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More Denjoy minimal sets for area preserving diffeomorphisms

John N. Mather1

Abstract. For an area preserving, monotone twist diffeomorphism and an irrational number &lt;o, we

prove that if there is no invariant circle of angular rotation number o&gt;, then there are uncountably
many Denjoy minimal sets of angular rotation number o&gt;. For each pair of positive integers n and R
we prove that the space (with the vague topology) of Denjoy minimal sets of angular rotation number
eu and intrinsic rotation number (a) + R)/n (mod. 1) contains a disk of dimension n-1.
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Références.

§1. Introduction

This paper continues the study of monotone twist area preserving
difïeomorphisms of the annulus which we hâve pursued in [16-20]. In [16], we
proved the existence of quasi-periodic orbits of ail irrational frequencies eu (cf.
§5). This resuit was obtained independently by Aubry and Le Daeron [4] and had
been found numerically and non-rigorously earlier by Aubry [cf. 3]. The quasi-
periodic orbits of frequency eu in [16] or [4] lie on a Denjoy minimal set (or a

circle), of angular rotation number eu, when eu is irrational.
In the case that there is an invariant circle of angular rotation number eu,

where eu is irrational, its unique minimal set Xw is either the whole circle or a

Denjoy minimal set of angular rotation number eu. Moreover, in this case, it is

easy to see that there are no other Denjoy minimal sets of angular rotation
number eu (cf. §4). It is natural to ask whether this uniqueness resuit holds in
other cases, i.e. whether the minimal set of angular rotation number eu, con-
structed in [16], is unique. In [19], we gave examples where this uniqueness resuit
does not hold, but we left open the question as to whether there exist examples
with no invariant circle of rotation number eu (with eu irrational), but uniqueness
for the Denjoy minimal set of rotation number eu.

In this paper, we will answer this question by showing that when eu is irrational
and there is no circle of angular rotation number eu, there are uncountably many
distinct Denjoy minimal sets of angular rotation number eu.

More precisely, under thèse conditions the set of Denjoy minimal sets of
angular rotation number eu contains a topological disk of arbitrary high dimen-
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sion, if it is provided with an appropriate topology. The appropriate topology is

what we call the vague topology on Denjoy minimal sets. This is defined as

follows. Each Denjoy minimal set carries a unique invariant measure and is the

support of that measure. The vague topology on measures, i.e. the weak topology
defined by continuous functions of compact support, induces a topology on
Denjoy minimal sets, which we continue to call the vague topology. In §3, we
define the angular and intrinsic rotation numbers of a Denjoy minimal set of a

monotone twist difïeomorphism. Our principal resuit is stated in §15 and is

proved in §§17-25. It has the conséquence (Theorem 29 and the remarks
following it) and if a) is an irrational number, n is a positive integer, and jR is any
integer, then the space of Denjoy minimal sets of angular rotation number o) and
intrinsic rotation number (« + R)/n (mod. 1) contains a disk of dimension n-1.

I announced this resuit in talks I gave at the Institute for Advanced Study and
City University of New York in May, 1984 and at the Berkeley Math. Sciences
Research Institute and ETH, Zurich (Forschungsinstitut fur Mathematik) in June,
1984.

The method of proof in this paper combines éléments of both the method of
[16] and the method of [4]. We recall the method of [16]. We defined a functional
F^ (called Percival&apos;s Lagrangian) on a space Y of mappings of IR into itself. In a

suitable topology, Y is compact and F^ is continuous; therefore F^ takes a

maximum value. Let ^ be a point of Y where F^ takes its maximum value. In
the case w is rational, we showed how to construct a periodic orbit, using &lt;êw. The
existence of such a periodic orbit follows from a famous theorem of Birkhofï [6].
However, our proof also showed that this periodic orbit was ordered, which
apparently was not known prior to the work of Aubry and the author. In the case

a) is irrational, we showed how to associate a Denjoy minimal set X^ of rotation
number a) to &lt;£&lt;„.

Percival introduced his Lagrangian in [22] and [23]. However, the domain of
définition of this Lagrangian was not specified by Percival, and the proof in [16]
depended crucially on choosing the right domain of définition for Fw.

In this paper, we will use the opposite sign convention from that in [16], in
order to agrée with the sign convention used by the physicists (e.g. in [22], [23],
and [4]). Thus, we replace F^ with —Fw and seek a &lt;£œ which minimizes Percival&apos;s

Langrangian.
In §§6-12, we tie up some loose ends from previous papers on this subject and

show that certain results of [16] are équivalent to the corresponding results of [4].
That this is the case is not at ail surprising, but requires proof. The principal resuit
hère, Theorem 6, is that &lt;^w is a minimum not only over Y, but also over a larger
space Y*, where no order condition is imposed on the éléments of the space.
Theorem 6 is stated in §6 and proved in §§7-10. We prove Theorem 6 because

the method of proof is used in the proof of the principal resuit, Theorem 15, of
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this paper. The proof of Theorem 6 is based on the ideas of Aubry and Le
Daeron [4].

The existence of new Denjoy minimal sets (Proposition 16 and the discussion

following it) follows easily from Theorem 15, which in turn dépends on a resuit
which was discovered independently by Katok and the author, on the one hand
(cf. [18]), and by Aubry, Le Daeron, and André, on the other (cf. [5]). In the
terminology of [18], there is an invariant, homotopically non-trivial circle of
rotation number w if and only if AWo) 0. Under the hypothesis of Theorem 15

that there is no such invariant circle, we therefore hâve zlWaj&gt;0.

In the suggestive terminology of Aubry, the condition that AWto)&gt;0 means that
there is a barrier, called Peierl&apos;s energy barrier, which prevents a minimal energy
configurations from sliding freely along the line. Minimal energy configurations
are defined and discussed in §§11-13 and Peierls&apos;s energy barrier is defined in
§14.

Using the positivity of Peierls&apos;s energy barrier, one can find (j&gt;eY* which
minimizes Percival&apos;s Lagrangian subject to constraints defined in terms of Peierls&apos;s

energy barrier. One considers configurations where some of the atoms are
constrained to lie on the opposite side of the barrier from where they would be if
the configuration were a minimal energy configuration. The existence of such
relative local minima is the content of Theorem 15. See also §24, where we
interpret Theorem 15 in terms of configurations.

The method of constructing new Denjoy minimal sets in this paper is related
to the method that we used in [16]. There, as hère, Denjoy minimal sets were
constructed by minimizing Percival&apos;s Lagrangian subject to constraints. In order
to obtain invariant set in this way, one must show that the minimizing élément
satisfies Percival&apos;s Euler-Lagrange équation (in the terminology of [16]).

The main difficulty consists of showing that the minimizing élément does not
bump up against the constraints. In this paper, the relevant constraints are
inequalities 2) and 3) of §15; the fact that the minimizing élément does not bump
up against the constraints means that thèse inequalities are strict for the minimizing

élément, i.e. the inequalities 2&apos;) and 3&apos;) of Theorem 15 hold.
The method of [16] does not appear to be well adapted to proving that the

minimizing élément does not bump up against the constraints, under the hypothèses

considered in this paper. Instead, I use a method which relies heavily on
ideas from the paper of Aubry and Le Daeron [4], in order to prove this.

§2. Monotone twist diffeomorphisms (Définitions)

This paper is the study of certain properties of area preserving, monotone
twist diffeomorphisms of an infinité cylinder (R/Z)x[R. We will consider one such
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difïeomorphism / which will be fixed throughout this paper. For notational
reasons, it is more convenient to pass to the universal cover IR2 of the cylinder and
discuss an appropriate lift / of the given twist diffeomorphism.

The conditions which we impose of / in this paper are the following: First, we

require that / be the lift to IR2 of a C1 diffeomorphism of the infinité cylinder, so

fT= T/, where T is the unit horizontal translation, i.e. T(x, y) (x +1, y). Second,

we require that the form y&apos;dx&apos;-ydx on (R/Z)xR be exact, where /(x, y)
(x&apos;, y&apos;). In particular, dyf a dxr dy a dx, so / is area preserving and orientation
preserving, and the flux J y&apos; dx&apos;-ydx vanishes, where the intégral is taken over
any curve going around the cylinder. Third, we require that / préserve each end of
the cylinder. Fourth, we require that / satisfy a positive monotone twist condition,
i.e. dxf/dy&gt;0, everywhere. Fifth, we require that / twist the cylinder infinitely at
either end. This means that for fixed x, we hâve x&apos; —» +oo as y —» +oo and x&apos; —» -oo

as y —? -oo.
The exact hypothèses which we hâve just imposed on / are chosen for reasons

of technical convenience. It seems very likely that the results we prove hère can
be generalized slightly. Thus, it seems to be enough to assume that / is a positively
tilted homeomorphism rather than a monotone twist diffeomorphism. The
hypothesis that / twists infinitely at both ends seems unnecessary, as does our
assumption that the domain (and range) of / is an infinité cylinder rather than an

arbitrary annulus. A method for removing the last two hypothèses has been found
by R. Douady [10, Chapt. 2, III.2]: one compactifies the domain B of the

generating function h (defined below) and extends h to a semi-continuous
function on B. One then has involved discussions concerning semi-continuous
functions. In our case, B - M2 and no extension is necessary. Not only does this
avoid a rather technical discussion of semi-continuous functions, but it also avoids
the necessity of always having to specify the domains where the functions are
defined. In the Fall semester of 1983,1 explained the Aubry-Le Daeron theory in

my class under the more gênerai hypothèses which I hâve described above; it
seems plausible that the theory of this paper should also work under thèse more
gênerai hypothèses, but J. Bellisard has pointed out some difficulties which I hâve
been unable to overcome.

The Generating Function. The above hypothèses imply that there exists a C2

function h :U2 -» IR such that for (x, y, x, y&apos;) € R4, we hâve /(x, y) (x&apos;, y&apos;) if and

only if y -&apos;i1(x, x&apos;) and y&apos; h2(x, x&apos;), where ht and h2 dénote the first partial
derivatives with respect to x and x&apos;. The periodicity condition fT=Tf implies
h(x +1, x&apos;+ 1)- h(x, x&apos;) is a constant; the hypothesis that the flux vanishes implies
that ft(x + l,x&apos;+l) fi(x,x&apos;).

In classical mechanics, h is known as the generating function for /. Its
construction is a spécial case of classical work of various nineteenth century
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mathematicians, such as Lagrange, Hamilton and Jacobi. (Cf. Arnold and Avez
[2] or Abraham and Marsden [1].) In the spécial situation we consider hère, its
construction is carried out in [16]. The point is that graph faR4 ({x, y,x&apos;, y&apos;)}

projects difïeomorphically onto the (x, x&apos;) plane; the restriction of y&apos; dx&apos;-y dx to
graph / is exact by hypothesis; hence, y&apos; dx&apos;-y dx dh, where h h(x, x&apos;) is the
generating function.

Note that in defining the generating function, we hâve adopted the opposite
sign convention from that of our previous papers [16-19]. The sign convention
used hère agrées with that in [4], [22], and [23].

§3. Denjoy minimal sets

In topological dynamics, a minimal set is a pair (X, if/), where X is a compact
topological space and i/r is a homeomorphism of X whose every orbit is dense. A
minimal set is called a Denjoy minimal set if it admits an embedding into, but not
onto, the circle such that if/ extends to an orientation preserving homeomorphism
of the circle with irrational rotation number. If g is an orientation preserving
homeomorphism of the circle U/l and g is a lifting of g to R, then the rotation
number of g is defined to be \imn_+±oo(gn(x)-x)/n (mod. 1). Note that this limit
always exists and is independent of x. (See, e.g., Herman [12, II.2.3].) If (X, i/f) is

a Denjoy minimal set, then X is a Cantor set. If X is a Cantor set, then necessary
and sufficient conditions for (X, i/f) to be a Denjoy minimal set are that X admit a

cyclic order which the homeomorphism i(f préserves and i(/ has no periodic points.
In this case, X admits only one other cyclic order preserved by i//, namely, the

reverse cyclic order. For any cyclic order preserving embedding of X in the circle,
$ extends to a homeomorphism of the circle. The resulting rotation number is

independent of the embedding or the extension; we will call it the intrinsic rotation
number of the pair (X, t/f).

Note, however, that this intrinsic rotation number dépends on the cyclic order.
If a is the rotation number for one cyclic order, then 1 - a is the rotation number
for the reverse cyclic order. Moreover, it is defined only modulo 1.

A subset X of (R/Z)xR will be said to be a Denjoy minimal set for the

monotone twist diffeomorphism f if it is invariant for /, i.e. fX X, and (X, f\X)is
a Denjoy minimal set. The main purpose of this paper is to construct examples of
such sets, but in this section, we wish to discuss properties of Denjoy minimal sets

for /.
Let prx be the projection of (R/ZxR on its first factor. Let X be a Denjoy

minimal set for /, let x e X, and let x e M2 be an élément which projects to x under
the covering mapping (R2-^ (R/Z)xR. Then \\mn^±00(prjn(x)- prx(x))ln exists
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and is independent for x. This may be seen as follows: Let u(x) - prlf(x)-prl(x),
for xeX. Then pr1fn(x)-pr1(x) Yï=o u(flx). Since X is a Denjoy minimal set, it
is uniquely ergodic. (See, e.g., Herman [12, II.8.5].) Consequently,
Hmn^±ooXr^o u(flx)/n exists and is independent of x, as claimed. (See, e.g.,
Herman [12, II.8.4].)

The number \imn_^±00(pr1fn(x) — pr1(x))ln will be called the angular rotation
number of X. Unlike the intrinsic rotation number, it does not dépend on the
choice of cyclic ordering of X. However, it does dépend on the choice of the lift /
of /. If / is replaced by /Tr, then the angular rotation number is increased by r. If
the angular rotation number were defined only modulo 1, then it would be

independent of this lift. However, we wish to consider it as a real number. Since

we hâve made the convention that / is fixed throughout this paper, it is a well
defined real number for any Denjoy minimal set X for /.

