.
Then we hâve

UJ-^^oiU^Umr (modO).

Since (q, m) 1, the m-th roots of unity are distinct mod Q, and it follows that
Cm1 £m in F; that is, -q s 1 (mod m).

Now suppose that the prime P of F divides mq. If P divides m and is

nondyadic, then the fact -q 1 (mod P) implies that -q is a square in FP, and is

therefore a norm from FP(Vâ)/FP. If P is a dyadic prime dividing m, then -q 1

(mod m) implies -q 1 (mod 8) by the définition of m, so -q is already a square
in the subfield Q2 of FP, and therefore -q is a norm from FP(Vâ)/FP. Finally,
suppose that P divides q. Again, let Q be the chosen factor of q in N whose
Frobenius automorphism equals complex conjugation, and let &lt;£Q&apos; be the
Frobenius automorphism of a prime factor Q&apos; of P in N. Then &lt;PO&apos; o-^&amp;qCt for
some cr in Gal(JV/Q). We claim that the extension FP(Va)/FP is trivial. Now this
extension is sandwiched in the quadratic extension NQ&gt;IQq. Note that the Galois

group of this latter extension is generated by &lt;PO&apos;.

Therefore FP(\/a) FP if and only if &lt;Î&gt;Q&apos; has the same restriction to both of
thèse fields. But this is detected in the dense subfields F(Vâ) and F. If &lt;PO&gt; acts

non-trivially on F then there is nothing to show, so we may assume that &lt;PO&gt; is

trivial on F. Then for each x in F we see that &lt;r(x) is fixed by complex
conjugation, so a is a real embedding of F. Since a is totally positive, cr(Vô) is

real, and it follows that &lt;Î&gt;Q&apos; is also trivial on F(Vâ). Hence FP(Vâ) FP, so -q is

a norm from FP(Va)/FP. This being true for every P, Hasse&apos;s Norm Theorem
implies that -q is a norm from F(Ja)IF.
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Conversely, if a is not totally positive then a is not a square in F. If q is a

positive rational number and —q is a norm from F(\fa)IF then -q x2-ay2 for
appropriate x and y in F. But then for some real embedding of F we would hâve

x2—ay2 to be positive, while —q is négative. Hence -q is not a norm.

We finish this first part with a small remark. While we started it for algebraic
number fields, the Norm Theorem can be interpreted for any field F of charac-
teristic 0. It is easy to see that the Norm Theorem remains true when F is any
p-adic field. However, for F U(XU X2, X3, X^i^d) with d X\+X\ + X\ + Xi
one can show that the Norm Theorem is false for the choice a d.

IL Reformulations

Since -q is represented over F by the binary quadratic form (1, -a) if and

only if a is represented over F by (1, q), the Norm Theorem can be restated as

REFORMULATION 1. LetFbea number field and a in F*. Then there exists

a positive q in Z such that a is represented over F by the form (1, q) if and only if a
is totally positive.

Recall that an élément of F* is totally positive if and only if it is a sum of

squares of éléments in F*. Hence even for sums of squares in F which require
more than two squares (i.e. three or four in the number field case) we obtain

REFORMULATION 2. Leta be an élément in a number field F. Then a is a sum

of squares in F if and only if a is a single square plus a sum of equal squares of
éléments of F, Le. a x2+y2+ • • • + y2 for certain éléments x, y in F.

Since -q is a norm from F(yfâ)/F it and only if the quaternion algebra
&apos;

1 is isomorphic to a full matrix algebra M2(F), if and only if the class of

/—?—J js trivial in the Brauer group Br(F)9 we hâve

REFORMULATION 3. LetFbea number field and a in F*. Then there exists

a rational prime q such that f &apos;

1 1 in Br(F) if and only if a is totally positive.

Now consider the quadratic norm residue homomorphism from the Milnor
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K-group K2(F) to Br(F), which maps every Steinberg symbol {a, b} in K2(F) to

the class of \~^r) in Br(F). The kernel of this map is the subgroup of squares in

K2(F) (see [Tate], Theorem 2, p. 207 for number fields F, or [Mer] for arbitrary
fields F). Thus we see

REFORMULATION 4. LetFbea number field and a in F*. Then there existe

a rational prime q such that {a, —q} is a square in K2(F) if and only if a is totally
positive.

lU. Algebraic Witt classes

We will use the results of [C-P] to obtain another characterization of total
positivity. Let Ebea finite extension of the algebraic number field F. The trace
form of the extension JE/F is the quadratic form tr^piX2), and the Witt class of
this form in the Witt ring W(F) is denoted (E). The Witt classes in W(F) arising
in this way from algebraic extensions ElF are said to be algebraic classes. For an
élément a of F*, the Witt class of the rank one form aX2 is denoted (a).

COROLLARY 1. The élément a in F* is totally positive if and only if the Witt
class (a) in W(F) is algebraic.

We use three lemmas from [C-P].

