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Foliation dynamics and leaf invariants

Steven Hurder(1)

§1. Statement of résulte

Let &amp;&gt; be a codimension-n foliation of a smooth manifold M without bound-

ary. M may be either compact or open, and assume ^ is transversally C2. The

purpose of this note is to examine the relation between the linear holonomy of the
leaves of &amp;* and the growth rates of the leaves.

THEOREM 1. Let &amp; and M be as above. Given a leaf L^Mof&amp;, suppose its

linear holonomy group FL c GL(n, M) is not amenable. Then 9 has a leaf V which
contains L in its closure, and for ail Riemannian metrics on M, V has exponential
growth.

Amenability is taken in the sensé of topological groups, where FL is endowed
with the topology from GL(n,R).

We actually prove a slightly more gênerai resuit, from which Theorem 1

follows by standard methods.

THEOREM 2. Let ^ be a pseudogroup of local diffeomorphisms of Rn, ail of
whose éléments are defined at and fix the origin 0 € (Rn, and are C2 in a neighbor-
hood of 0. Let F dénote the linear group of Jacobians at 0 of the éléments of CS. If F
is not amenable, then the action of &lt;ê on Rn has an orbit with exponential growth
and which contains 0 in its closure.

The normal bundle to 9 is denoted by Q. The restriction of Q to a leaf L is

well-known to be a flat Rn-vector bundle, to which there are associated charac-
teristic classes [12] obtained from the relative Lie algebra cohomology of (gln, On).

They are given by a map

The leaf classes of L consist of the image of
1 Supportée! in part by NSF Grant #MCS 82-01604
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320 STEVEN HURDER

THEOREM 3. Let&amp;bea foliation of M as above. Suppose there exists y s Hm
(gln, On) with m &gt; 1 and Xl(v) ¥* 0- Then the linear holonomy group FL of L is not
amenable.

COROLLARY 4. Let 9 and M be as above. Suppose that ail leaves of 2F hâve

non-exponential growth. Then for every leafL ofSF, the linear holonomy group FL is

amenable, and ail leaf classes of L in degrees greater than one are zéro.

The hypothesis m &gt; 1 is necessary. For example, a flow on M with a linearly
attracting closed orbit L has XL(yi)^0, where yx is the standard generator of
H^glm On). Ail orbits of the flow hâve at most linear growth, hence non-
exponential, and the holonomy group of L is Z, which is amenable.

Corollary 4 can be viewed as a generalization to ail of the characteristic classes

for flat bundles of a resuit due to Hirsch and Thurston. The Main Theorem of [7]
implies that the Euler class of the restriction Q | L —&gt; L is zéro if the foliated
normal sphère bundle to L has an invariant transverse measure. This will be the

case, for example, when &amp; has a leaf L&apos; of non-exponential growth with L
contained in the closure of L&apos;.

Theorem 1 is complementary to a resuit of Zimmer (Theorem 5.5 of [20]; see
also Corollary 4.3 of [10]): If 2F is amenable, then there exists a measurable

framing s of Q —&gt; M such that for almost every leaf L, there is a closed amenable

subgroup GL cz GL (n, R) for which the linear holonomy along L, with respect to
s, takes values in GL. For example, 2F will be amenable if almost every leaf has

subexponential growth.
Note that the set of leaves of 2F with non-trivial linear holonomy has measure

zéro (Lemma 7.2 of [10]), so Zimmer&apos;s theorem does not imply our Theorem 1.

With the stronger hypothesis that every leaf of 2F has nonexponential growth,
Theorem 1 implies that for every leaf L, there exists a framing sL of Q | L -* L
for which the linear holonomy along L, with respect to sL9 takes values in an
amenable subgroup GL. It is an open problem to find sufficient conditions on the

dynamics of 2F that imply Q—&gt;M has a measurable framing s, with respect to
which every leaf has amenable linear holonomy.

This work arose out of the study [9], and was motivated by an attempt to
generalize to ail codimensions the results of Duminy [2] relating the God-
billon-Vey class in codimension-one with leaf dynamics. For a further discussion,
see [10].

