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Some remarks on compactifications of commutative algebraic
groups

F. Knop and H. Lange

Introduction

In the theory of transcendental numbers commutative algebraic groups play an

important rôle. In fact if such a group E is embedded in some projective space, its

exponential map can be described by holomorphic functions. The values of thèse
functions at algebraic points are good candidates for transcendency (cf. [8], [9]).
In order to embed E into a projective space, it is convenient to compactify E and
embed the compactification Ë. The main method to compactify E (due to Serre

[7]) is the following:
Let E be a connected commutative algebraic group over an algebraically

closed field fc. Then there is a canonical exact séquence

0-»G-*E-^A-^0 (1)

with G a connected linear group and A an abelian variety over fc. Given a

projective G-variety P over Pn, every open G-equivariant immersion G -^P
induces in a natural way a compactification Ë of E, namely the fibre bundle
E{P) ExGP with fibre P over A, associated to the G-principal bundle E-^&gt; A
with respect to the given G-action of F (cf. [4]).

In this note we shall study the following questions: Are there other compactifications

(section 1)? Which are the G-equivariant embeddings of Ë into Pn

(section 2)? How many compactifications of the above type are there (section 3)?
And by forms of which degrees is the homogeneous idéal of Ë in Pn generated
(section 4)?

To be more précise, in section 1 we shall prove that if the linear part G of £ is

a torus or one dimensional, then there are no other normal compactifications of E
then those described above (Theorem 1.1) and we give a counterexample to this
statement in the non-normal case. In section 2 we investigate the group
PicG (E(P)) of G-Une bundles on the compactification E(P) and show (Theorem
2.1) that it is isomorphic to PicG (P)xPic(A). Hence every G-embedding of
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498 F KNOP AND H LANGE

E(P) into projective space cornes from a pair consisting of a projective G-
embedding of P and a projective embedding of A.

In section 3 we show that Serre&apos;s original compactifications of E dépend on
the splitting of G into one dimensional groups. Finally in section 4 we show that
in the most important cases (with respect to applications in transcendence theory)
the homogeneous idéal of E(P) in Pn is generated by forms of degree &lt;dim A +
3.

1. Compactifications of E

Let E dénote a connected commutative algebraic group over a field k

(algebraically closed for simplicity) with canonical exact séquence (1). Let X be an

E-variety (not necessarily projective) and i : E —» X an equivariant open immersion.

Let G Gi(0) be the closure of the orbit of i(0) under G in X. Then there is

a canonical £-equivariant morphism

defined by i/r(fi, x) h • x for h e E and x e G &lt;= X. Hère E(G) dénotes as usual

the fibre bundle ExGG associated to the principal bundle. It is the compactifica-
tion of E corresponding to the embedding G —» G (if G is proper over fc, ci. [4]).
The following theorem in particular gives conditions under which the compactifications

of type JE (G) are the only £-equivariant compactifications of JE.

THEOREM 1.1. (a) ty is birational and proper, and in particular surjective.
(b) Suppose (i) X is normal and (ii) G consists of finitely many G-orbits. Then if/

is an isomorphism.

Condition (ii) is always fulfilled if G is a torus or one dimensional (cf. [5]).

Proof. 1. Since ^ restricted to the open subset ExGG of E(G) is an

isomorphism onto the open subset E of X, $ is birational.
2. Let tt:E(G)-^A dénote the canonical projection map. We claim that

(ir, $):E(G)-^AxXisa closed immersion.
Since E-+A is faithfully flat, it sufïices to show that

idE xA (ir, i(r) : E xA£(G) -&gt; £ xA (A x X) is a closed immersion. Now ^:Ex
G —» E xA (E xGG) : (h, x) —» (h, (h, x)) is an isomorphism (with inverse map
&lt;t&gt;ï1(h,(hf,x)) (h,(h-1h&apos;)x)&apos;, note that h~lh&apos;eG). If (f.2:ExA(AxX)-^ExX
dénotes the canonical isomorphism and &lt;t&gt;3:ExX-&gt;ExX the isomorphism
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(h, x) -&gt; {h, h~1x), then it suffices to show that the composed map

&lt;t&gt;3&lt;t&gt;2(idE x a (n, ^))&lt;£i : E x G -» E x X

is a closed immersion. But

&lt;f&gt;3(l&gt;2(idE xA (tt, i/r))&lt;^1(h, x) &lt;t&gt;3&lt;t&gt;2(idE xA (tt, &lt;Jr))(fe, (h, x))

&lt;!&gt;3&lt;l&gt;2(h,(Tr(h),hx))

which proves the assertion. As composition of the closed immersion E(G)-&gt;

A x X and the projection A x X -&gt; X the map $ is proper. (Note that if X is

itself proper over k, assertion 2 follows immediately from EGA II, 5.4.3).
3. To complète the proof of the theorem, by Zariski&apos;s Theorem (EGA III

4.4.9) it suffices to show that ^ has finite fibres under the assumptions (i) and (ii).
Suppose jc g X. Since if; is surjective there are points h e E and x0 € G with

x hx0. Since i/r is E-equivariant, it suffices to show that ^~1(x0) is finite. We
hâve

{(Kx)eE(G)\hx x0}

{(Kh-lxo)eE(G)\h-1xoeG}.