LEMMA 1. Let f(t) tm + at + bbean irreducible polynomial in F[t], with odd

degree m ^ 3. Let E F[t]/(f(t)) be the associated extension ofF, and let d dis&lt;J5&gt;

be the discriminant of the Witt class (E). Then in W(F)

This is proved in [OP], Theorem VI.2.1 for the field F Q, but the proof is
valid for any field F of characteristic 0.

LEMMA 2. For any odd m**3 and for any a in F* there is an irreducible
trinomial f(t) tm + at + b in F[t] for which the resulting extension E has dis(E}
a, modulo squares in F*.

This was shown in [C-P], Theorem VI.2.8, again for the field F Q. However,
the argument is entirely local in character, and extends at once to any algebraic
number field F.
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LEMMA 3. Let Ebe a finite extension of the algebraic numberfield F. Then in

any ordering of F the corresponding signature of the Witt class (E) equals the

nwnber of extensions of that ordering to an ordering of E. Hence if X is an algebraic
Witt class in W(F), then every signature of X is non-négative.

This is proved in [C-P], Theorem 1.5.2 when F Q, and again the proof
remains true without change when F is an algebraic number field.

Proof of Corollary 1. Take a in F* and assume that (a) is algebraic. By Lemma 3,

every signature of (a) is non-negative, so a is non-negative and hence positive
in every ordering of F. So a is totally positive.

Conversely, suppose a is totally positive. By the Norm Theorem we can find a

positive rational integer whose négative is a relative norm from F(&gt;/ci)IF. Multi-
plying by the square 4, which is clearly a relative norm, we may assume our
rational integer to be even, say 2n. Take m 2n +1. Then using Lemmas 1 and 2

we find an extension JE/F of degree m for which

with X «a)-&lt;l»«-2n)-&lt;l» in W(F). We contend that X 0. For this it
suffices to show that the invariants of X equal the corresponding invariants of the
0 class in W(F), namely: rank(O) ss 0 (mod 2); sgn(O) 0 in any ordering, dis(O) 1

modulo squares in F*, and every Hasse-Witt symbol cp(0) 1. Clearly rank(X)
0 (mod 2). Since a is totally positive, the présence of the factor (a)-(l)
guarantees that every signature of X is 0. Being the product of two classes of even
rank, dis(X) is a square in F* (see [C-P], p. 12), so dis(X) l modulo squares.
Finally we compute the Hasse-Witt symbols cp(X). By multiplying the factors in
X and adding two copies of the trivial class (1,-1) we obtain the rank 8

représentative (-2a, -a, 2n, 1,1, —1,1, -1) of X Then the Hasse-Witt symbol
cp(X) is just the Hasse symbol of this rank 8 représentative, and using the
définition (see [C-P], p. 15) we see at once that cp(X) (-2n, a)p. But since -2n
is a relative norm from F(yfa)/F this latter symbol is 1, as desired. So X 0, and
&lt;«&gt; &lt;£&gt; is an algebraic class, proving Corollary 1.

In the extrême case when the number field F is totally complex there are no
orderings at ail, so every élément a in F* is totally positive, and the Witt class (a)
of every rank one form aX2 is algebraic. In fact we can show more.

COROLLARY 2. If the algebraic number field F is totally complex then every
Witt class in W(F) is algebraic.
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Proof. Take X in W(F) and suppose first that X has even rank. Since F has no
orderings, it follows that X is algebraic by [C-P], Theorem II.9.5. So we must
consider classes of odd rank.

Since F is an algebraic number field with no orderings, any quadratic form
over F of rank exceeding four is isotropic. Hence the odd-rank Witt class X is

represented by a rank three form, which may still be isotropic. The matrix of this
form, after diagonalizing, is a non-singular 3x3 diagonal matrix over F. Then
Lemmas III.5.4 and III.5.2 of [C-P] show the existence of a cubic extension L of
F and an élément a in L* such that X can be written

as the Scharlau Transfer of the Witt class (a)L in W(L). (Since we will deal with
several fields, we hâve appended a subscript on the Witt classes). Now the field L
is also totally complex, so we can apply Corollary 1 to (a)L in W(L) to find an
extension E/L for which (E)L &lt;a)L in W(L). Note that the class (E)L in W(L) is

just the image under the Scharlau Transfer T^l of the class (1)E in W(E). If we
then transfer this class ail the way down to W(F) we obtain

&lt;E)F TE/F&lt;1&gt;E Tuf{*)l X,

so X is algebraic. This proves Corollary 2.

In gênerai it is a difficult problem to détermine the algebraic classes in the Witt
ring of an algebraic number field F. By Lemma 3, any algebraic class necessarily
has non-negative signature in every possible ordering of F. When F Q is the
field of rational numbers, it is proved in [C-P] that non-negative signature is not
only a necessary but also a sufficient condition for a Witt class in W(Q) to be

algebraic. This resuit together with Corollary 2 makes it reasonable to ask:

Question. Let F be an algebraic number field. Is it true that a Witt class X in
W(F) is algebraic if and only if the signature ofXwith respect to every ordering ofF
is non-negative!
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