We now give an idea of the proofs. Theorem 3 is based on the observation
that the well-known explicit Lie algebra forms, representing the generators of
H*(gln, On), are exact when restricted to the Lie algebra of a maximal amenable

subgroup of GL(n, U). This is proven in §3. The heart of this paper is the proof of
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Theorem 2. It is useful to compare Theorem 2 with Tits&apos; Theorem [19]: a

non-amenable linear group F contains a free non-abelian subgroup on two
generators. From this it is easy to see that the linear action of F on (Rn has orbits
of exponential growth. Two problems arise when one tries to use this to show the
pseudogroup &lt;ë has orbits of exponential growth. First, control must be main-
tained over the domains of the appropriate holonomy maps from &lt;S. This is

achieved by finding an élément yô1^^ with non-trivial contracting stable man-
ifold, and then applying our éléments from &lt;§ to some power of yô1. The second,

more délicate problem is to control how well the orbit under $ of a given point is
&quot;shadowed&quot; by the corresponding orbits under F. This latter problem occupies
§5, and is where the C2-assumption on &lt;S is needed. It is doubtful that Theorem 2

holds if we are just given that &lt;$ is C1. Finally, we remark that the proof of
Theorem 2 is reminiscent of the proof given in [5] of a spécial case of Tits&apos;

Theorem.
The author is grateful to D. Ellis and R. Szczarba for several helpful

discussions on this work, and for their encouragement. Thanks are due to W.
Thurston for his remarks on the local structure of group actions, to C. C. Moore
for discussions on the classification of amenable subgroups of GL(n,R), and to E.
Ghys for bringing our attention to the paper by de la Harpe.

The support of the Mathematical Sciences Research Institute is gratefully
acknowledged.

§2. Growth types and leaf classes

Let $F dénote a fixed codimension n, transversally C2 foliation on a manifold
M, L a fixed leaf of ^, and h a Riemannian metric on M. Given a basepoint x € L,
let B(x, r)c=L dénote the bail of radius r in the submanifold metric on L. The
metric h induces a volume élément on L, and vol{B(x, r)} will dénote the total
volume of B(x, r). The growth function of L is G(x, h, r) vol{B(x, r)}.

With respect to the choice of x and h, the growth type of L is said to be:

subexponential if lim sup - log G(x, h, r) 0
r—»oo f

nonexponential if cL =lim inf - log G(x, h,r) 0
r—*oc f

exponential if cL&gt;0.

If M is compact, then the growth type of L is independent of the choices of x and

h, [6], [16], and thus is an invariant of the way L is embedded in M.
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The growth rate of a finitely generated group H is defined in a similar way (cf.
[14]). Let {gx,..., gj be a reflexive generating set for H; reflexive means that
some g( is the identity élément, and for each i, g&quot;1 g, for some j. The word
metric on H is then defined by

\g\^p if g gH • • • g^ for some integers l^îlf..., ip^s.

Set Hp {g € H with \g\ *£p}. Let #S dénote the cardinality of a set S. We say H
has subexponential growth if

cH limsup — log#H=lim inf — log# Hv
p— p p— p

is zéro, and exponential growth if cH&gt;0.

For a countable pseudogroup &apos;S of local diffeomorphisms of IRn, ail of which
are defined at and fix OgR&quot;, we define the orbit growth type of ^ as in Plante
[16]. First, assume ^ is finitely generated with reflexive generating set

{yt,..., yJ. For 7 g &lt;S with y in the domain of 7, we say |yy|y ^p if there are
integers 1 ^ iu ip ^s with ylk defined at ylk t° • • • °^(y) and y(y)
7.,0&apos;-- °7h(y). Then set

Orbit (y, % p) (Yy such that y e &lt;S with |-yy|y ^ p}

c(y, «) lim inf - log # Orbit (y, % p).
P-+00 p

We say ^ has exponential orbit growth at y if c(y, cê)&gt;0 and nonexponential
otherwise. For a non-finitely generated groupoid % we say it has exponential
orbit growth at y if this is true for some finitely generated subpseudogroup Soc %