§4. The case when an invariant circle exists

For an / invariant circle in the cylinder (R/Z)xR, the two rotation numbers

can be defined, just as for a Denjoy minimal set. In this case, however, the
situation is very simple. If the circle is null homotopic in the cylinder, then the

angular rotation number is an integer. If, on the other hand, the invariant circle
goes around the cylinder, then the intrinsic rotation number is congruent (mod. 1)

to the angular rotation number, if the invariant circle is assigned the cyclic order
which makes its projection on R/Z a degree 1 (rather than -1) mapping.

Suppose that F is an /-invariant circle which goes around the annulus.

According to a theorem of G. D. Birkhoff [6, §3], [13, Chapter I and appendix by
Fathi], there is a Lipschitz function u : R/Z —&gt; R such that F graph u.

PROPOSITION 4. Let X be a Denjoy minimal set for f, whose angular rotation
number œ is the same as that of F. If a) is irrational, then X^F.

Proof Since X is a minimal set, it is contained in a closed invariant set if it
meets that set. Applying this remark to F, to the part of (R/Z) x R which lies on or
âbove F, and to the part of (R/Z) x R which lies on or below F, we obtain that X
lies entirely above F, lies in F, or lies entirely below F.

Suppose X lies entirely above F. Consider a point in X and express it in
coordinates as (je, y) where JceR/Z, y eR. Let x be a point in R which projects
onto JceR/Z. By the monotone twist condition, prj(x, y)-prtf(x, w(jc))&gt;0, since

y &gt; u(x), in view of the fact that X lies entirely above F. Since X is compact, there
exists e &gt; 0 such that prxf(x, y) &gt; prj(x, u(x)) + e, for any (x, y) g X and any x g R
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which projects onto x. From this inequality, it follows by a known argument (see,

e.g. Herman [12, III 4.1]) that the angular rotation number of X is greater than
that of F. (For this argument to work, we need that the angular rotation number
of F is irrational.) But this contradicts the hypothesis that X and F hâve the same
rotation number. This contradiction shows that X cannot lie above F.

Since the argument of [12, III 4.1] does not apply directly to our situation, we

give a version of it applicable in our situation: Let g:R-&gt;[R be defined by
g(0 prj(t, u(F)), for teU and F its image in R/Z. We hâve g(t+ 1) g(f)+ 1 and
the rotation number of g the rotation number of F o&gt;. Let g :R/Z —» R/Z be the
induced homeomorphism of the circle. Since o&gt; is irrational, g has a unique
minimal set 77, which is either a Cantor set or the whole circle.

Choose i e R whose projection F in R/Z is in 17, but is not the endpoint of a

complementary interval of 17. Since 17 is a minimal set for g, there exist integers p,

q, with q positive, such that t + p-el2&lt;gQ(t)&lt;t + p.

Consider the interval (F, F + e/2) c R/Z. Since F e II and is not the endpoint of a

complementary interval of 17, there is an open subinterval l/c (F, t + e/2), both of
whose endpoints lie in 17, and U=h~1h(U), where h:[R/Z—&gt;IR/Z is a semi-

conjugacy of g with the rotation R^ of R/Z, i.e. hg R^h. (See [12, II.7.1], for the
existence of such a semi-conjugacy; note that is is necessarily weakly cyclic order
preserving.) Since œ is irrational, there exists N&gt;0 such that Uf^o^l(h(LD)
R/Z; then U?U g~lU U/Z. In other words, for every xeU/Z, there exists a

positive integer n^N such that gn(x)e(F, F+e/2). This implies that for every
x eR, there exists a positive integer n n(x)^N and an integer m m(x) such

that t + m&lt;gn(x)&lt;t + m + e/2.
Consider (x, y)eX and xeR whose projection on R/Z is x. We hâve shown

above that prj(x, y)&gt;prxf(x, u(x)) + e g(x) + e. Since g is order preserving, we

get, by induction on n, that prjn(x, y)&gt; g(prjn~\x, y)) + e &gt; g(gn~l(x) +e) +e &gt;

gn(x) + e. Let n1 n(x), ml m(x). By définition of n(x) and m(x), we hâve

t-f m1&lt;gn&gt;(x)&lt;t+m1-f e/2. Moreover, p and q were chosen so that f + p-e/2&lt;
; hence

Let n2= n(pr1/n&apos;+q(x, y)). Repeating the argument just given, we get

n1+n2+2q(x&gt; y) &gt; g&quot;2(pri/^^(x, y + p s* gn&lt;gn&lt;(x) + p) + p

Continuing in this way, we define, by induction, nk+1 n(prxfn^ +n*+kQ(x, y)) and
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obtain, by the same argument,

Then

since the rotation number of g is eu. Since p/q &gt; co and 0 ^ nx «s N, we obtain

pri/».+ +^+^(jc,y)-x Nco + p-fc&quot;1
&gt;

for fc large enough, where 8 is a small positive number which dépends only on N,
co, p, and q.

Since (x, y) g 5, we thus obtain a contradiction to the hypothesis that the

angular rotation number of X is co. This shows that X cannot be entirely above F.

A similar argument shows that if X is entirely below F, then its angular rotation
number is less than co, so we obtain a contradiction in this case, too. We hâve

previously shown that the only remaining possibility is X &lt;= F.

§5. Percival&apos;s Lagrangian (définition)

Slightly modifying the notation of [16], we let Y dénote the set of ail weakly
ordering preserving mappings &lt;£:(R-»IR such that &lt;£(f +1) $(0+1 and &lt;f&gt; is

continuous from the left. For &lt;\&gt; e Y and co e (R, we set

FJé)

This is what we hâve called PercivaVs Lagrangian in [16] and elsewhere. Note
that because of our change in sign convention, F^ has the opposite sign from the

corresponding function in [16-19]. The function Fw is independent of a, because

h(x + 1, x&apos;+ 1) h(x, x&apos;), cf. [16, 3.2].
In [16], we considered a mapping of a bounded annulus; hère, an infinité

cylinder. Consequently, we must make certain slight modifications to apply the
results of [16] to our présent situation. Next, we explain how to modify [16].

As in [16], we define, for &lt;f&gt; e Y, &lt;/&gt;(f-) limstt&lt;£&gt;(s), &lt;£(*+) limsit&lt;£(s),

graph &lt;f&gt; {(*, x)eU2:&lt;f&gt;{t-)^x^&lt;t&gt;(t+)}. We provide Y with the metric coming
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from the Hausdorflf metric on graphs, i.e. for &lt;£, i^e Y, we set

d(&lt;f&gt;, i/f) max jsup inf |£- tj|, sup inf |£ - tj| h

where £ ranges over graphe, r\ ranges over graph i/f, and | | dénotes the
Euclidean norm on M2.

For a eR, we let Ta(t) t + a. From the formula h(x + 1, x&apos;+ 1) h(x, x&apos;), the
définition of Fw, and &lt;K* + 1) &lt;£(*) + 1, it follows easily that F^ is translation
invariant, i.e. FJ^TJ FJ&lt;fr), for ail aeR.

Let R act on Y by (a, &lt;f&gt;) -» &lt;£Ta, and let X= Y/R dénote the set of orbits of
this action. For &lt;t&gt;e Y, we let [&lt;(&gt;]eX dénote the orbit &lt;f&gt;; we set d&apos;([&lt;f&gt;],[il/])

infaeR d(&lt;f&gt;, il*Ta). It is easily seen that df is a metric on X, because &lt;£ —&gt; &lt;t&gt;Ta is an
isometry of Y, for each aeR. Since Fw is translation invariant, it induces a

function on X which we continue to dénote by the same symbol.
The function F^ : Y —» [R is continuous with respect to the metric d. This may

be shown by a slight modification of the proof in [16, §6]. The only necessary
change is in the définition of M. Note that in [16], B was the domain of h; hère R2

is the domain of h. If we replace B by IR2 in the définition of M (using g -dh/dx
and g&apos; dfi/dx&apos;), we get M °°, which won&apos;t do. Instead, we set

M= sup m^x{l9\hl(x9x%\h2(x,x)\}9
|x-x&apos;|«2

which is finite, since h(x + 1, x&apos;+ 1) h(x, x&apos;) and h is C1. We still hâve

when d(&lt;|&gt;, i^)&lt;ô, where ô is defined as in [16, §6], since d(&lt;t&gt;, tl/)&lt;8 implies that
|&lt;Ê(f)-iKt)|&lt;2, f°r ail ^G^» as we showed in [16, §6]. The rest of the proof in
[16, §6] works without change. We obtain that F^iY—»1R is continuous, with
respect to the metric d.

The topology on X associated to the metric d&apos;is clearly the quotient topology
of the topology on Y associated to the metric d. Consequently, F^iX^IR is

continuous with respect to the metric d&apos;.

The space (X, df) is compact. For, let Y0 {&lt;f&gt; gY:#)^0 ift^O and &lt;f&gt;(t)^O

if t&lt;0}. The argument of [16, §5] shows that Yo is compact. For, the mapping
&lt;t&gt; —&gt; graph 4&gt; H [0,1] embeds Y, d) isometrically as a closed subset in the space of
closed subsets of [0, l]2 with the Hausdorff metric. Since it is well known, and

easy to prove, that the latter space is compact, it follows that Yo, d) is compact.
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But the projection Yo—»X is continuous and surjective, so it follows that (X, d&apos;)

is compact.
Since F^ is a continuous function on the compact space X, it takes a minimum

value. Consequently, F^: Y—&gt;[R also takes a minimum value. From now on, we
will let 4&gt;m g Y be an élément where F^ takes its minimum value. We choose one
such élément once and for ail. It will be fixed throughout the discussion. From the
fact that F^ takes its minimum value at ^ it may be shown that &lt;^w satisfies the

corresponding Euler-Lagrange équation, which may be written formally as

for ail teU. The reasoning of [16, §10] (with Yw replaced by Y) shows that this
équation is satisfied for &lt;f&gt; ^ (The sign we are using hère is opposite that in
[16].)

Because we require the éléments of Y to be order preserving, it is not an
immédiate conséquence of the fact that &lt;f&gt;œ minimizes F^ over Y that the

Euler-Lagrange équation is satisfied; indeed, the Euler-Lagrange équation is not
satisfied at a point &lt;f&gt; of Y where F^ takes its maximum value. On the other hand,
it is an immédiate conséquence of Theorem 6 of the next section that the

Euler-Lagrange équation is satisfied by &lt;£&lt;„, since no order condition is imposed
on éléments of Y*, and consequently there is no difiiculty seeing that there are
enough test curves. Thus, Theorem 6 provides an alternative proof of the

Euler-Lagrange équation for &lt;!&gt;„. Note that Fw does not take a maximum value on
Y*.

Set T)a&gt;(t) -h1(&lt;t)Oi(t),&lt;f&gt;tti(t + ù))). From the définition of the generating function,

it follows that f(4&gt;m(t), î|a&gt;(0) (&lt;£«(*+ &lt;o), V&lt;*(t + &lt;o)). We set

According to what we hâve just proved, Mw is invariant for /. In the case co is

irrational, the projection of M^ on the cylinder is the Denjoy minimal set X^
whose existence we proved in [16].

§6. Application of the Aubry-Le Daeron method: statement of the theorem

Let n be a positive integer. Let Y* dénote the set of measurable and locally
bounded mappings &lt;f&gt; :IR-»iR such that &lt;£(t + n) &lt;t&gt;(t) + n. For &lt;f&gt;€Yn and w eR,
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we set

This independent of the choice of aeU. We continue to call Fw PercivaVs

Lagrangian. Clearly, YaYt and we hâve extended the previously defined Fœ.

We continue to let &lt;t&gt;w dénote an élément of Y which minimizes Fw over Y. In
§§7-10, we will prove:

THEOREM 6. &lt;(&gt;*&gt; minimizes F^ over Y*, /or every positive integer n. Moreover,

if a) is irrational and &lt;f&gt; is any élément of Y* which minimizes F^ over Y*, then
there exists aeU such that &lt;t&gt; 4&gt;jra, almost everywhere, where Ta(t) t + a.

The proof dépends on ideas which are due to Aubry and Le Daeron [4]. There
are three main steps in the proof that &lt;t&gt;œ minimizes Fw over Y*.

First, we will show in §7 that if F^ takes a minimum value over Y*, it takes its
minimum value at &lt;^w (Lemma 7.3). Second, we will show that in §8 that F^ takes

a minimum value over Y^ when &lt;o is rational, say co p/q in lowest terms. The
trick is to replace the original problem of minimizing Fp/q over Y* with an

équivalent problem of minimizing another function W over a finite dimensional

space âfpqn/T, which has the property that for any aeU, {W^a} is compact.
(Lemma 8.1). This is possible because œ is rational. In view of the resuit of §7, it
will follow that Fp/q takes its minimum value over Y* at &lt;£&gt;p/q. Thus, the first
statement of Theorem 6 will be proved in §8 for the case when eu is rational.

Third, we consider in §9 the possibility that F^ does not take a minimum value
in Y*. In this case, for any &lt;t&gt;eYt, there exists &lt;f&gt;&apos;e Y* such that FJ^&apos;K^W-

By the resuit of §8, Fp/q(&lt;£p/q)^Fp/q(&lt;£&apos;)- By suitable approximation lemmas, we
show in §9 that {F^i^-Fj^l and |Fp/q(&lt;^p/q)-Fa)(^p/q)| are arbitrarily small
when plq is close enough to &lt;o. Thus Fa)(&lt;^p/q)&lt;Ftu(^), if p/q is close enough to o&gt;.

Since &lt;£p/q € Y and &lt;£w minimizes F^ over Y, we then obtain Foi(&lt;t&gt;w)&lt;F(0(&lt;f&gt;), so ^
minimizes FM over Y^, proving the first statement in Theorem 6.

The last statement of Theorem 6 wUl be proved in §10.