Dénote Eo {h e E \ h~xxQe G}. Eo in gênerai is not a subgroup of E, however it
is G-stable. Obviously we hâve a bijection Eo/G ^&gt; i^&quot;1(x0). Let EXo dénote the
stabilizer of x0 in E Eo is also EXo-stable and we claim:

Suppose h, heE0. Then h~1x0 and h~xx0 are in the same G-orbit of G if and

only if hh~l g GEXq. In fact for g g G we hâve

1 g GEXo.

Hence there is an injective map of EJGEXo into the set of G-orbits of G. It
follows from assumption (ii) that E0/GEXo is a finite set. It remains to show that

GEXJG p(EXo) ^A(p:E-+ A the canonical map) is finite. But by the following
lemma EXo is a linear group. Hence p(EXo) is finite as a linear subgroup of an

abelian variety. This complètes the proof of Theorem 1.1. It remains to show:

LEMMA 1.2. Let E be an algebraic group acting effectively on a variety X (Le.

E —&gt; Aut (X) is injective). Then for every xeXthe stabilizer Ex ofxinE is linear.
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Proof. We hâve the following canonical inclusions

Ex &lt;-* Aut Cx,xc-&gt; Aut Ôx,x hm Aut (OxJmx).
n

Hence there is an integer n, such that the canonical mapE—» Aut {€xJmx) is

injective. Since Aut (GxJmx) as a subgroup of the group of automorphisms of a

finite dimensional vector space is linear, the same is true for Ex.

EXAMPLE 1.3. We want to give an example showing that Theorem 1.1 is

not correct without the assumption that X is normal.

Let / ^ char k be a prime number, k algebraically closed, E as above with
canonical exact séquence (1) with the additional assumption that G Gm. Let
G =P&gt;1 be the canonical compactification and fçA be a subgroup with F— 1111.

The exact séquence

0 -&gt; G -&gt; p~\r) -&gt; F -* 0

splits (cf. [2] Theorem 16.2). Since Hom (F, G) f 0, there are 2 sections

s1,s2:r-+p~\r)^E such that s1(r)fls2(r) {0} and

{0}.
Define E^E/s^F) and E2 Els2{r). Then the séquences

are exact. Moreover for i 1,2 there is a natural E-equivariant morphism

Let

•(G).

Then i:E^E(G)-»X is an open imbedding, since s1(r)ns2(r) {0}. On the
other hand i\G is an isomorphism, since Si(r)nG s2(r)OG {0}. But A —

E(oo)cE(G) is mapped onto AIT. It follows p(EXo) F^ {0}, where x0 dénotes the
image of (0, &lt;x&gt;)eE(G) in X, which means that ij/:E(G)-+X is not an
isomorphism.
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2. PicG (EP))

Let E be as in section 1 with canonical exact séquence (1). Let P be a

complète G-variety over k and î : G -&gt; P an equivariant open immersion. Then
E(P) ExGP is a compactification of E. Moreover if L is a G-linearized line
bundle in P, then E(L) E xGL is a G-linearized (even E-linearized) line bundle
on E(P) (cf. [4], Lemma 1.2). If as usual Pic (resp. PicG dénotes the group
of line bundles (resp. G-linearized line bundles), there is a canonical map

jPicG (P) x Pic (A) -&gt; PicG (E(P))
&apos;[ (L,M)H-&gt;JE(L)&lt;g&gt;7r*M.

(Note that, whereas E(L) is E-linearized, 7r*M is only G-linearized on E(P)).
The aim of this section is to prove

THEOREM 2.1. Given an exact séquence (1) and let P dénote a complète
G-variety over k. Then the canonical map

4&gt; : PicG (P) x Pic (A) -&gt; PicG (E(P))

is an isomorphism of groups.