Given a regular foliation chart &lt;Ê:l/-»Rm with &lt;f&gt;(x) 0 (cf. §4 of [16]), a

closed path £ in L based at x détermines a holonomy map y€ : V, 0) -» W, 0) for
some open neighborhoods V and W of OgIR&quot;, [3], [6], [16]. Given a finitely
generated subgroup Hc tt^L, x), choose closed paths {£1?..., £*} representing a

generating set of H, let S dénote the pseudogroup generated by the éléments

{y€i,..., y^}. We extend the generating set to a reflexive set {yèl,..., y^}. We
extend the generating set to a reflexive set {y^,..., 7^}, and let V be an open
neighborhood of 0€lRn on which ail of the 7^ are defined. The following resuit is

then implicit in §4 of [16]; see also Chapter IX of [6]:

PROPOSITION 2.1. Let y € V and suppose &lt;g has exponential orbit growth at

y. Then for ail Riemannian metrics on M, the leaf V of 3* through y has

exponential growth.
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It is clear that Theorem 1 follows from Proposition 2.1 and Theorem 2.

Given a foliation chart &lt;f&gt;: 17—&gt;Rm centered at x, the linear holonomy map of
L is given by dh: tt^L, x) —&gt; GL(n, R), where for û€ tt^L, x) choose a closed path
£ in L representing a, let 7€ dénote the holonomy map associated to £, then set
dh(a) Joy&amp; the Jacobian matrix at 0. The image F FL of dh is the linear
holonomy group of L with respect to the chart (U,&lt;f&gt;)- For a différent choice of
foliation chart centered at x, the map dh is changed by conjugating with some
élément of GL(n, R). Thus the conjugacy class of F in GL(n, R) is an invariant of
the germ of SF along L.

The leaf classes of L are obtained by considering the pullback via dh of the
continuous cohomology of GL(n, IR). Recall from Haefliger [4] or Stasheff [18]
that the continuous cohomology H*(G) of a topological group G is the cohomology

of the cochain complex of real valued group cochains on the discrète group
G8 which are continuous with respect to the topology on G. The basic resuit is:

THEOREM 2.2 (van Est [4]). Let G be a Lie group, and let KaG be a
maximal compact subgroup with G/K contractible. Then there is a natural
isomorphism

where g is the Lie algebra of G and H*(g, K) is the relative Lie algebra

cohomology.

For G GL(n,R), it is well known that

H*(GL(n,R)) H*(gln, OM) A(y1? y3,..., yn) (2.3)

where yt is a closed On-basic form on gln of degree 2i — 1, and n&apos; is the largest
odd integer less than (n +1), (cf. Chapter 5 of [13].) Given an index I (il9..., ir)
with 1 ^ ix &lt; - • • &lt; ir «£ n&apos; we write yr ylx a • • • a yv The proof of Theorem 3 will
dépend upon the identification in (2.3) of H*(GL(n, R)), and the naturality in the
conclusion of van Est&apos;s theorem.

Define the characteristic map Xl as the composition

&gt; H*{L)

where we use that tt^L, x) is discrète so that

x)) H+iBir^L, x)) -+ H*(L),
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where the second map is induced from the natural map L-* Bir^L, x). For a

more detailed discussion of the leaf classes, see Kamber-Tondeur [12], Chapter 6
of [13] or Shulman-Tischler [17].

§3. Structure of the linear holonomy group

In this section we analyze how the structure of a countable subgroup fc
GL(n,U) is related to the map H*(GL(N,M))-*H*(D. Theorem 3 will follow
from this, and we also establish some preliminary results needed for the proof of
Theorem 2.

Consider GL(n,U) as the real points of GL(n,C) and let G dénote the
algebraic closure of F in GL(n, C). The identity component Go of G has finite
index, and passing to the subgroup rnG0 does not afïect the statements or
conclusions of Theorems 2 and 3. Thus, we can assume G is connected.