§7. Application of the Aubry-Le Daeron method: the existence oi a minimizing
élément implies &lt;£&gt;u minimizes

We need an inequality which (in slightly différent form) is due to Aubry and

Le Daeron [4]. Given &lt;f&gt;, &lt;£&apos; g Y£, we define the latatice opérations, as usual, by

4&gt; v&lt;t&gt;&apos;(t) max (&lt;f&gt;(t), &lt;t&gt;&apos;(t))9 &lt;f&gt;A&lt;f&gt;&apos;(t) min
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It is easily seen that if &lt;£, &lt;j&gt;re Y^, then so are &lt;fr v&lt;f&gt;&apos; and &lt;f&gt;A&lt;f&gt;&apos;. The following
result is a slight variant of earlier results of [4]. Its proof follows the method of
[4]. Bangert has pointed out a remarkable connection of this method with the
ideas of Morse [21] and Hedlund [11]. Hère is our formulation of the Aubry-Le
Daeron resuit:

LEMMA 7.1. If &lt;f&gt;, 4&gt;feY*n, then Fj&lt;f&gt; v &lt;fr&apos;) + FJ&lt;£ a &lt;f&gt;f)^FJ&lt;t&gt;) + FJ4&gt;&apos;).

Proof. Write h12(x, x&apos;) for the mixed second partial derivative d2h(x, x&apos;)ldx dxf.

Clearly,

h(xvx&apos;,x&quot;vx&apos;&quot;)-h(x,x&quot;)-h(xf,x&quot;t)

ç x&quot;vx&apos;&quot; pvx&apos;

d€&apos;\ &lt;*#«(«, f),
Jx&quot;/\X&apos;&quot; *X/\x&apos;

when either of the conditions 1) x&lt;x&apos; and x&quot;&gt;x&apos;&quot; or 2) x&gt;x&apos; and x&quot;&lt;x&apos;&quot; is

satisfied. Otherwise, the left side of this équation vanishes. Consequently,

&apos;) n-1^ dr JJ h12(x, x&apos;) dxdx\
D(t)

where E {f€[0, n]:(&lt;t&gt;(t)-&lt;t&gt;&apos;(t))(&lt;t&gt;(t + ù))-&lt;f&gt;f(t + o)))&lt;0} and D(t) {(x, x&apos;)e

Since h12&lt;0, we obtain the desired inequality.

LEMMA 7.2. Let ^Yj and suppose &lt;$&gt; minimizes F^ over Y^. Let if/(t)
Then F«(«) FW(^).

Proo/. From the translation invariance of Fw, we hâve F^TJ Fw(^), for any
a€R. From Lemma 7.1 and the assumption that 4&gt; minimizes Fw over Y^, we
then obtain

a &lt;^Ta) FJ4&gt; v *TJ FJ4&gt;)

Let a(l),... a(m),... be an enumeration of the positive rational numbers. Re-
peating the argument we hâve just given m times, we obtain
where i^m &lt;f&gt; A&lt;^a(1)A • • • A4&gt;a(w). Since &lt;f&gt; is locally bounded and
&lt;f&gt;(t)-h n, we hâve that i^m(f) is bounded below by inf {&lt;£(s) • t ^ s ^ t + n}, for ail m.
We hâve &lt;b*ztyx*z- • -^^m^- • • and there is, for each finite interval [a, b], a
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number C, such that i/fm | [a, b ]^ C for ail m, namely C inf {&lt;£(s) : a ^ s ^ a + n}.
Consequently, iAoo(0 limm_w^m(r) exists, for ail teR.

Moreover, {|h(i/fm(f), «|fm(f + &lt;o))|:m is a positive integer, te[0, n]} is bounded,
so Fa)(^0o) limm_^O0Fa&gt;(i/rm) Ffa)(^) by the dominated convergence theorem.

In order to complète the proof, it will be enough to show that \\t ifc», almost
everywhere. First, we hâve that t/f^i/^, almost everywhere. Let toeU, a&gt;0. Let
e a/2. By définition of the essential infinum, &lt;t&gt;(t + a)^ess. inf{&lt;£($) : fo +
a-e&lt;s&lt;to+a + e}, for almost ail te(to-e, to+e). For any such t, we hâve
&lt;^(f + a)^i^(f). Since t0 is arbitrary, we hâve 4&gt;(t + a)^ilt(t), for almost ail teU.
Since ^«(0 inf {&lt;£(* + &lt;*):&lt;* is a positive rational number}, it foliows that
&lt;fc»(f)^«Kf), for almost ail teU.

In order to show that 1//^ i/&gt;, almost everywhere, we first show that ^ is order
preserving except on a set of zéro measure. For a positive rational number a, we
hâve ipooTa^ifjn, by définition of 1/^. Since ^e^W, Le. is measurable and
bounded on bounded sets, we hâve that i/&gt;ocTa -&gt; \\faoTh in 3?îoc(M) as a -» 6, i.e.
Jx l^ocTa—^ocTb| —&gt; 0 as a —&gt; 6, for any finite interval I. Since ^00^^^», for positive
rationals, it follows that if b&gt;0, then ipooTb^if/^, almost everywhere, by this

convergence resuit. In other words, for each 6&gt;0, the set of teU for which
«Aoo(t)&gt;^oo(f + b) has zéro measure; it follows by Fubini&apos;s theorem that the set of
(t, b)eU2, b&gt;0 such that ilfOc(t)&gt;*t&apos;oc(t + b) has zéro planar measure. This implies
that {(t, s)e!R2:(f-s)(i|/oo(r)-^oo(s))&lt;0} has zéro measure. By Fubini&apos;s theorem,
there is a set JE&lt;=[R of zéro measure, such that if t£E, then {se!R:(r —s) x
(^&lt;x&gt;(t)~&quot;^oo(s))&lt;0} has zéro measure. Suppose t,s£E, t&lt;s. Then, for almost ail u

satisfying t&lt;u&lt;s we hâve ^oo(0^^oo(w) and i/^CiO^iMs). Consequently i^œCO^

Ws). We hâve proved that if s, t£E, s&lt;t, then ^«(s)^^»^).
For t£E, we therefore hâve i^JO^ess. infs^ti//oo(s)^ess.infs^(&lt;^(s)

Since E has zéro measure, we hâve proved that 1^00^^ almost everywhere.
Since 1/^= i/r, almost everywhere, we hâve F^Ci/O F^Ci/O F^iQ). D

LEMMA 7.3. If Fw fafces a minimum value over Y^, then if takes its minimum
value at c^,.

Proof. Suppose F^ takes its minimum value at &lt;f&gt; s Y£. Let ifj(t)
ess.infs3st&lt;fr(s). Then FtoW F&lt;o(^), by Lemma 7.2. We hâve that i/&gt; is ordered
and iHf + n) tMr) + n, so ^a^TVa • • • A^Tn_!€y. Since $ minimizes Fw over
V*, Lemma 7.1 and the translation invariance of F^ imply FJifr a &lt;0rT) Fji/r). By
induction, FJi^ a^ a • • • a ^Tn_x) Fji/0- Since ^ a • • • a ^Tn_! g Y and

minimizes F^ over Y*, and since 4&gt;m minimizes F^ over Y, we obtain that &lt;f&gt;w

minimizes F,, over Yî.
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§8. Application of the Aubry-Le Daeron method: rational rotation number

We follow the Aubry-Le Daeron terminology [4] and call any bi-infinite
séquence x x,,...) of real numbers a configuration. Given &lt;£ g Y£, &lt;o eU,
and teU, we let x x&lt;ixot dénote the configuration defined by x, &lt;l&gt;(t + ù)i).

Suppose o) is rational. Let &lt;o plq in lowest terms, with q&gt;0. The configuration

x x4ku1 obviously satisfies xl+qn/r xl + pn/r. Let âfpqn dénote the set of ail
configurations which satisfy this condition. Given x e âfpqn, we define

W(x)

where r is the gratest common divisor of n and p.
As i runs from 0 to nr~lq-l, the congruence class of coi (mod. n) takes each

value in q-1rZ/nZ exactly once. For, multiplication by qr~l defines an isomorph-
ism q~1r//nZ^Z/qr&quot;&quot;1nZ and qr~1a)=pr~1 is an invertible élément in this ring.
Consequently,

fi=0

for 4&gt; g Y%_ and f gIR. This implies

Given x g âfp^, there exists a unique &lt;/)gYÎ such that x^, x, for a ^ f &lt; a + rq~x.

It follows that if x minimizes W over â?^, then &lt;f&gt; minimizes Fw over Y^,
where &lt;f&gt; is the unique élément in Y^ such that x x4xot for a^t&lt;a + rq~1.

Therefore, in order to prove that there exists &lt;t&gt;eY^ which minimizes Fœ over Y*,
it is enough to prove that there exists x g âf^ which minimizes W over ^vcpx. We

may prove the existence of such an x by means of the following simple topological
argument.

A point x x,,...) in d£vqn is determined by (x1?..., xqn/r). Thus, we may
identify dCvm with IRqn/r. We use this identification to topologize Xvvt. We let
T: âf^-^ âf^ be defined by (Tx)l xl + 1. dearly WT=W, so W induces a

function, which we continue to dénote by W, on the quotient space d£mJT.

LEMMA 8.1. Wtâfpqn/T-^R is proper; in fact, for any aeU, {W^a} is

compact.
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Proof. Set /(x, y) (x&apos;, y&apos;). Since / commutes with (x, y) h-» (x + 1, y), we hâve
that |x-x&apos;| is defined on the quotient space (U/2)xM. Since (IR/Z) + [-l, 1] is
compact, it follows that |x-x&apos;| is bounded on {|y|^l}. Likewise, |x-x&apos;| is
bounded on {|y&apos;|^l}. Let C be the maximum of |x-x&apos;| over {|y|^l}U{|y&apos;|^l}.
Then |y| ^ 1 and |y&apos;| ^ 1 on {|x - x&apos;| ^ C}. Since / satisfies a positive twist condition,
we hâve y^ 1 and y&apos;s^l when x&apos;-x^C and y^-1, y&apos;^-1, when x&apos;-x^-C.
Since y ~Mx, xr), y&apos; h2(x, x&apos;), we obtain

hl(x,xf)^-l,h2(x,xf)^l, if x&apos;-x^C,

ht(x, x&apos;)2* 1, h2(*, x&apos;)^~l, if x&apos;-x^-C

Since h(x + 1, x&apos;+ 1) h(x, x&apos;) and h is continuous, there exists a constant A
such that h(x, x&apos;)^ A on |x&apos;-x|^C Combining this with the inequalities above,
we obtain

everywhere. Hence

W(x)^q(A-C)+ S m^k-x,^!,
i=O

for x xt...) g dCmn and it follows immediately that W is proper on

It follows immediately from Lemma 8.1 that W takes its minimum value on
âfpqn. Let x € â^ minimize W. Let &lt;\&gt; be the unique élément of Y* such that
x=zx&lt;tx»t for O=^f&lt;rq&quot;1. By the remarks preceding Lemma 8.1, we see that &lt;\&gt;

minimizes Fw over Y*. By Lemma 7.3, we obtain that &lt;f&gt;œ minimizes Fw over Y*.
Recalling that co was an arbitrary rational number throughout this section, we
obtain:

LEMMA 8.2. When &lt;o is rational 4&gt;m minimizes F^ over Y%. D

§9. Approximation by rationals

Having established in Lemma 8.2 that 4&gt;w minimizes F^ over Y^ when o&gt; is

rational, we will now prove it when eu any real number, by means of an
approximation argument. This argument will dépend on two facts: first, for
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&lt;f&gt; e Y^, we hâve that co »-* F^iQ) is continuous. Second, for &lt;f) e Y, this continuity
is uniform in &lt;f&gt;. Thèse facts are stated and proved in the next two lemmas.

LEMMA 9.1. For any &lt;f&gt; e Y^, the mapping co t~^F(ti(&lt;f&gt;) is continuous.

Proof. Let cogR and let e&gt;0. Let C sup |cf&gt;| | [0, n]U[co-l,co + n +1]. We
hâve C&lt;oo, since &lt;f&gt; e Y^. Let B sup \h\ | [-C, C]2. Since &lt;t&gt; is measurable, there
exists a compact set Xc[û&gt; — l,co + n + l] such that the Lebesque measure of
[co —l,û&gt; + n +1]\X is less than ne/5B and &lt;£ | X is continuous. Let 8t&gt;0 be

such that if |x|, |x&apos;|, \x&quot;\^C and Ix&apos;-x&quot;^»!, then |h(x,x&apos;)-h(x,xw)|&lt;e/5. Let
l&gt;5&gt;0 be such that if t, t&apos;eX and |r-r&apos;|&lt;ô, then \&lt;f)(t)-&lt;l&gt;(t&apos;)\&lt;81.

Suppose cj&apos;eU and |o&gt;&apos;-o)|&lt;8. Let te[0, n]. K r + co and t-fto&apos; are both
members of X, we hâve |&lt;£(f+ to)-&lt;Mf + g&gt;&apos;)|&lt;8i and consequently,

Let E be the set of te[0,n] such that at least one of t + co or f + &lt;o&apos; is not in X.
Clearly, the Lebesque measure of E is less than 2ne/5B, and |h(&lt;£&gt;(t), &lt;£(f + o&gt;)) —

h(*(0,*(t + û&gt;0)I^IM*(0,*(t + û)))| + |h(*(0,*(^ + «&apos;))l^2B, for ail r€[0,n].
Consequently, setting E&apos; [0, n]\£s, we hâve

J

&lt; [(2ne/5B)(2E) + ne/5] e. D

LEMMA 9.2. For any compact set K of real numbers, there exists a constant C
such that if &lt;j&gt;eY and co, co&apos;eK, then \FJ4&gt;)-Fu&gt;(4&gt;)\^C\&lt;o&apos;~-&lt;o\.