Proof. We shall construct an inverse map ^ : PicG (E(P)) -» PicG (P) x Pic (A).
Suppose NePicG (JS(P)). Let tt:E(P)-&gt; A dénote the projection map. ir&quot;1^) is

canonically isomorphic to P. We identify both and consider the closed embedding
/ : P &lt;^&gt; E(P). Define L j*N with the induced G-action. We claim that E(L)&quot;1®

N\TT~1(a) — C7T^a) (without G-action) for every point aeA.
First of ail E(L) \ 7r~\0) L (even as G-line bundles) that is EiL)&apos;1®

N\ tt&quot;1^) — Ow-»(o) with trivial G-action. Since E(L)~1&lt;8)N may be considered as

a family of line bundles on P parametrized by A, it suffices to show that the
Picard variety Pic0 (P) of P is zerodimensional, since then every déformation of a

line bundle on P is trivial. But P is as compactification of a connected linear

group a rational variety which implies dim Pic0 (P) &lt;dim H1^, GP) 0.

Applying Grauert&apos;s theorem (cf. [1], III, 12.9), we get that M:= 1

N) is a line bundle on A. We claim that the natural map

a : tt*M ir*ir* (E(L)-l&lt;8&gt;N) -* E(L)-l®N

is an isomorphism of Une bundles. Since cr is a homomorphism of line bundles we
hâve only to show that cr is surjective.
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For this is sufficient to show that for every point aeA there is a neighbour-
hood U in A such that E(L,y1&lt;8)N \ tt~1(I/) admits a nowhere vanishing section.
But since ^(EU,)&quot;1®^ is a Une bundle on A, we may take for U any
trivializing open set in A. Hence lxa:E(L)&lt;8)Tr*M —» N is an isomorphism of
line bundles and it remains to show that it is compatible with the G-actions. Since

any 2 G-linearizations of a given line bundle on E(P) differ by a character on G,
it suffices to check this on the restrictions to the fibre tt~ *(()). But we noted
already that E(L) \ tt&apos;\0)^N\ tt&quot;1^) as G-line bundles.

Now define ^ : PicG (E(P)) -* PicG (P) x Pic (A) by ^(N) (L, M) with L and

M as above. It is easy to see that the maps &lt;$&gt; and ^ are inverse to each other.

3. Senre-compactifications of E

In this section let k dénote the field of complex numbers. The group G in the
exact séquence (1) then is of the form

(2)

In [7] Serre constructed a compactiflcation of E as follows: Consider for each

factor Gm and Ga of G in (2) the natural embedding into P1. This gives a

G-equivariant embedding of G into (P1)&apos;4^. The compactification of E is defined
to be the associated bundle X E((P1)r+s). We want to show by an example that
this compactification heavily dépends on the splitting (2) of G.

Start with an abelian variety A and G G^. Let G Gm x Gm be a given
décomposition. The isomorphism &lt;f&gt; : G —» G, &lt;î&gt;(ai, «2)= (^T1^ a2) yields
another décomposition of G.

Now let E! GmxA be the trivial bundle and E2—» A be an arbitrary
principal Gm-bundle over A, whole associated line bundle M2 on A is algebrai-
cally équivalent to zéro. By the theorem of Weil-Rosenlicht-Serre (cf. [6], p. 184

Théorème 6) E E1xAE2 is a group extension of A by G.

If (!/„ «ijX.j is a description of E2 by open sets Ux in A and transition
morphisms aip then (17,, (1, ot,,)),, is a description of the principal G-bundle
E E1xAE2 over A. On the other hand any principal G-bundle over A may be

considered as an élément of H1(A, G). The élément of Hl{A, G) corresponding
to E over A does not reflect the décomposition of G which however the

description (17,, (1, a,,)),,, does. Applying the isomorphism &lt;P:G -&gt; G we get

-(Ut, (1, a^-OJ» 4&gt;((1, aq)))IJ (Ul9 (aip «„
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which means

If X (resp. X) dénotes the compactification of E corresponding to the given
décomposition of G (resp. the décomposition of G given by applying &lt;f&gt;), then we
hâve according to the définitions

X - P(O\) x AF(OA © M2)

and

X-P(&lt;9A©M2)xAP(0A©M2)

where P(-) dénotes the projective bundle associated to the vector bundle (•).

We daim that X and X are not isomorphic in gênerai. For this it suffices to
compute the canonical Une bundles Kx and Kx- We get

Kx M2®A0P(OÂ)(

and

Kx Ml®A©P(OA

which obviously are nonisomorphic for M2 7^ 6A. (Consider X and X as projective
bundles over P(ÛAÇBM2)).

4. Projective embeddings

We want to study the projective embeddings of the compactifications É of E,
and in particular the question: by forms of which degrees is the homogeneous
idéal of É in PN generated? For this we need a slight generalization of a critérium
of Mumford (cf. [5], pp. 39-40) which we shall prove first.

If X is any projective variety embedded in PN by the complète linear System
of a very ample Une bundle L, dénote by I : ©k&gt;0 4 its homogenous idéal in PN.