Let G1 [G, G] be the commutator subgroup of G, and set Gk+1 [G\ Gk].
Similarly define rk+1 [rk,rk].

LEMMA 3.1. Gk is closed and connected for ail k.

Proof. See §17.2 of [8], for example.

We dénote the algebraic closure of a group HcGL(n,C) by H.

LEMMA 3.2. The algebraic closure Tîi=Gk.

Proof. The inclusion rk&lt;^Gk is immédiate, so it suffices to show Gk^Fk. By
définition P G, and we proceed by induction: assume 1^= G1 for l &lt; k. Consider
the commutator map

c: GL(n, C)x GL(n, C) -* GL(n, C)

with c(g, fi) [g, h]. This is algebraic, so H c~1(Fk~) is algebraically closed.

Clearly, Tk&quot;1 x I*&quot;1 cHso r^x^&quot;1 c H. Now ^^xr1&quot;1 is a group contain-
ing rk~xxe and exp1, so by induction Gk&apos;1xGk~1

-ixpk-icH since Gk is generated as a group by the image c(Gk~1x Gk~x),
we are done.

As each Gk is connected, there exists a least integer N such that Gk Gk+1

for ail fc s* N. The key to the proof of Theorem 2 is to understand the properties
of FN, which we now study.

DEFINITION 3.3 [20]. A topological group H is amenable if every continu-
ous affine action of H on a compact convex separable set has a fixed point.
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A connectée amenable Lie group is a compact extension of a solvable group.
For H&lt;^GL(n, C) amenable, Moore proves in [15] that H is conjugate to a

subgroup of one of 2n standard maximal amenable algebraic subgroups.

DEFINITION 3.4. A subgroup HcGL(n,C) is distal if for each g € H, ail
eigenvalues of g hâve unit length.

PROPOSITION 3.4 (Conze-Guivarc&apos;h [1]). A distal subgroup of GL(n,C) is

amenable.

For the linear group F we now observe:

LEMMA 3.6. If Fk is distal for any k &gt;0, then G is amenable.

Proof. Suppose that fk is distal. Then Fk is amenable, so by Moore [15] its
algebraic closure Gk is also amenable. This implies G is amenable, for G is

obtained from Gk by a finite number of abelian extensions.

COROLLARY 3.7. If F is not amenable, then GN is not trivial, and for ail
fc &gt;0 the group Fk is not distal.

This corollary is the starting point for the proof of Theorem 2 in the next
section. We now prove Theorem 3. First, note that the inclusion induced map
H*c(GL(n, C)) -&gt; H*(GL(n, R)) is onto, since H*(glnC, C7n) -&gt; H*(gln, On) is onto
(e.g., see Chapter 7 of [13]). By the remarks of §2, Theorem 3 then follows from:

PROPOSITION 3.8. Let iiT-^ GL(n,C) be the inclusion, and suppose that F
is amenable. Then

i*:H?(GL(n,C))-+Hm(r)

is zéro for ail m&gt;l.

Proof. Let A c GL(n, C) be a maximal amenable subgroup containing F. From
[15] we know there is a basis {vl9..., vn} of Cn and integers {nl9..., nd} with

n! + • • • + nd n such that with respect to this basis, A has the form:

&quot;R+Uni * • • * *

0 0 • • 0 R+Un
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Hère, R^U^ dénotes the positive reals product with the unitary group of
dimension n,. Let Un c GL(n, C) be the unitary subgroup with respect the basis

{vl9..., vn}.
The map i* factors through the map H*(GL(n9 C)) -» H*(A), so it will suffice

to show this latter map is trivial in degrees greater than one. Let A be the Lie
algebra of A, and let l/cz A be a maximal compact subgroup with 1/ A H Un

Uni x • • • x U^. By the van Est Theorem, it suffices to show that for Lie algebra
cohomology,

/*:Hm(9lnC,l/n)-&gt;Hm(A,Lr)

is zéro when m &gt; 1.