Proof. Let N be an integer such that |co|^N and |co&apos;|^N, if co, w&apos;eK. Since

4&gt;eYy we hâve |&lt;^(t)-&lt;^(t + co)|^N and |&lt;/&gt;(f)-&lt;Mt + co&apos;)|^N, if co, co&apos;eK Let
C sup{|h2(x,x&apos;)|:|;c&apos;-x|^N}. We hâve C&lt;oo, since h is C1 and

x&apos;+l) h(x,x&apos;). Then

^CJ

if co, a)&apos;£ K. The inequality is a conséquence of the mean value theorem, the
définition of C, and the fact that |&lt;Mt)-&lt;£(f + a&gt;)| anc* \&lt;f&gt;(t)-&lt;f&gt;(t + ù)&apos;)\ are both
less than N.



More Denjoy minimal sets 525

From the periodicity &lt;f&gt;(t+ 1) &lt;f&gt;(t)+ 1, we get

&lt;i&gt;(t + ù))dt=\ &lt;t&gt;{t)dt=\ &lt;f&gt;(t)dt+\ &lt;j&gt;(t)dt

(*(r) + [o&gt;Ddr+ (&lt;W) + M+l)dr

Since &lt;£ is weakly order preserving, the sign of &lt;t&gt;(t + a))-&lt;t)(t + a)f) never changes,
and we obtain the last équation.

Proof that &lt;£w minimizes F^ over Y?|. In §5, we showed (by a slight modification
of the argument in [16]) that there exists an élément ^ in Y which minimizes F^
over Y. Now we will finish the proof that &lt;£w minimizes F^ over the larger space
Y^, which is the first assertion in Theorem 6.

Let &lt;£ € Yj. We wish to prove that Faj(^tu)^Fto(&lt;^). It is enough to prove that
there exists &lt;£*g Y such that F&lt;o(^&gt;*)^Faj(&lt;()), since &lt;^ minimizes F^ over Y.

By Lemma 7.3, if &lt;£ minimizes F^ over Y^, then F^cfr) FJ^^J and we are
done. Therefore, we may assume that &lt;£&gt; does not minimize Fœ over Y^. TThen

there exists &lt;)&gt;&apos;GY*n such that Fj^&gt;&apos;)&lt;Fa&gt;(^). Let e =Fto(&lt;£)-Ftu(4&gt;&apos;). Let K be a

compact subset of R which contains co in its interior. Let C be the constant given
by Lemma 9.2. Let p/q be a rational number in K such that C |&lt;o - p/q| &lt; e/2 and
|Ftu(^&apos;)-Fp/q(&lt;^&apos;)l&lt;e/2. Such a number exists by Lemma 9.1. By Lemma 8.2,
iW4&gt;p/&lt;i)^*W&lt;fr&apos;). By Lemma 9.2, \Fj&lt;t&gt;p/q)-Fp/q(&lt;t&gt;p/Q)\^C\œ-p/q\&lt;e/2, since,

by définition, &lt;£p/q e Y. Hence,

FJ&lt;t&gt;p/Q) &lt; Fp/q(&lt;t&gt;p/q) + e/2 ^ Fp/q(c&lt;&gt;0 + e/2 &lt; F^&apos;) + e=FOi(&lt;t&gt;).

We may therefore take &lt;£* &lt;£p/q. D

§10. Uniqueness up to translation of the minimizing élément

In §9, we finished the proof of the first assertion in Theorem 6. In this section,

we will prove the remaining assertion in Theorem 6.

Let A dénote the set of aei such that {teM:&lt;t&gt;(t)&gt;&lt;f&gt;OiTa(t)} has positive

measure. Let B dénote the set of aeR such that {teiR:&lt;M0&lt;&lt;koTa(0} has

positive measure. If aeR\(AUB), then &lt;t&gt; &lt;l&gt;o,Ta, almost everywhere. Conse-

quently, to prove the last assertion in Theorem 6, it is enough to show that

AUB^IR. We will suppose that AUB=IR and obtain a contradiction.

By the order preserving property of &lt;\&gt;^ we hâve that if b &lt;a and aeA then

beA, and that if b&lt;a and beB then aeB. Moreover, since &lt;^w is order
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preserving, it is continuous at ail but at most countably many points. Conse-

quently, A and B are open. Therefore, the hypothesis that A U JB IR implies that
A C\B is an open interval.

Let Bo={t€[0,n]:(&lt;Kr)-*JflW)(^(r + û))-^Tfl(r + û)))&lt;0}. Taking &lt;t&gt;f

4&gt;JTa, we hâve that Ea is the set E which appears in the proof of Lemma 7.1. It is

clear from the proof of Lemma 7.1 that the inequality in Lemma 7.1 is strict if
and only if E has positive measure. By hypothesis, &lt;f&gt; minimizes Fw over Y*. By
the first assertion in Theorem 6 and the translation invariance of F^, 4&gt; 4&gt;JTa

minimizes F^ over Y*. Since both &lt;f&gt; and &lt;f&gt;&apos; minimize F^ over Y*, the inequality
in Lemma 7.1 cannot be strict. Consequently, Ea — E has zéro measure, whatever
the real number a is.

Let Fa={te[0,n]:&lt;f&gt;(t) &lt;i&gt;wTa(t)}9 F {(r, a): f eFj. Clearly, F is a measura-
ble subset of U2. The mapping &lt;/&gt;„ is strictly order preserving according to
Addendum 2 to the Theorem in [16]. (Strictly speaking, we cannot apply the
results of [16], since the conditions we hâve imposed on / in this paper are slightly
différent from the conditions which we hâve imposed in [16], as we hâve pointed
out in §5. However, the proof of Addendum 2 in [16, §12] applies in the context
of this paper, without change.) Since ^ is strictly increasing, for each teU there
is at most one a eU such that &lt;j&gt;(t) &lt;frwTa(0. By Fubini&apos;s theorem, it follows that
F has vanishing planar measure; a second application of Fubini&apos;s theorem shows

that Fa has zéro linear measure, for almost ail aeU.
Since A H JB is an open interval, it follows that we may choose a eADB such

that Fa has zéro measure. Let Ga ={t:&lt;t&gt;{t)&gt;&lt;t&gt;oJa{t)}, Ha {t:&lt;t&gt;(t)&lt;&lt;f&gt;toTa(t)}.

The translation t*-*t + œ maps Ga\Ea into GaUFa and Ha\Ea into HaUFa.
Moreover, the image of GaUFa under this translation contains Ga\Ea and the

image of Ha UFa contains Ha\Ea. Since Ea and Fa hâve zéro measure, it follows
that Ga and Ha are invariant (mod. sets of zéro measure) under f »-&gt; f+ co. By the

periodicity property &lt;t&gt;(t + n) &lt;f&gt;(t) + n of éléments of Y*, Ga and Ha are
invariant under t*-+t + n.

Since cj is irrational and n is an integer, the group of translations gênerated by
a) and n is ergodic, i.e. every set invariant (mod. sets of zéro measure) under both
thèse translations has zéro measure or full measure. But this contradicts the facts
that Ga and Ha both hâve positive measure (since a e A HB), both are invariant
(mod. sets of zéro measure) under both thèse translations, and GaC\Ha 0 (by

définition). D

§11. The Aubry-Le Daeron notion of ground-state configurations

When o) is irrational, the set Mw which we defined near the end of §5 (and in

[16]) corresponds to the set of ground-state configurations of mean atomic
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distance &lt;o, in the terminology of Aubry and Le Daeron [16]. The purpose of this
section is threefold: first, to explain the Aubry-Le Daeron notion of stationary
configurations and of ground state configurations of mean atomic distance co;

second, to explain how stationary configurations correspond to orbits; and third,
to show that a stationary configuration corresponds to an orbit in Mw if and only
if it is a ground-state configuration of mean atomic distance eu.

Thèse results should be obvious for anyone who has mastered the theory of
Aubry and Le Daeron [16]. We hâve included them for the convenience of the
reader and for the sake of completeness. The third point above does not seem to
follow easily from the theory developed by the author in [16]; for this, the theory
of Aubry and Le Daeron seems superior. In this section, we will deduce this third
point from Theorem 6 and results of Aubry and Le Daeron [16].

In the Aubry-Le Daeron terminology, a bi-infinite séquence x x,,...)
of real numbers is a configuration of atoms, the xt&apos;s representing the atoms. Given
a configuration x xt,...) and integers m&lt;n, we set Wmn(x)
Xr=Tm h(xt, xl+1). Following the Aubry-Le Daeron terminology, we say that a

configuration is a minimal energy configuration if for any pair of integers m &lt; n
and any configuration x&apos; such that x^=xm and x&apos;n= xn, we hâve \¥mn(x)^
Wmn(xr). It is an immédiate conséquence of the Fundamental Lemma of [4] that if
x is a minimal energy configuration and x&apos; is any other configuration with xjn xm

and x^ xn then we actually hâve strict inequality; Wmn(x)&lt; Wmn(x&apos;)- A minimal

energy configuration is clearly a stationary configuration, in the sensé that
h2(xl^uxl) + hl(xvxl+i) 0, where h1 and h2 dénote the first partial dérivations
of h, with respect to the first and second variables, respectively. If we set yt

-h^x,, xl+1), then f(xl5 y,) (xl+1, yl+1), if x is a stationary configuration; in this

way, we obtain a one-one correspondence between stationary configurations and

orbits of /. Thus, the minimal energy configurations correspond to a class of orbits,
which we call minimal energy orbits.

PROPOSITION 11.1. Let a) be irrational Every orbit in Mw is a minimal

energy orbit.

Proof. Given &lt;f&gt;eY and feR, we define configurations x^^ and x^^ by
(x&lt;*xot+)i &lt;Kt + coï + x&lt;tMjit^ &lt;t&gt;(t + o)i-), for iel. In view of the définition of Ai
(end of §5), the order preserving property of &lt;t&gt;M, and the left-continuity of &lt;\&gt;^ an

orbit of / is in MM if and only if there exists teU such that the corresponding

stationary configuration is either x^^ or x^-, with &lt;£&gt; $„. Thus, it is enough to

prove that thèse configurations are minimal energy configurations.

Suppose, for example, that x^^ (where &lt;t&gt; &lt;t&gt;J is not a minimal energy

configuration, so there exists a configuration x&apos; and integers m&lt;n such that
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*m=(***+)m. &lt;=(*W»-)n, and Wmn(x&apos;)&lt;Wvnn(x4ttM+). Let 8 &gt; 0 and set

&lt;£&apos;(s) x[, if

&lt;Ê&apos;(s + l) *&apos;(«), for ail s, and

&lt;t&gt;&apos;(t) &lt;f&gt;o&gt;(t), whenever &lt;f&gt;&apos;(t) is nat defined by the previous two conditions.

For ô&gt;0 small enough, there is no contradiction between the first two
conditions, since co is irrational. Consequently, $&apos; is defined. Clearly, feYt
Moreover,

where

A(s)=Wmn(x4xos)-Wmn(x&apos;)

C(s) h(^(s 4-ton), ^(s 4- io(n + 1))- fe (*«(* + am+), &lt;/&gt;„(« + &lt;o(n +1)))).

Clearly, A(s)-* Wmn(x&lt;Mt+)- Wmn(x&apos;)&gt;0, B(s)-&gt;0, and C(s)-&gt;0, as s|r.
Consequently, F&lt;u(^&gt;to)-F&lt;o(^)/)&gt;0, for ô&gt;0 small enough. But this contradicts the
fact that 4&gt;&lt;* minimizes F,,, over Y* (Theorem 6).

This contradiction shows that x^t* is a minimal energy configuration. The
proof that x^- is a minimal energy configuration is similar.

Aubry and Le Daeron hâve shown [4, Theorem 3] that if x xt...) is a

minimal energy configuration, then

/= Hm

exists. In their terminology, / is called the mean atomic distance of the configuration

x. It is the same as the angular rotation number of the corresponding orbit.
(The conditions that Aubry and Le Daeron impose on / are slightly différent from
the conditions which we impose, but their proof works without essential change
under our hypothesis. This comment applies also to the other results of Aubry
and Le Daeron which we quote in this and the next section.)

Aubry and Le Daeron hâve also shown [4, Theorem 4] that if co is irrational,
then the set of minimal energy configurations of mean atomic distance o&gt; is totally



More Denjoy minimal sets 529

ordered, viz. if x and x&apos; are minimal energy configurations of mean atomic
distance eu, then one of the following holds: xl&lt;x&apos;l, for ail iel; xx x[, for ail
«eZ; or xl&gt;x&apos;l9 for ail ieZ.

Let Min^ c M2 be the union of ail minimal energy orbits of angular rotation
number eu. The statement that the set of ail minimal energy configurations of
mean atomic distance eu is ordered is équivalent to the statement that Min^ is

/-monotone in the sensé of [18], i.e. if pr1 dénotes the projection of M2 on its first
factor, then prx : Minœ —&gt; IR is injective and / préserves the order on Min^ induced
from the order on R.

From the définition of minimal energy orbit, it follows easily that the union of
ail minimal energy orbits is a closed subset of IR2. If eu is irrational, the fact that
Min^ is /-monotone is easily seen to imply that Min^ is closed. Moreover, Min^ is

bounded in the vertical direction, i.e. there exist constants A&lt;B such that
Minwc:Rx[A,B].

For, if we write /(x, y) (x\ y&apos;), we hâve that x&apos; —&gt; ±0°, as y —? ±0°, for fixed x,
by the fifth condition imposed on / in §2. It is an easy conséquence of the positive
monotone twist condition dx&apos;/dy&gt;0 (i.e., the fourth condition in §2) and the

periodicity condition fT=Tf (i.e. the first condition in §2) that this convergence is

uniform in the sensé that x&apos;-x —&gt; ±00 as y -» ±00, uniformly in x. Consequently,
we may choose A such that x&apos;&lt;x + [eu] when y^A and B such that xr&gt;

x+ [o)]+ 1 when y^B, where [eu] dénotes the greatest integer ^eu. Taking into
account the hypothesis that eu is irrational and therefore is not an integer, the fact
that Min^ if / monotone, the fact that fT Tf, and the fact that every orbit in
Min^ has angular rotation number eu, we obtain that [eu]^x&apos;-x^[eu]+1 if
(x, y)eMin&lt;o and (x\y&apos;) f(x,y). Consequently, Min^ c|Rx[A, B], as asserted.