For any i &gt; 1 define

gi{L\ L) Ker (H°(Ll)®H°(L) -* H°(Ll+1))
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and

«.(L) Ker (H°(L)1 -&gt; H°(L1)).

If moreover for a vector space V we dénote by Sn(V) its n-th symmetric product,
we hâve

LEMMA 4.1. If L is normally generated on X, then for any fc &gt; 1 the following
conditions are équivalent

(1) The canonical map H°(L)®9t(L\ L) -&gt; 3B(LI+1, L) is surjective for every
i&gt;fc.

(2) The canonical map Ik+X® Sl~kH°(L) -* Il+1 is surjective for every i &gt; fc.

In other words: condition (1) is équivalent to the fact that the idéal I is generated
by forms of degree &lt;fc +1. For fc 1 this is just Mumford&apos;s resuit.

Proof. We shall prove only the implication (1)4&gt;(2), since we do not need the

converse. Consider the condition (2&apos;): The canonical map

&lt;f&gt; X &lt;t&gt;v : ©^k+1(L)®H0(L)l-k-&gt; »1+1(L)
V

is surjective, where the direct sum is to be taken over ail v (vu vk+1) with
I&lt;u1&lt;- • •&lt;ufc+1&lt;i + l. Hère the map &lt;j&gt;v on the direct summand with index
v (vl9..., vk+1) is given by

V V

that is al is inserted in the u,-th place. It is easy to see that (2&apos;) is just the
desymmetrization of (2). Hence it suffices to show that (1) implies (2&apos;).

Consider the commutative diagram

• • -^H°(Ll)&lt;S&gt;H°(L) ^VH°(L&apos;+1)

with ao 4&gt;, considered as a map into H°(L)&apos;+1, with (ï, the canonical maps, and
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a} Pj - olj-x. We hâve to show:

Since L is normally generated, 0, is surjective for every / 0,..., i - k (cf. [5]).
Hence it suffices to show

^çIma, for / 0,..., i-fc.

This is true for / 0 by définition of the maps. For / 1,..., i - k we hâve

Ker (ft) m(Lk+\

By restriction to a suitable direct summand of 0u(^k+1(L)®H°(L)l~k) and
omission of some tensor factors H°(L) we see, that it suffices to show that the
canonical map

is surjective for / 1,..., fc — i. But â} factorizes canonically as follows

* k+&gt;, L)

8j is surjective according to the assumption (1). To show the surjectivity of 7,
consider the diagram

0

1

0 0t(L\L)
1 1

0 &gt; Ker &lt;j&gt; H°(L)k®H°(L) —Î-» H°(Lk)®H°(L) 0

i* II I
0 &gt;3WL) H°{L)k+l H°(Lk+1) ^0

i- I
Coker ^ n

i
0
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According to the serpent lemma £%(Lk, L) — Coker i(f canonically, and under this

isomorphism tt identifies with y} which complètes the proof of the lemma.
In order to apply Lemma 4.1 suppose we are given an exact séquence (1). Let

P be a G-equivariant compactification of G. It induces a compactification E(P) of
E. Dénote by tt:E(P) —&gt; A the natural projection. In [4] the following resuit was

proved (cf. [4], pp. 564-567).

THEOREM 4.2. Let LePic(P) be normally presented, G-linearized, Me
Pic (A) ample, generated by its global sections, and F=E(L)®tt*M. Then for
every i ^ dim A + 2 the canonical map

H°(F)® &amp;(F, F) -&gt; »(jF+1, F)

is surjective.

If moreover M is normally generated on A, the methods of [4], section 3

show, that F E(L)&lt;8)&apos;tt*M is normally generated on E(P) and we may apply
Lemma 4.1 to get:

COROLLARY 4.3. Let LePic(P) be normally presented, G-linearized, and

M€Pic(A) normally generated. Then F=E(L)®tt*M is normally generated on
E(P) and the homogeneous idéal of the corresponding projective embedding
E(P) &lt;-^ PN is generated by forms of degree &lt;dim A + 3.

The most important compactifications of E are those where F is a multiprojective
space. Since for such a P a line bundle is normally presented if and only if it is

very ample (or even ample) (cf. [4] section 6) we get

COROLLARY 4.4. Let P be a multiprojective G-equivariant compactification
of G, LeVic (P) very ample, G-linearized and Me Pic (A) normally generated. Let
E(P)C-^PN be the projective embedding associated to the line bundle F
E(L)(8)tt*M. Then the homogeneous idéal of E(P) in PN is generated by its forms
of degree &lt;dim A + 3.

Since for any ample line bundle M an A the third power M3 is normally
generated, one can even give a bound in case M is only very ample. We omit this.
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