Let t be the solvable radical of À, let n be the nilradical and b the subspace of
the complex diagonal matrices with t n©b. The intersection tflu consists of
purely imaginary diagonal matrices, so we consider t=t/(triu) as those matrices in
t with real diagonal entries. Similarly define b b/(tnu) so that t=n ©b. As t is

normal in À, if follows from the définition of relative Lie algebra cohomology that

H*(À, U) H*(tu) H*(t)u,

where superscript U means the Ad(l/)-invariant subspace. The adjoint action of
U on t, À and gInC are ail compatible, so we get:

Un) -il» Hm(À, U)

We will show r* 0 for m &gt; 1.

Recall from (p. 116 of [13]) that the generator yt € JH2l&quot;1(gInC) is represented
by the ad GL(n, C)-invariant form on gInC,

y, fc, tr(0 a[B, BW &apos; • a[0, 0])
(i - l)-factors

where S is the Maurer-Cartan form and k, is a scalar. The algebra n is an idéal in
t as an associative algebra, and [t,t]c:nso for i &gt; 1 the form r*(yt) on t is obtained
by taking the traces of éléments of n, which ail hâve trace zéro. Thus, r*(yt) 0.

As the {y,} generate the algebra H*(glnC), we are done.
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As a corollary of the above proof, we hâve the gênerai fact about Lie algebra
cohomology which is useful in other contexts as well.

PROPOSITION 3.9. Let G be an amenable subgwup of GL(n, R) with Lie
algebra g and maximal compact subgroup K GHOn. Then Hm(gln, On) —&gt;

Hm(g, K) is the zéro map for ail m &gt; 1. In particular, the restriction of the forms yt
to g are exact for ail i &gt; 1 and odd.

§4. Action of F on an attracting subspace

Let r&lt;=^GL(n,M) be a non-amenable countable subgroup, G&lt;=GL(n, C) its

connectée algebraic closure and N the integer defined in §3 for which GN —

GN+1. By Corollary 3.7 the group TN+1 is not distal, so there exists feTN+1 with
an eigenvalue of modulus greater than one. Let ilu jlls be the eigenvalues of /
and set

By reordering the jui^ and replacing / with f~x if necessary, one can assume

Let {v(i, j) 11 ^ i ^ s ; 1 ^ / ^ r(i)} be a basis of Cn in which / has Jordan form:

for

We also require that v(i, 1) v(j, 1) if |xt jllp where dénotes complex conju-
gate. Set

Note that V(i) is stable under /, and there is a superdiagonal nilpotent matrix N(i)
so that

Let Vc 0Ui V(i) and Wc eî-r+i V(î) so that CM VC0 WC. Since / is real,
both Vc and Wc are the complexifications of the real subspaces V=VcnUn and

w=wcnnn.
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Endow Cn with the Hermitian metric for which the vectors {v(i9 j)} are
orthonormal. Let \v\ dénote the length of ueC&quot;, and for A e GL(n, C) we set

|A| sup \Av\.
W-i

Define ?r:IRn-{0}-»Sn~1 by ir(v) vl\v\. For a subspace Zc=Rn, let Z1 dénote
the set of unit vectors in Z.

Note that (4.1) implies for ail fc&gt;0 and

[/1 V(0f rf[ld + Ç)n(î) + • • • + (*)N(0n] (4.2)

where N(i)] 0 for / a» r(i). Let q(k) ^&quot;&quot;o (,k), a polynomial of degree (n -1) in
k. Then (4.2) and our choice of metric yields:

LEMMA 4.3
a) For veV,

b) For w g W,k|. D

Define the arctangent function a:|Rn- W—&gt; R+ between V and W by the

rule:
For yeRn with y v + w, v e V, w g W, 0 ^ v,

LEMMA 4.4. For aH y €(Rn- W and fc&gt;0,

(—)&quot; ~^r a(y) ^ a(/k(y)) ^ (-)
\ ^ / qw V

Froo/. For y v + w, fk(y) vk + wk where wk /kweW and

Thus, a(fk(y)) |wk|/|t;k| and Lemma 4.3 yields the estimate. D
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The last resuit needed for the constructions in §5 asserts that FN contains
enough éléments to map ail of the strong expanding manifold V of / into the
domain Rn - VU W). We remark that if it were possible to find a single g g F for
which gV H V {0} and gVDW {0}, then a much simplified proof of Theorem 2
would be possible along the Unes of [5]. As it is, we make do with the following:

PROPOSITION 4.5. Let ve V be a non-zéro vector. Then there exists g&lt;=FN

such that

gv£ V and v • gv£ 0 (4.6)

and hence gv£ W.

Proof. Suppose to the contrary that for ail g e FN, either gv e V or v • gv 0.

Thèse are algebraic conditions on F, so by Lemma 3.2 they also hold for ail
geGN. Now GN is irreducible as it is a connected algebraic group, so either

gv e V for ail g € GN, or v • gv 0 for ail geGN. Clearly we must hâve the first
case, so GN • v &lt;= V. Let V dénote the span of GNv. Then V is a subspace of V
stable under FN, hence /1 V is in the commutator group of FN | V. But the
déterminant of f\V is fxdunV&gt;l, which contradicts /| V being a product of
commutators. D

The condition (4.6) is open for v g V, so given any v g V1 and gv e FN

satisfying (4.6), there is a ô(i;)&gt;0 so that for the closed 2ô(u)-ball B(v, 28(v)) in
Rn centered at v, we hâve (4.6) is satisfied for g,, and ail y sB(v, 28(v)). Since V1

is compact, we can choose a finite set {g1?..., gd}^ FN and radii {ô1?..., ôd} so

that the balls B^Biv» ô()n V1 cover V1, and (4.6) is satisfied for each g, with
yGB(t),, 28,). Note this implies that for l^i^d, the arctangent a is defined and
bounded away from zéro on the set gfi(vl9 2ôt).

Finally, replacing / with a positive multiple if necessary, we can assume that
/ut &gt;3, and for ail 1 ^ i ^d both /ul &gt;\gt\ and n &gt;\g7xl By our choice of metric on
Cn and (4.1), we also hâve both |/|&lt;2/x and \f~1\&lt;2yL.

§5. Exponential growth on the expanding manifold.

Let S be the groupoid given in Theorem 2 and F the linear group of Jacobians

at 0. Assume that F is not amenable. Let feFN+1 and {g!,..., gd}^FN be
chosen as in §4. Choose yeW with J07 /» and for each l^i&apos;^d choose %€«
with /0Yi gi- For notational convenience, set 70=T Let D&lt;=[Rn be an open
neighborhood of 0 on which ail of the yt are defined. Let ^o dénote the
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subgroupoid of &lt;S generated by the set {y0,..., yd}. We will show ®0 has a

continuum of orbits with exponential growth.
By the stable manifold theorem (cf. [11]) applied to y~\ there is a connected

submanifold SczD with OeS, the tangent space T0S at 0 is equal V, and y&quot;1 is

uniformly contracting on S. In particular, y&quot;1 S c S. By a change of coordinates on
IRn, we can assume S is an open neighborhood of 0 in V.

Before entering into the détails of the proof of Theorem 2, a brief overview of
the argument may help the reader. We first define an open cône C^S whose

points satisfy limk_*oo /7r(7~ky) e V1 and |Y~ky| &lt; ii~~k/2. For an appropriate constant
e0, we set yp y&quot;1*^ fOr a given y € C. For each p &gt; 0 we construct a subset
S&amp;p Œ ^o consisting of 2P words of length ^m0 • p, such that the linear parts of the
words in 3tp move yp to 2P distinct points. We furthermore obtain an exponen-
tially decreasing lower bound on the distance between thèse 2P points. Using
Taylor&apos;s theorem for C2-maps, and for e0 sufficiently large so that yp is sufficiently
small, we conclude that 0iv • yp consists of 2P distinct points. The last remark is

that in constructing 3ÎP, we use a version of the &quot;ping-pong&quot; lemma of [5]. In our
version, the orbits are repeatedly returned to the attractor V by applying high
powers of /, and are then scattered back into Un-(VL)W) by the éléments of
{gi&gt; • • • &gt;

&amp;*}• Thus, ail of the orbits we build concentrate on the subspace V, and

one does not hâve the bilatéral symmetry inhérent in the method of Tits. Instead
of 2 players, one can think of this as an instructor with many students.