Since Min^ is closed, bounded in the vertical direction, and T-invariant, it
follows that MinJTc=(|R/Z)x|R is compact. Let prx dénote the projection of
(R/Z)xR on its first factor. Since Min^ is /-monotone, it follows that

prx : MinJT —» R/Z is injective and / préserves the cyclic order on MinJT induced
from that on R/Z. The rotation number of /:MinJT-»MinJT defined with

respect to this cyclic order is obviously co.

In summary, f :MinJT-* MinJT is a homeomorphism of a cyclically
ordered, compact metric space, of rotation number co. Because eu is irrational, it
follows that the set of récurrent orbits in MinJT is the unique minimal set of

MinJT. The proof of this is the same as in the case of an orientation preserving

homeomorphism of the circle with irrational rotation number. See, for example,
Herman [12, II.7].

By Proposition 11.1, Mw &lt;= Min^. Because Xa =MJTa MinJT is a Denjoy
minimal set, it is the unique minimal set of MinJT, which, as we hâve seen, is the
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set of récurrent points of Min^T. We hâve proved:

PROPOSITION 11.2. X» is the set of f-récurrent points in MinJT. D

Our purpose in going through this lengthy but elementary discussion is to
show the relation between the Aubry-Le Daeron theory [4] and our theory [16].
(See also Chenciner [9].) Aubry and Le Daeron call a minimal energy configuration

a ground-state configuration if the corresponding orbit in ({R/Z)x|R is récurrent.

We may restate Proposition 11.2 in the Aubry-Le Daeron terminology, as

follows:

PROPOSITION 11.3. An f-orbit is in M^ if and only if the corresponding

stationary configuration is a ground-state configuration of atomic mean distance co.

n

§12. The Aubry-Le Daeron notion of minimal energy configurations

Throughout this section, we suppose that co is irrational. We recall the

définition of M^ from [18] and show that an /-orbit is in M^ if and only if the

corresponding stationary configuration is a minimal energy configuration in the

sensé defined in the previous sedtion.
We continue to let 4&gt;&lt;o t&gt;e an élément of Y where F^ takes its minimum value.

For teU, we let âfwt dénote the set of states x xv...) such that

&lt;Mf+«H^*,^*«(*+ûw+). Thus ar^ nr--«[&lt;fr«(^+«H, *«(^+««+)]. we
provide dCwt with the product topology. When t is a point of continuity of &lt;£&lt;„, we
hâve that â?w( is one point; otherwise, âf^ is the Hilbert cube. For x e

where xf &lt;£«,(* + &lt;ai±). We hâve ^T^-ooX^ — x&apos;^l, since the intervais (x~, x?)
are distinct holes in the Cantor set prxX^ c IR/Z (where prx dénotes the projection
of R/ZxR on its first factor; cf. [18, §13]). Consequently, the sum above is

absolutely convergent and Gwt is a continuous function on âfwt. According to [18,
Lemma 6.2], G&lt;of(x&quot;) Ga)t(x+) 0 and G^^O, everywhere on afœt. (Note that
the sign convention in [18] is opposite that which we are using in this paper. What
we called G^ there is G^t, x° is x&quot;, and x1 is x+.)

As in [18, §9], we define A^,, to be the set of ail (xl, y,), where x ranges over
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(O), i ranges over ail integers, and yl -h1(xl9xl+1). We let

where t ranges over M. This is the définition given in [18, §9]. This is related to
the Aubry-De Daeron notion of minimal energy configurations by:

PROPOSITION 12. Ifw is irrational, then Min^AC

In other words, an /-orbit is in M^ if and only if the corresponding stationary
configuration is a minimal energy configuration of atomic mean distance eu. Note
that Mi is /-invariant by [18, Proposition 9.1].

Proof. First, consider an orbit in M^t and let x x,...) be the
corresponding stationary configuration. If the orbit is in MM9 then the corresponding
stationary configuration is a minimal energy configuration of atomic mean
distance &lt;o, by Proposition 11.3. Otherwise, by définition of M&apos;w, there is a point t of
discontinuity of $&apos;„ such that xeâf^j and Gwt(x) 0.

It foliows that x is a minimal energy configuration. For, otherwise, there is a

second configuration xf and integers m and n with x[ xx for i^m or i^n and
Wmn(x&apos;)&lt; Wmn(x). Consider integers m&apos;&lt;m and n&apos;&gt;n. Let x~ &lt;f&gt;(O(t + cui—). Let
x* x~, for i^m&apos; and i^n\ and xï x[, for m&apos;&lt;i&lt;nr. Then

WmW(x~)-Wm.n.(x*)= I (h(x:,xT+1)-h(x*,

where
m&apos;-l qc

A= X + I
(=—oc i=n

B

C

The second equality above follows from the définition of Gwi{x). The third follows
from the fact that Gcof(x) 0, the définition of x*, and the fact that xl=x[, for
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i^m or i^n. We hâve D&gt;0 by the choice of x\ We may arrange for |A|, \B\,
and \C\ to be as small as we like by taking —m&apos; and n&apos; large enough. For,
Xr=-«(xl+-x~)^l» as we showed in §11, and xr^x^x^, since xeâ?^. The fact
that |A|, |B|, and |C| may be taken to be arbitrarily small therefore follows from
the mean value theorem, since h is C1, h(x +1, x&apos;-f 1) ft(x, x&apos;), and fco]^
x~+1-xl+s^x;t+1-x~^[a&gt;] + 1. Since |A|, \B\, and \C\ may be taken as small as we
like and D&gt;0, we therefore obtain WmW(x&quot;)-Wmn^(x*)&gt;0, when -m&apos; and n&apos;

are large enough. But x~ is a minimal energy configuration by Proposition 11.3,
since it corresponds to an orbit in Mw. But Wm&gt;n&gt;(x~)- Wmn(x*)&gt;0 contradicts
this fact. This contradiction shows that x is a minimal energy configuration. Since

x~ and x+ hâve atomic mean distance co, so does x.

We hâve shown that every orbit in M^ corresponds to a minimal energy
configuration of atomic mean distance o&gt;, i.e. M^c: Min^. It remains only to prove
that this inclusion is an equality.

As we hâve pointed out in §11, the Aubry-Le Daeron theory implies that

Min^ is f-monotone. Therefore, if x is a configuration in corresponding to an
orbit in Min^, but not in Mw, then there exists a point t of discontinuity of ^ such

that xG^t. It remains only to prove that GOit(x) 0.

Suppose, to the contrary, that Ga)t(x)&gt;0. Let xf &lt;t&gt;(t + &lt;oi±). Choose m&lt;n

and let x[ xt, for i^m or i^n and x[ x~ for m&lt;i&lt;n. We hâve

Wmn(x) - Wwn(x&apos;) G«(x) + A + B + C,

where
m —1 oo

a X + Z (M*r, *r+i)- feu, x»+i))

B h(xm, xm+1)-h(xm9 xm+1)

C h(x~_l5 x;)

Just as before, we many show that |A|, |B|, and |C| may be taken to be arbitrarily
small, by taking -m and n to be sufficiently large. Since Gtot(x)&gt;0, we then
obtain a contradiction to the hypothesis that x is a minimal energy configuration.

This contradiction shows that G^ix) 0 and the orbit corresponding to x is in

Mi. Thus, Mina) M^.

§13* The theory of Aubry and Le Daeron for rational o&gt;

In this section, we state without proof some results of Aubry and Le Daeron,
in order to complète the discussion of the relation of their results to our results.
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We refer to their paper for proofs. We will not need the results of this section
later in this paper.

Let (o p/q be a rational number expressed in lowest terms, q&gt;0. Let xbea
minimal energy configuration of atomic mean distance plq. Then one of the
foliowing three possibilités holds: a) xl+Q xt + p, for ail i e Z, b) xl+q &gt; x, + p, for
ail iel, or c) xl+q&lt;x, + p, for ail iel. Assuming that one of thèse three
possibilités holds, then the necessary and sufficient condition for x to be a

ground-state configuration is that a) holds. Slightly modifying the terminology of
Aubry and Le Daeron, we will call x an advancing minimal energy configuration
when b) holds and a retreating minimal energy configuration when c) holds.

The statement that one of a), b), or c) holds is a restatement of part of [4,
Theorem 5]. To see this, we introduce the notion of a translate of a configuration.
If x and x&apos; are configurations, one will be said to be the translate of the other if
there exist integers / and fc such that x[ *,+, + fc, for ail integers i. It is clear that
if x is a minimal energy configuration of atomic mean distance co, then the set of
its translates is totally ordered (in the sensé of §11) if and only if one of a), b), or
c) hold. According to [4, Theorem 5], a minimal energy configuration of mean
atomic distance p/q is either a ground-state configuration, an &quot;advanced elemen-

tary discommensuration&quot; (in the terminology of [4]), or a &quot;delayed elementary
discommensuration&quot; (cf. [4, formula (41)]). It follows from the définitions given in
[4] that the translate of a minimal energy configuration of any one of thèse types
is one of the same. Moreover, according to [4, Theorem 5] the set of ail minimal

energy configurations of mean atomic distance plq and of one of thèse three types
is totally ordered. In particular, the set of ail translates of a given minimal energy
configuration of mean atomic distance plq is totally ordered, so one of a), b) or c)

must hold.
It follows from the définitions given in [4] that, of thèse three possibilities,

only a) can hold when x is a ground-state configuration; only b) can hold when x
is an &quot;advanced elementary discommensuration&quot;, and only c) can hold when x is

a &quot;delayed elementary discommensuration.&quot; Thus, what Aubry and Le Daeron
call an &quot;advanced (resp. delayed) elementary discommensuration of atomic mean
distance p/q&quot; is what we call an &quot;advancing (resp. retreating) minimal energy
configuration of atomic mean distance p/q.&quot;

Other results in [4, Theorem 5] are: First, the set of ail minimal energy
configurations of atomic mean distance plq satisfying a) or b) is totally ordered, as

is the set of ail minimal energy configurations of atomic mean distance plq

satisfying a) or c). Second, for any minimal energy configuration x of atomic mean
distance plq satisfying b) (resp. c)), there are ground-state configurations x&quot;, x+ of
atomic mean distance plq satisfying x~&lt;xl&lt;x?9 for ail iel, x^-xl-&gt;0 as

i-»+oo, (resp. as i-»-») and x,-xr-&gt;0, as i-»-oo (resp. as i-&gt;+»). Third,
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there always are ground-state configurations of atomic mean distance plq and
their union is a closed subset of (R. Fourth, suppose that x~ and x+ are successive

ground-state configurations of atomic mean distance p/q in the sensé that x&lt;x +

and there are no ground-state configurations x of atomic mean distance plq
satisfying x~&lt;x&lt;x+. Then there are both advancing and retreating minimal
energy configurations x of atomic mean distance p/q such that x~&lt;x&lt;x+. For
the former (resp. latter), we hâve x^-x, -&gt; 0 as i- i -&gt; +00 (resp. as i —» -00) and

xt-x~ as i —» -00 (resp. as i —&gt; +00). A closely related resuit as proved by Katok
[14].

§14. Peierls&apos;s energy barrier

Let (o be irrational. We define a non-negative real-valued function F^ on [R, as

follows. Let ÇsM. There exists a unique teU such that &lt;£&lt;„(*-) =^£^ $&lt;„(*+) since

(f)^ is strictly order preserving, according to Addendum 2 to the Theorem in [16]
(cf. §10). We set

PJI) min {GeaW : x e Xmt and x0 £}.

Since âf^ is compact and G^ : X^ —» (R is continuous, this minimum value is

actually achieved (cf. §12.)

Let prx&apos;M2—&gt;U be the projection of 1R2 on its first factor. When t is a point of
continuity of &lt;f&gt;w, we hâve that âf^, is reduced to the one point x~, and Gtot(x&quot;) 0,

xô f Therefore, Ptt(f) 0, for £ &lt;M*).

More generally, we hâve Pœ(^) 0, if £ € prxM^. For, if ^ g priMi,t, then | jc0,

where (x,, yt)...) is an orbit in M^t. By définition of M£,t, we hâve Ga)t(x)

0, where x xl5...) Therefore, Pw(è) 0, as asserted.

Conversely, we hâve PJI)&gt; 0 if |^ prxM^. For, let r be such that &lt;ta(t-) ^ € ^
^&lt;B(f+). Since Gwt ^0, we hâve PJê)^0. If PJ|) 0, then by définition of Pw(£),

there exists x xt...) g 3?^ such that G&lt;ut(x) 0 and £ x0. Then (x0, y0) €
M&apos;^, where yo= -h1(x0, xx), by définition of M^. So, | x0Gpr1MJo, contrary to
our own assumption. This contradiction shows that Pto(|)&gt;0. We hâve thus
shown:

PROPOSITION 14.1. PJf)s*0, for ail £g!R, and P«({) 0 i/ and on/y if
D

This resuit was obtained independently by Aubry, Le Daeron, and André on
the one hand and by Katok and the author on the other hand. It was announced
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m [5] and a closely related resuit was proved m [18] The proof in [18] was based

on joint research of Katok and the author
The following resuit îs a slight variant of Lemma 20 1 m [18]

PROPOSITION 14 2 There exists an f-invariant circle S^ of angular rotation
number œ if and only if prlM&apos;to M If such a circle exists, then M^ is the inverse

image of Sœ under the projection M2 —» (U/Z) x M

Proof If pr1M&apos;oi UJ then, clearly, the image of Mi, in (R/Z)xR under the

projection of (R2 on ((R//)x[R is an /-invariant circle
Conversely, suppose an /-invariant circle SM of angular rotation number œ

exists Lemma 20 1 of [18] says that M^ is the inverse image of SM under the

projection M2 -» (IR/Z) x M (The hypothesis which we hâve imposed on / m [18]
are shghtly différent from those which we hâve imposed on / in this paper But,
that makes no différence m the proof of Lemma 20 1) It follows immediately that
if there is an invariant circle, then pr1Mr(O U

COROLLARY 14 There exists an f-invariant circle of angular rotation number

a) if and only if Pw vanishes everywhere

The resuit was announced, but not proved m [5] Theorem 5 2 of [18] is

closely related, it states that there exists an /-invariant circle of angular rotation
number w if and only if AWO) 0 We refer to [18] for the définition of AW» We
hâve PJ^^^W^ A discussion of the relation between the two results is

contained in [18, §25]
The quantity PJ£) appears to be what Aubry, Le Daeron, and André call

Peierls&apos;s energy barrier in [5]

§15. The main theorem

Throughout the rest of this paper, we let œ and £ be fixed real numbers,

and n a fixed positive mteger In this section, we let A be a function of Z to M of

penod n

DEFINITION We dénote by dn^ the set of ail measurable mappmgs
&lt;t&gt; U -» IR with the following three properties

2) &lt;f&gt;(t)^Ç + ], if f«sj + 4(j), and

3) &lt;fr(0^£ + j, if
for ail jgZ
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DEFINITION. We dénote by ^niA the subset of ^n€A consisting of those &lt;f&gt;

which are weakly order preserving and continuous from the left.
In other words, if &lt;J&gt;€^n€A, then it is in ^8n€A if and only if s^t implies

and, for ail teU, we hâve &lt;f&gt;(t) &lt;f&gt;(t-). (Recall, from §5, that
and

The condition of continuity from the left is imposed only for reasons of
technical convenience; we could just as well require continuity from the right.

It is easy to see that the necessary and sufficient condition for sd^ to be

non-empty is that / + 4(/)^J + 1 + A(j+ 1), for ail jel. This is also the condition
for SftntA to be non-empty.

THEOREM 15. If M^ is non-empty, then there exists &lt;t&gt;wn$A^^n$A which
minimizes F^ over «stf^.

If a) is irrational, Po&gt;(^)&gt;0, and \\A\\ is suffïciently small, then the inequalities 2)

and 3) are strict for &lt;j&gt; (t&gt;wniA. More precisely, we hâve that if &lt;t&gt;e$A ^niA
minimizes Fw over $ftA, then

2&apos;) &lt;Kt-)&lt;i + j, if t*zj + A(j)9 and
3r) &lt;t&gt;(t+)&gt;è + h ift&amp;j + AQ),

foralljel.
Moreover, we hâve the following form of uniqueness: Suppose there exists

&lt;£Ae38A which minimizes Fœ over sdA Mn^A and which satisfies 2&apos;) and 3&apos;).

Suppose, in addition, that a) is irrational. Then any member of s£A which minimizes

F^ over sdA dijfers from &lt;f&gt;A at most on a set of zéro measure.

We may summarize Theorem 15, as follows: When co is irrational, Ptu(|)&gt;0,

and ||A || is sufficiently small, then F^ takes its minimum value at a unique point in
^n&amp;i and that point is in 38^ and satisfies 2&apos;) and 3&apos;).

How small ||A|| has to be in order for 2&apos;) and 3&apos;) to hold dépends on the

Diophantine properties of o), on how large PJ,^) is, and on the size of the first
derivative of the generating function h. An explicit estimate can be given in terms
of the following quantities: We let

C(h, (o, n) sup {\hiix, x&apos;)\ + \h2(x, x&apos;)\ : n[(oln] - 1 *s x&apos;- x ^ n[(o/n] + n +1},

where [o)/n] dénotes the greatest integer^co/n, and hx and h2 dénote the first
partial derivatives of h with respect to the first and second variables, resp. Note
that C(h,a), n)&lt;oo, since h(x + l, x&apos;-f 1)= h(x, x&apos;) and h is C1.
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For a positive number P, we let N(h,ù),n,P) be the least integer&gt;
4C(h, co, n)/P. We let

Ô(h, o), n, P) min {|ico +/| : i, 7 €/ and 0&lt; i ^N(h, co, n, P)}.

Obviously, the size of 8 (h, o&gt;, n, P) dépends on the Diophantine properties of eu, as
well as on P and the size of the first derivative of h. When co is irrational and
P&gt;0, we hâve ô(n, co, n, P)&gt;0.

ADDENDUM 1. 1/ o&gt; is irrational and Pj£)&gt;0, then sl^ is non-empty and
20 and 3&apos;) hold when ||4||&lt;8(fi,û&gt;,Fi,PJf)).

The next two addenda are analogous to Addenda 1 and 2 of [16]:

ADDENDUM 2. Suppose &lt;t&gt;Oin^A satisfies 2&apos;) and 30- If t is a point of continuity
°f &lt;t&gt;a&gt;rx£A&gt; then so are t + co and t-œ.

ADDENDUM 3. If a) is irrational and (fr^n^ satisfies 2&apos;) and 3&apos;), then ^^ is

not constant on any interval.

In what follows, we will often use the abbreviations siA, @iA, and &lt;t&gt;A for sd^,

We will begin the proof of Theorem 15 in §17, where we will show that there
exists &lt;frA g %A which minimizes F^ over £$A, provided that $ftA is not empty. This
follows the method of [16], as outlined and modified in §5 of this paper. Then we
will prove (§§18-20) a relative version of the first assertion in Theorem 6: &lt;frA

minimizes F^ over s&amp;A. The proof of this is a slight modification of the argument in
§§7-9. At this point we will hâve the proof of existence, i.e. the first assertion of
Theorem 15. Uniqueness will be proved in §22, by a slight modification of the

argument in §10. The inequalities 2&apos;) and 3&apos;) and Addendum 1 will be proved in
§25. Addendum 2 will be proved in §26 and Addendum 3 in §21.

Before beginning the proof of Theorem 15 we discuss several applications of it
in §16. Proposition 16 leads to the resuit announced in the abstract of this paper.
See the discussion following Proposition 16, where we describe an n -1 dimen-
sional disk which has the properties announced in the abstract of this paper. We
will not actually prove that it is a topological (n - l)-disk until §29. See Theorem
29 and the discussion following it.
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§16. Application of the main theorem: existence of many Denjoy minimal sets of
angular rotation number to and intrinsic rotation number (co+R)/n

In this section, we will assume that co is irrational and that there is no invariant
circle of angular rotation number co for /. We let R be an integer. We will show

that Theorem 15 implies the existence of many Denjoy minimal sets of angular
rotation number co and intrinsic rotation number (a) + R)ln for /.

By Proposition 14.1, P^O. By our assumption that there is no invariant circle
of angular rotation number co for / and Corollary 14, it follows that P^ doesn&apos;t

vanish identically. We will assume throughout this section that Pcu(^)&gt;0; we may
suppose this without loss of generality since £ is an arbitrary real number.

We let 3) - Sèunt dénote the set of ail mappings A :Z —&gt; U of period n for which
there exists c/&gt; g £ftA which minimizes Fw over sdA and which satisfies inequalities
2&apos;) and 3&apos;) in Theorem 15. By Theorem 15 and Addendum 1, Ae 3) if ||4||&lt;

ô(h, co, n, P^iO)- Note that Ô(h, co, n, P&lt;u(^))&gt;0 by our assumptions that co is

irrational and PJ£)&gt;0.

If 4gS, we will define, in this section, a Denjoy minimal set XA whose

angular rotation number is co and whose intrinsic rotation number is co/fc (mod. 1),

where fc is the (minimum) period of A. Moreover, we will show that if A, A&apos; e3),
then XA XA&gt; if and only if A&apos; — A :Z-*M is constant. This will hâve the

conséquence that {XA} is an n — 1 parameter family.
The définition and properties of XA dépend on the existence of &lt;£A and the

inequalities 2&apos;) and 3&apos;) of Theorem 15.

LEMMA 16.1. Suppose A g 3). Then &lt;f&gt; e/&gt;A satisfies the Euler-Lagrange
équation

Proof. Of course, we use the usual method of Computing dFto(&lt;^T)/ciT|T=o along
suitable test curves $T. The test curves which we consider are of the form
&lt;£&gt;T(f) c/&gt;(f) + T&lt;£(0, where &lt;j&gt; is an arbitrary measurable bounded function satisfy-

ing &lt;j&gt;(t+n) &lt;j&gt;(t). To apply the usual method, we hâve to verify that &lt;£T es&amp;A if
|t| is sufficiently small. It is obvious that &lt;£T is measurable and satisfies équation 1)

in the définition of dA=sin€A (§15). The fact that inequalities 2) and 3) are

satisfied for |t| small enough follows from the fact that there exists 8 &gt; 0 such that

j-89 if t^j + 40), and
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This, in turn, is a conséquence of the fact that 2&apos;) and 3&apos;) in Theorem 15 hold, the
fact that c^&gt; &lt;f&gt;A is weakly order preserving (since it is in %A by Theorem 15), and
the fact that &lt;f&gt;(t + n) &lt;f&gt;(t) + n.

Since &lt;f&gt; minimizes F^ over dA and &lt;t&gt;res£A for |t| sufficiently small,
dFJ&lt;k)/dT|TŒ() 0, or

.-{•[¦.,

Since &lt;j&gt; is an arbitrary bounded measurable function of period n and &lt;t&gt; is left
continuous, the Euler-Lagrange équation follows.

LEMMA 16.2. Suppose A, A&apos;eQ) and aeU.We hâve &lt;frA&gt; &lt;f&gt;ATa if and only if
â-Ar a.

Recall that Ta(t) t + a.

Proof. Since &lt;j&gt;A satisfies 2&apos;) and 3&apos;) of Theorem 15, we hâve that &lt;t&gt;ATaesiA&gt;

if and only if A-Af a. Since &lt;f)A&gt;esdA&apos;, this shows that if &lt;t&gt;A&apos;= &lt;l&gt;ATa, then
A-Af a.

Conversely, if A— A&apos; — a, then 4&gt; &gt;-»4&gt;Ta maps sdA bijectively onto s£A&gt;. Since

Fw is translation invariant, it follows from the uniqueness of the minimizing
élément in Theorem 15 that 4&gt;A&gt; &lt;f&gt;ATa. D

Consider Ae2. Let r)A(t) -h1(&lt;t&gt;A(t), &lt;frA{t + co)) h2(^A(r-co), &lt;pA(t)). Let

From the Euler-Lagrange équation (Lemma 16.1), and the fact that h is a

generating function for /, it follows that MA is /-invariant, if &lt;f&gt;e3). Since

&lt;t&gt;A(t + n) &lt;f)A(t) + n, it follows that MA is Tn invariant, where T(x, y) (x +1, y).

LEMMA 16.3. Suppose A,A&apos;e&lt;3). Then MA=MA&lt; if and only if A&apos;-A is

constant

Proof. First suppose that A-A&apos; is a constant, a. By Lemma 16.3, &lt;t&gt;A=4&gt;ATa.

The equality MA&lt; MA then follows immediately from the définition of MA.

Conversely, suppose MA MA&gt;. By Theorem 15, &lt;t&gt;A e ^A. It follows from this

and Addendum 3 to Theorem 15 that &lt;f&gt;A is strictly order preserving and
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continuous from the left. From this, and the définition of MA, it follows that a

point (x,y)eMA has the form (&lt;f&gt;A(t), t\a(î)) if and only if x is not the right
endpoint of a complementary interval to prxMA if M (where prA dénotes the
projection of IR2 on its first factor). The same remarks applies with A&apos; in the place
of A.

Choose a point (x, y) e MA such that x is not the right endpoint of a

complementary interval to prxMA in M. Then (x, y) (&lt;t&gt;A(t0), ru(f0)), f°r some
toeU. Since MA=MA&gt;, we also hâve (x, y) (&lt;t&gt;A(t0-a), r\A(t0~a)), for some
aeU.

From the fact that &lt;t&gt;A and &lt;f&gt;A&gt; satisfy the Euler-Lagrange équation (Lemma
16.1), the fact that h is a generating function for /, and the fact that &lt;f&gt;A and 4&gt;A&gt;

satisfy the periodicity condition &lt;f&gt;(t + n) &lt;f&gt;(t) + n, it follows that

TknP(x, y) (&lt;Mlo+/w + kn), r)A(t0+jw + fcn))

kn- a), riA&gt;(t0 + ja) + kn~ a)),

for ail integers / and fc. Since co is irrational and n is an integer, {to +jo&gt; + kn : j, fc e

Z} is dense in IR.

Thus, we hâve shown that 4&gt;A(t) &lt;t&gt;A(t~a), for a dense set of teU. Since &lt;j&gt;A

and &lt;j&gt;A&gt; are continuous from the left, it follows that we hâve this équation for ail
teU. In other words, &lt;t&gt;A= 4&gt;A^a- It then follows from Lemma 16.2 that A-Ar
a. a

Let jeZ, A,A&apos;eQ). Suppose A&apos;(i) A(i + j), for ail ieZ. It follows immediately
from the définitions and the uniqueness assertion in Theorem 15 that &lt;t&gt;A&apos;(t) + j
4&gt;A(t + j) and, consequently, TJMA&gt; MAy where T is the Deck transformation
T(x, y) (x +1, y). We therefore obtain from Lemma 16.3:

LEMMA 16.4. Suppose A,Are3). Then TMA=MA if and only if
A(i + j)-A &apos;(i) is independent of i.

When Ae®, we define X(A) MJTk aU2ITk (R/kZ)xU and define 2A

2{A\ We let /(k) dénote the homeomorphism of 1R2/Tk induced by /.
In order to define the angular rotation number of X^ with respect to /(ïc), it

will be convenient to identify U2/Tk with U2/T by the homeomorphism (x, y)»-*
(x/fc, y), and then use the previous définition. The resulting number is fc&quot;1 times
the angular rotation number of XA with respect to /.

Suppose A e 3). Since every élément of 3) is periodic of period n, the

(minimum) period fc of A divides n. From the uniqueness property of &lt;t&gt;A in
Theorem 15 and the translation invarince of F^, it follows that &lt;frA commutes with
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It follows that MA is invariant under T\ where T is the Deck
transformation T(x, y) (x + l, y). Because c/&gt;A is order preserving, X^ is a

Denjoy minimal set for the homeomorphism of U2/Tk induced by /, of angular
rotation number eu/fc and intrinsic rotation number congruent to eu/fc (mod. 1).