Recall that for a C2-difïeomorphism &lt;f&gt; with &lt;£(0) 0, Taylor&apos;s Theorem gives

an estimate on the spherical error between &lt;f&gt; and J0&lt;f&gt;, and the estimate is linear
in y:

For ail € &gt;0 sufficiently small, there exists k(&lt;f&gt;, e)&gt;0 so that

fcpiHy| forall|y|&lt;€. (5.1)

As an immédiate conséquence we hâve:

LEMMA 5.2. Let 91 {&lt;£1?..., 4&gt;p} be a set of local C2-diffeomorphisms of an

open neighborhood U of 0elRM into Un with &lt;k(0) 0 for ail L Let e&gt;0 be

sufficiently small so that there exists constants k(&lt;f&gt;l9 e) for which (5.1) holds. Then

for K maxl&lt;t&lt;p fc(&lt;fo, c) and yeU with |y|&lt;€, suppose that

K.|y|2 for ail ifj.
Then the set 01 - y - {&lt;$&gt;xy \ 1 ^ i ^ p} consist of p distinct points.

LEMMA 5.3. There exists ô&gt;0 and an integer 6&gt;0 such that |7~by|&lt;

^&quot;b/2|yl for allyeS with |y|&lt;&amp;
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Proof. By Lemma 4.3 there exists an integer b&gt;0 for which \f~b | V|&lt;jul~31&gt;/4.

Choose ô &gt; 0 sufficiently small so that

where e is such that (5.1) holds for y~b, and 8 &lt;e. Then

&quot;H.

For fc, 8 as in (5.3) we replace /, y and jul with fb, yb and jutb, so we can
assume:

lY&quot;Py|&lt;j*-p/2|y| for ail p&gt;0,yeS,|y|&lt;Ô (5.4)

Choose € &gt;0 to satisfy e&lt;8, e &lt; jul&quot;1 and there exists a constant Ko so that for ail
&lt;t&gt; €{y, 7~\ 7i,. • • &gt;

TaK condition (5.1) holds for ail |y|&lt;€ and k(&lt;f&gt;, e) Ko. Then
set

C {y€S|0&lt;|y|&lt;€}

Thèse remarks are then summarized by

COROLLARY 5.5. 7&quot;1CcÇ and for ail p &gt;0 and y g C,

€.

Set K max {Ko, 2 jul} and ep min {e, K~p}. For a word ^^o&quot;^^ of
length ^p with each &lt;fo €{y0,..., 7d}, we estimate the constant k(&lt;f&gt;, ep) required
for (5.1):

LEMMA 5.6. For (f&gt;, K and ep as above

|&lt;^y-Jo^y|&lt;K2p|y|2 for \y\&lt;ep (5.7)

Thus, K(&lt;^,€p)^K2p.

Proof, For p 1, (5.7) follows from the définition of K. Assume (5.7) holds for
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4&gt; of length (p — 1), and set 4&gt;2 4&gt;2°- &apos;

mO4&gt;v&gt; Then

From |J0&lt;J&gt;i|^K, \J0&lt;t&gt;2\&lt;Kp~1 and |y|&lt;jK:~p we conclude

l*y - Jo*y I &lt; ly I2 {K2p~x+k2*-1+2K2p~2+K2p-3}

since K&gt;n&gt;3. D

LEMMA 5.8. Forge{f,f-\ glf..., &amp;} and aH ux, u2€|Rn, Igu^—-1^1 and
2n

\u1u2\.