We continue to dénote by T the homeomorphism of U2/Tk induced by T.
Suppose 4, 4&apos;€3. By Lemma 16.4, we hâve that TX^^X^ if and only if
4l+J -4&apos;, is independent of i. If TX^f X(A\ then thèse two sets must be disjoint,
since they are both minimal sets for the homeomorphism /(n).

Taking A= A&apos; of period fc, we obtain that the sets TX^ are disjoint for
/ 0,..., fc -1. Consequently, the projection 2™ -&gt; XA (the restriction of
U2ITk —&gt;U2/T) is a homeomorphism. It follows that the intrinsic rotation number
of XA with respect to / is the same as that of 2Ak) for the homeomorphism of IR2/Tk
induced by /, namely eu/fc.

Summarizing, we hâve shown that Theorem 15 implies:

PROPOSITION 16. If Ae®, then XA is a Denjoy minimal set for f, whose

angular rotation number is eu, and whose intrinsic rotation number is congruent
(mod. 1) to a)/k, where fc is the (minimum) period of A.

Moreover, if A&apos; is a second member of 3), then XA XA&gt; if and only if A&apos; — A is

constant. If A&apos; — A is not constant, then XA is disjoint from XA&gt;.

The set of periodic mappings Z —» IR of period n may be identified with Un. We

provide IRn with its standard topology. Thinking of 3) as a subset of IRn, we
provide it with the induced topology. By Theorem 15, 3) contains a neighborhood
of the origin. On the other hand, among ail A :Z—»[R of period n, those whose
minimum period is n form an open dense subset with respect to the standard

topology on (Rn. Thus, Proposition 16 provides us with an (n — 1) parameter family
of Denjoy minimal sets of angular rotation number eu and intrinsic rotation
number co/n.

Applying Proposition 16 to fTR in place of /, we obtain Denjoy minimal sets

which hâve angular rotation number cu+R, with respect to fTR, and intrinsic
rotation number (mod. 1) (œ+R)ln. Recall that the intrinsic rotation number
doesn&apos;t dépend on the lift (/ or fTR) of /. On the other hand, the angular rotation
number (defined as a real number) dépends on the lift of /; since it is eu + JR for
fTR, it is eu for /.

Thus, we hâve found an n -1 parameter family of Denjoy minimal sets for

/ of angular rotation number eu and intrinsic rotation number congruent to
(eu + K)/n (mod. 1). In §29, we will show that this family is a disk in the

vague topology.
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§17. Existence of an ordered relatively minimizing élément

Throughout §§17-26, we let A:Z-+M be a fixed function of period n. We

suppose 39A is non-empty, or, equivalently (as we hâve remarked just before
Theorem 15) that MA is non-empty. We will begin the proof of Theorem 15 by
showing in this section that there exists &lt;f&gt;A c^n^e £ftA which minimizes F^ over
Ç&amp;A. In other words, &lt;f&gt;A minimizes F^ relative to the constraints and the condition
of / being ordered.

Let Yn dénote the set of weakly order preserving, left continuous mappings
&lt;£:IR-^IR which satisfy &lt;f&gt;(t + n) &lt;f&gt;(t) + n. Obviously,

and Y= Yx. We define a metric à on Yn by the formula in §5 which was already
used to define d on Y. The function F^: Yn-^&gt;[R is continuous with respect to the
metric d: the proof in §5 applies with no essential change.

Moreover, £ftA is compact with respect to d. For, let K be a large integer, and

set RK [-K + A(-K\ K + 4(K)]x[-K + £ K + £]. If K is large enough, then the

mapping &lt;£^(graph &lt;f&gt;)DRK is an isometry of £ftA onto a closed subset of the

space of closed subsets of jRk with the Hausdorfï metric. It is well known that the

space of closed subsets of a compact metric space with the Hausdorfï metric is

compact; consequently 33A is compact, as asserted.
Since £ftA is compact and non-empty and Fw is continuous, it follows that there

exists &lt;t&gt;A e &lt;MA which minimizes F^ over S3A.

§18. The existence of a relatively minimizing élément implies &lt;j&gt;A minimizes
relative to the constraints

Recall that ^A^MA and we hâve proved in §17 that there exists

which minimizes F^ over £Î8A. In this section, we will show that if there is an
élément in sdA which minimizes F^ over sîA, then &lt;f)A is such an élément.

This is a relativized version of Lemma 7.3. The proof follows the reasoning in
§7 closely and we will only show how to modify the argument given there in order
to apply it to our présent circumstances. The resuit we want follows directly from
the following analogue of Lemma 7.2:

LEMMA 18. Let &lt;t&gt;esdA and suppose &lt;f&gt; minimizes F^ over siA. Let
ess. infs^t &lt;f&gt;(s). Then FJ&amp;) FJ4&gt;).
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Proof. Let a&gt;0. It follows from the définition of sdA that &lt;f) A&lt;t&gt;Taes4A and
î1-a ^_aV(f&gt;Gi4. Thus, F^^a^TJs^F^C^) and F^v&lt;j&gt;Ta)
/&lt;^)^Fto(&lt;^) by the translation invariance of F^ and the hypothesis that

&lt;f&gt; minimizes Fw over siA. By Lemma 7.1 and the translation invariance of Fw we
then hâve

t^Q A&lt;t&gt;la) b^Q v0la) F^Q) F^ityTJ.

Having established thèse équations, we can finish the proof of Lemma 18 by
repeating word for word the part of the proof of Lemma 7.2 which follows thèse

équations.

Obviously, ^ is weakly order preserving. Let ^_(f) i^(f-). It is easy to see
that ^_g^a. Since &lt;f&gt; minimizes FM over s£A and Fft)(i^_) F^i/r) FJ,^), and &lt;f&gt;A

minimizes FM over £ftA, it follows that &lt;f&gt;A minimizes F^ over s£A.

§19. Existence of a relatrvely minimizing élément on the case that co is rational

In this section, we will show that F^ takes a minimum value over s&amp;A when co is

rational. This is a relativized version of Lemma 8.2. The proof follows the method
of §8 with only slight changes. Throughout this section we suppose o) is rational.
We let a) p/q in lowest terms, with q &gt; 0.

Given &lt;fr g Y*, œeU9 and teR, we define x x&lt;ixot as in §8, i.e. xt &lt;f&gt;{ù)t +1).
Note that ^A ci Yj. If &lt;f&gt; e$îA, then x x^, satisfies xl+qn/r= xt + pn/r, where r is

the greatest common divisor of n and p, and x also satisfies

We let âfpqnAt dénote the set of ail configurations which satisfy thèse conditions.
Since &lt;o is rational and A is periodic, there exists tt eU,tt&lt; tl+1, tt -» ±oo as i —&gt; ±»
such that if t.^Ks^t^t, then &lt;XvcpxA% %mnAv For simplicity, we dénote this

space by ^pqnAl. In other words, Xvtv%Al ^VCfnAt for !,_! &lt; f ^ t,. At the beginning of
§15, we remarked that the necessary and sufficient condition for dA± 0 is

j + A (j) ^ j +1 + A (/ 4-1) for ail j. This is also the necessary and sufficient condition

th*t âfpqnA, ^ 0, for ail i g Z.
Choose aeU and /, fc€Z such that t,^a and a + rq&quot;1^^. Suppose that for

each i satisfying / &lt; i ^ k an x1 g &lt;Xvop^x is given. Then it follows immediately from
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the définitions that there exists a unique &lt;f&gt;es£A such that x&lt;&lt;xut xl when both

a^t&lt;a + rq~l and tl-l&lt;t^tl are satisfied.

It follows from the formula FU)(&lt;f&gt;) r~1 Ja+rq
&apos;

W(x^,f)dr of §8 that if xl
minimizes W over &lt;%mnAl for / &lt; i: ^ fc, then &lt;f&gt; minimizes F^ over MA. Note that

âfpqn» so that the function W which was defined on â?^ in §8 is defined on

Consequently, in order to prove that there exists &lt;t&gt; e s£A which minimizes Fw

over dA, it is enough to prove that there exists xl€âfpqnAl which minimizes W
over ^pqnAi for each i eZ. It is clear that the projection mapping âf^ —» XpqJT is

one-one on ^pqnAl. Moreover, the image of âfpqn^, in ffîpqJT is closed.
Consequently, Lemma 8.1 implies that for any a eU, {W^a}C\Xpc(nAl is compact. Since

W is obviously continuous on âfpqn, we obtain that the desired xl exists.

This shows that F^ takes a minimum value on siA. By the resuit of §18, it takes

the minimum value in 38A.

§20. Existence of a reiatively minimizing élément in gênerai

In this section, we will show that F^ takes a minimum value over sdA, for any
coelR. In §19, we proved this resuit when &lt;o is rational. The déduction of this
resuit for irrational co from the case of rational o&gt; follows the method of §9

closely.
Suppose o&gt; is irrational and let &lt;f&gt;A be an élément of 3âA which minimizes Fw

over $8A. We hâve proved the existence of such an élément in §17. In this section,

we will prove that 4&gt;A minimizes F^ over the larger space s£A.

Let &lt;f) esiA. In §18, we hâve proved that if &lt;f&gt; minimizes Fw over sdA, then &lt;f&gt;A

minimizes F^ over MA. Consequently, we may suppose that &lt;£ does not minimize;
then, there exists 4&gt;&apos;es£A such that Fw(&lt;(&gt;&apos;)&lt;Flo(&lt;f&gt;).

Let e Fa)(^&gt;)-FO)(&lt;^&apos;)- L^t K be a compact subset of M which contains co in its

interior. Note that Lemma 9.2 is still true if Y is replaced by Yn in its statement,
where Yn is defined as in §17; the proof requires only slight modification. Let C
be the constant given by this modified form of Lemma 9.2 (with Y replaced by
Yn). Let plq be a rational number in K such that C\(o-plq\&lt;e/2 and
|FJ&lt;/&gt;&apos;)-Fp/q(&lt;Ê&apos;)l&lt;e/2. Such a number exists by Lemma 9.1, since &lt;f&gt;&apos;es4A&lt;^ Y*.
In §19, we hâve proved that Fp/q has a minimum value over sdA and that it takes

its minimum value at a point in Ô8A. Since, by définition (§17), &lt;£p/q,n|A minimizes
Fp/q over 98A, it follows that Fp/q takes its minimum value (over sdA) at ^&gt;p/q,^A-

Therefore Fp/q(^p/qïn€A)^Fp/q(&lt;^&apos;)- Since ^p/q,n^e S8A c: ^m it follows from Lemma
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9.2 (with Y replaced by Yn) that lFJ^^-F^^^^/2. Hence,

&lt; Fp/q(4&gt;p/q,€nA) + e/2 ^ Fp/q(4&gt;&apos;) + e/2

Since ^e^, we hâve FOJ(^&lt;on^1)&lt;Ffa)(^p/q&gt;n^i), by the définition (§17) of

Therefore, Ftu(&lt;^&lt;on4d)&lt;FUJ(^), and we hâve shown that «fc,^ minimizes Fw

over s&amp;A. This œmpletes the proof of existence in Theorem 15.

§21. Proof of Addendum 3 to Theorem 15

We give the proof now because we will need it in the proof that &lt;t&gt;A &lt;£wnel is
the unique élément of $ÎA ^n€A which minimizes F^ over s4A (next section). The
proof is essentially the same as the proof of Addendum 2 of the Theorem in [16],
which was given in [16, §12]. For the convenience of the reader, we repeat it hère.

As in [16], we set

d̂X

evaluated at

X=&lt;f)(t-ù)), X=&lt;f)(t),

Suppose &lt;f&gt; is weakly order preserving. If, in addition, &lt;f&gt; is constant in an interval
(a, |3), then V(&lt;f&gt;, t) is non-increasing in that interval and is constant there if and

only if (f&gt; is constant in each of (a-co, |3— w) and (a +a&gt;, j3 +a&gt;). This is an
immédiate conséquence of the fact that h12&lt;0. (Note that it is non-increasing,
rather than non-decreasing as in [16], because of the change of sign convention.)

If (f&gt;= «^^ and 2&apos;) and 3;) of Theorem 15 are satisfied, then &lt;f&gt; satisfies the

Euler-Lagrange équation V(&lt;f&gt;, t) 0 and, consequently, if &lt;t&gt; is constant on (a, |3),

it is constant also in (a-co, p-o&gt;) and (a + co, (3 + to) by the discussion in the

previous paragraph. Using the periodicity condition &lt;f)(t4- n) &lt;p(t) + n and induction

we then obtain that &lt;f&gt; is constant on each interval (a + fcto + In, (3 + fco&gt; 4- In),

KleZ. Since the union of thèse intervais is M, it follows that &lt;f&gt; is constant, a

contradiction to



546 JOHN N MATHER

This contradiction shows that &lt;t&gt;(Otl^A is not constant on any interval, when co is

irrational, and 2&apos;) and 3&apos;) of Theorem 15 are satisfied.

§22. Uniqueness of the relatively minimizing élément

In this section, we suppose that there exists &lt;f&gt;A &lt;f&gt;MniA which minimizes Fw

over Ô8A ^n$A and also satisfies 2&apos;) and 3;) of Theorem 15. In §20, we proved
that &lt;f&gt;A necessarily minimizes F^ over the larger space s&amp;A sd^A. In this section,
we will show that if &lt;f&gt; is any élément of MA which minimizes F^ over s&amp;A, then
&lt;t&gt; &lt;t&gt;A almost everywhere. This is the content of the last assertion in Theorem
15.