Proof. |g|&lt;2/ui, so |gw|&lt;2fjt • \w\ and hence for w g~1w1 or w g~1(u1 — u2)

we get the estimate. D

Recall that {Bt B(vl9 8t) \ 1 ^ i =££d} is the covering of V1 by closed balte in V
defined at the end of §4. By compactness of the sets gJBAv» 2ôt) and the
continuity of the arctangent function a on them, there exists constants 0&lt;c1&lt;c2

for which c1&lt;a(g,y)&lt;c2 for ail l^i^d and yeB(vl9 2ôt).
Set X {x eUn \ \x\ 1 and cx^ a(x)^c2}.
For ô&gt;0, set

||x| l and a(x)&lt;8}

At (8) {x € A (S) | jc t; + w, v &lt;= Bl9 w € W}

Note the sets {A^ô),...,^(8)} cover A(ô). Choose So&gt;0 sufficiently small so
that for ail l^i^d, glA,(2ô0)c:X. Lemma 4.4 implies there exists an integer e

for which /P(X) c A(S0) for ail p 3* c. Set m0 2d • e +1, and define

t infimum
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Choose eo&gt;l so that for ail

(2mo-eo/2)p &lt; ï±_^ (- Q)
2K2p • € • 22&quot;p*m°

^

and

M»K4. (5.10)

For ail non-zero y € C we now show the groupoid âfc0 has exponential orbit
growth on y. Fix a choice of 0 ^ y € C. For p &gt;0 set yp 7~p€°y. By Lemma 5.5
and (5.10) we hâve |yp|&lt;K~2p€&lt;€p, and then (5.9) yields

|v I^|v(2ju,)2p*m°

We can now define the set âfcp, which consists of 2P words of length *sp • m0 in
The set 0tp will be chosen so that for ail

11

By Lemma 5.2 and (5.11), the set 9tpyv {&lt;£yp | &lt;f&gt; e 0tp} consists of 2P distinct

points. Thus, Stp • 7&quot;^° consists of words of length ^(mo+co)p, and applied to y
yields 2P distinct orbits. Since yp -&gt; 0, this will finish the proof of Theorem 2.

Fix p, choose i0 with 7ryp eB(i0), and consider the 2d points

There exists an integer it with 1 ^ it ^ d for which Q1 F1H Ah contains at least 2

points.
Now proceed inductively, and suppose iq_l9 Fq_i and Qq_x hâve been chosen

with Q^^F^CiA^ and #Qq_1^2q~1. The set

consists of at least 2d • 2q-1 points, since

g^A^x and rk(X)nr&gt;(x) 9 for i
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Therefore, there exists iq with Qq FqC\ Alq containing at least 2q points. This
complètes the inductive step.

Let Fp be the set obtained in this inductive fashion; let 0tp be the set of words
in (70,..., yd} corresponding to the words in {/, gl5.., &amp;} which are applied to yp

to obtain the points in Fp. A typical élément of âftp has the form

*p y )%,_! r Ttp_2 Tio

for some integers l^ku..., fcp^2d. The length of 4&gt; is at most p • m0 with
respect to the set {y0,..., yp}, and 3îpyp consists of at least 2d • 2P~1^2P points,
once we hâve established the estimate (5.12).

Let &lt;£^^eâip and let g J0&lt;t&gt;, h Joil/ be their linear parts. There are
integers 1 ^kl9..., fcp ^2d and 1 ^ji,..., jp^2d for which

Let q be the largest integer such that /q_i^ fcq_i. Set

Apply Lemma 5.8 at most q • m0 times to obtain

Next, g&apos; and h&apos; hâve length =spm0, so Lemma 5.8 again yields

Hence,

Ig&apos;Vp - h&apos;yp| &gt; (2^)-pm&quot; |yp| • kg&apos;yp - Vh&apos;yv\ &amp; (2^)-pmo • |yp| • cx

and so

|2|p|-Cl. D
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