The proof is based on the foliowing trick: If aeU, let A + a hâve its usual

meaning, viz. (A + a)(i):A(i) + a. Let sdfn^A siA \J{s4A+a:aeU). We will show
that if &lt;f) e$£&apos;A minimizes F^ over sd&apos;A, then &lt;£ 4&gt;ATa almost everywhere for some
aeU. This will be enough because if &lt;t&gt;ATaeMA, then a 0, since &lt;f&gt;A satisfies 2&apos;)

and 3&apos;) of Theorem 15.

To show that &lt;£&gt; 4&gt;ATa almost everywhere, we may use the proof in §10, word
for word, except for the following changes: &lt;£A in place of ^ sd&apos;A in place of Y*,
and Addendum 3 to Theorem 15 in place of Addendum 2 to the Theorem in
[16].

§23. Locating a relatively minimizing élément

As we hâve pointed out in §5, the argument of [16] shows the existence of
&lt;£^e Y which minimizes FM over Y. By the translation invariance of Fw, we hâve

that for any a eU, the élément &lt;f&gt;m 4&gt;iTa of Y also minimizes F^ over Y. If we
choose a=sup{t:4&gt;i/t)^£}, then we hâve «faW^fe for r^° and &lt;M0&gt;&amp; for
t &gt; 0. Since ^ (t +1) &lt;^w (t) -f 1, this implies

for t^j (23.1)

for t&gt;j. (23.2)

Briefly put, the above argument shows that the élément &lt;f&gt;w of Y which minimizes
F^ can always be normalized so that (23.1) and (23.2) are satisfied. In the case

that a) is irrational, the normalized minimizing élément is unique by the resuit
proved in §10, but there is no such uniqueness in the case that o&gt; is rational.
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In this section, we will prove:

PROPOSITION 23. Suppose $„ is normalized so that (23.1) and (23.2) holà.

If ^a ^hça is non-empty, then there exists &lt;t&gt;A c^^e £$A ^n^A which not only
minimizes FM over MA but also satisfies the following inequalities:

for ail teR, where A_ min {A(i) :ieZ} and â+ max{A(i) : i eZ}.

Thèse inequalities are a key step in proving 2&apos;) and 3&apos;) in Theorem 15.

Proof. In §20, we hâve finished the proof of existence in Theorem 15. This
asserts that there exists &lt;t&gt;Ae$A which minimizes Fw over s&amp;A. For brevity, we
set 4&gt;+(t) 4&gt;M(t-A+) and &lt;M0 &lt;M*-4_). We set &lt;f&gt;A (4&gt;av&lt;K)a&lt;*&gt;_

(&lt;? A a &lt;£_) v &lt;t&gt;+. Since &lt;£ A, &lt;f&gt;± g Yn, we hâve &lt;/&gt;A g Yn. In fact, &lt;f&gt;A e $ftA. The inequalities
2) and 3) of §15 follow from the fact that &lt;£ag $Ja and the following inequalities,
which are a conséquence of (23.1) and (23.2):

if *^/ + 4+, and

if

The same reasoning shows that e£&gt;Av&lt;f&gt;+e3#A. Clearly, &lt;£AA&lt;£+e Y^. Since &lt;^A

minimizes F^ over ^A and &lt;^&gt;+ minimizes Fw over Y^, we may conclude from
Lemma 7.1 that

In particular, &lt;^Av^&gt;+ minimizes F^ over ^A. A similar argument, applied to
&lt;/&gt;a (4&gt;aV&lt;K)a&lt;J&gt;_gS8a and (&lt;^avc^+)v^_g Yn shows that Foi((t&gt;A)

Foi(&lt;l&gt;Av&lt;p+) Ftti((t)A). Consequently, &lt;f&gt;A minimizes F^ over siA.

Finally, we hâve that &lt;f&gt;A satisfies the inequalities in Proposition 23, by its

définition.

§24. Relatively minimal energy configurations

In this section, we prove the analogue of Proposition 11.1 for ^^ in place of
(f)^ We will discuss configurations and not orbits as in Proposition 11.1, because

we do not wish to assume that 2&apos;) and 3&apos;) of Theorem 15 are satisfied. We will use
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the results of this section in our proof that 2&apos;) and 3&apos;) of Theorem 15 are satisfied.
Because we do not assume thèse condition, there is no reason why ^^ should
satisfy the Euler-Lagrange équation, and consequently no reason why the
configurations associated to (J^ should be equilibrium configurations.

Given &lt;f&gt; e Y^ and teU, we define x x4HOt as in §8, i.e. x, &lt;J&gt;(t + û&gt;i) and if
&lt;£eYn, we define x=x&lt;Mt± as in §11, i.e. x, &lt;t&gt;(t + &lt;oi±). If 4&gt;£^n&amp; and x x&lt;txot

then

if

if

We let â?wrUif_ dénote the set of configurations x x,,...) which satisfy thèse

conditions. If &lt;f&gt; e 98^ and x x^^, then

if

if

We let &lt;%&lt;anAt+ dénote the set of configurations x xl,...) which satisfy thèse

conditions. Note that for ^eSS^, we hâve x4)Oit^ x&lt;i&gt;&lt;ate^oinAt_.

We will say that a configuration xeS£&lt;ûnAt+ has minimal energy relative to
%?u&gt;nAt± if for any pair of integers m&lt;n and any x&apos; ed£OinAt such that x^ ^ and
x&apos;n xn, we hâve Wmn(x) =^ Wmn(x&apos;), where Wmn is the function defined in §11.

We will call such an x a relatively minimal energy configuration for SP^nAt*- Its
définition difïers from that of a minimal energy configuration (cf. §11) only in that
x&apos; is constrained to be in %&lt;„&amp;*&apos; In tnis section, we will prove:

PROPOSITION 24. Suppose o&gt; is irrational. Let ^eââ^ and suppose &lt;\&gt;

minimizes F^ over sin^. Let teU. Then x^i is a relatively minimal energy
configuration for âf^^t^.

The hypothesis that co is irrational is unnecessary, but we will not need the

more gênerai resuit obtained by dropping this hypothesis, and the proof in the

case of rational co is slightly différent from the proof we give now.

Proof. Suppose, for example, that x^^ is not a relatively minimal energy
configuration for â?&lt;unAt+ so there exists x&apos; e %tmAt+ and integers m &lt; n such that
x&apos;m (x*«*+)m, &lt; (*&lt;j&gt;o&gt;t+)n, and Wmn(x&apos;) &lt; W^x^J. Let 8 &gt; 0 and define &lt;f&gt;r in
the same way as in the proof of Proposition 11.1, replacing &lt;t&gt;w by 4&gt;. Then
Fa&gt;(4&gt;)&gt; F&lt;o(&lt;l&gt;&apos;) if ô &gt; 0 is small enough by the argument in the end of the proof of
Proposition 11.1. A straightforward vérification shows that if ô&gt;0 is sufficiently
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small, then &lt;f&gt;&apos; e.stf,^. Thus, we obtain a contradiction to the assumption that &lt;f&gt;

minimizes FM over s&amp;n^. This contradiction shows that x^^ is a relatively
minimal energy configuration for &lt;%itin&amp;x+.

A similar argument shows that x^- is a relatively minimal energy configuration

for âf^nAe-

Note that it is not necessarily the case that &lt;£&apos;e £%„£&amp;. It is for this reason that
we went to ail the bother of verifying that &lt;t&gt;A minimizes Fw not only over £ftA. but
also over the larger space sdA.

§25. Proof of the rest of Theorem 15 and Addendum 1

The only thing which remains to prove in Theorem 15 is the second assertion,
namely that 2&apos;) and 3&apos;) hold under suitable hypothèses. Addendum 1 is a more
précise version of the assertion. We will prove Addendum 1 in this section,
thereby also completing the proof of Theorem 15. Throughout this section, we

suppose that a) is irrational and P&lt;o(^)&gt;0. We will also suppose that the
hypothesis of Addendum 1 is satisfied, namely, ||4||&lt;ô(h, a&gt;, n, Pœ(f)).

By its définition, 8 (h, tu, n,Pto(Ê))&lt;|. Since ||A||&lt;è, we hâve that M^ and
Ç&amp;ntA are non-empty. By Proposition 23, there exists &lt;j&gt;A e 3ftA ââri€A which not
only minimizes F^ over siA ^n^, but also satisfies &lt;^w(t - A+) ^ 4&gt;A(t) ^
^(t — AJ), if we assume (as we may) that &lt;f&gt;&lt;o is normalized so that (23.1) and

(23.2) hold.
Let N(h, eu, n, P) be as defined in §15 (preceding the staternent of Addendum

1). Let N N(h, o&gt;, n, P^)). In view of the hypothesis of Addendum 1 and the
définition of N(h, o), n, P), we hâve

A+-4_ ||4||&lt;min{|îo) + j*| : i, /*eZ and 0&lt; i ^N}.

Consequently, the intervais [r-d++i&lt;o+/*, f-^_ + ico+/*] for i, ;*eZ and

i^N are mutually disjoint.
We hâve pointed out in §10 that a slight modification of the proof of

Addendum 2 of the Theorem in [16] shows that &lt;ta is strictly order preserving.
Consequently, the intervais [&lt;Mt-A+ + ia&gt;+/*-), &lt;k,(f-A_ + ia&gt;+/*+)] for i,j*e
Z and 0=^i^N are also mutually disjoint. Since &lt;£«(*+l) &lt;fcu(t)+l, this implies
that the projections in R/Z of [^w(r-4++îû)-),^ft,(t-4_ + îco+)], î 0, ...,N
are mutually disjoint. We may therefore choose an integer i+ satisfying l^i+^N
such that

(25.1)
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A similar argument shows that there exists i_ satisfying —N^i_=^—1 such that

4&gt;»(t-A- + i-.&lt;ù+)~4&gt;m(t-A++i-ù&gt;-)*zN-1. (25.2)

Now we will prove that &lt;f&gt;A satisfies inequality 3&apos;) of Theorem 15 if t 2* j
We consider two cases : If t ^ j + 4+, then we hâve &lt;f)A (f+) ^ &lt;k» (f — 4++) ^ £ + /,

since &lt;f&gt;A is chosen so that the conclusion of Proposition 23 holds and ^ is

normalized so that (23.1) and (23.2) hold. Moreover, the last inequality is strict,
since PU)($)&gt;0, so ££ prjM^ image $„ and consequently £ + j^image «J^. Thus,
&lt;ta (*+)&gt;£ + /&gt; in the first case.

The second case is less trivial: We suppose f &lt;/ + 4+. We then hâve f-4+&lt;
— 4_. Since ^ is order preserving, it follows that

for any ieZ. By Proposition 23,

for any i gZ. Combining thèse last two displayed formulas and (25.1) and (25.2),
we see that

|^(r + i±co+)-^0 + Lco+)|&lt;N-1. (25.3)

Set &lt;t&gt;=&lt;j&gt;A and let x x^^., in the notation of §24, i.e. xx &lt;£A(f + coi+). Since
&lt;^ g^n&amp;i, we hâve x g â?&lt;unAt+- In particular, since t^j + à(/), we hâve x0^ ^ + /, by
the définition of â?amat+. The inequality 3f), which we are proving, is équivalent to
xo&gt;ê + J. We will suppose xo=ê + J and obtain a contradiction, thereby proving
3&apos;).

Since &lt;t&gt;A is a member of ^^ and minimizes Fw over ^^a» it follows from
Proposition 24 that x x^^ is a relatively minimal energy configuration for
â?amAt+. Supposing xo £ + /, we will show that this is not the case, thereby
obtaining the desired contradiction.

Let x[ x&apos;[ xl, for i &lt; i_ or i &gt; i+. Let x\ x&quot; ^0 + coî+), for î i_ or i i+-

Let xi ^ 0 + û&gt;î+) and x&apos;» x,, for i_ &lt; i &lt; i+- Thèse conditions specify configurations

x&apos; and x&quot;.

By (25.3), l^-x&apos;^iST1, for i i_ or i i+. By the fact that &lt;f&gt;A is weakly
order preserving and the fact that &lt;t&gt;A(t + n) &lt;t&gt;A(t) + n, we hâve

n[o)ln ] ^ xl+1 - x, ^ n[co/n ] + n,
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for ail ie.lL. It then follows from the mean value theorem and the définition of
C(h,co,n) (cf. §15) that

| Wlm(x&quot;)~ WiJx)|

if

y,

J&lt;i_

Let
((x

and m &gt; i
(x+X=&lt;^U)(

AX+)VX_),

+•

((X V X_) A X_

&lt;/&gt;o&gt;G+&lt;:

for i_&lt;

ai-). Let yt
C i &lt; i+. For

(x+)t, for i=s

l ^ i_ and m ^
i_ or

: i+, we

i ^ i+,

hâve

Wlm(y) - WIm(x+) G

where the first équation is a conséquence of the fact that yeâf^, and the
définitions, and the inequality is a conséquence of the fact that y0 x0 £ + j.
Obviously, Wt l+(x&apos;) W, l+(x+), since x&apos;t (x+), &lt;taG + wî+) for î_ ^ i ^ i+. Thus,

The argument which proves Lemma 7.1 also shows

Wt 1+(x&quot;ax+)+W, Jx&quot;vx+)^Wt l+(x&quot;)+Wl t+(x+).

In proving Proposition 11.1, we showed that x+ is a minimal energy configuration.
(Note that x+ is x^^ in the notation which was used in Proposition 11.1.) Since

(x&quot;vx+), xï=(x+),, for i i- or i+, we hâve W, l4(x&quot;vx+)^Wll+(x+). Conse-

quently, the above inequality implies Wt 1+(x&quot;ax+)^ W, l+(x&quot;).

Note that y,=((x&quot;Ax+)vx_),, for i_=^i^i+&gt; so

W, Jy) +W, 1+((x&quot;ax+)ax_)^W1 1+(x&quot;ax+) + W, u{x_).

The proof of Proposition 11.1 also shows that x_ is a minimal energy configuration.

Since x&apos;[ (x+\ for i i_ or î+, we hâve (x&quot;ax+ax_), (x_)t for i i^ or i+
and consequently W, Jx&quot;ax+axJ^ W, ,+(x_). Together with the above in-
equalities, this implies that

Thus,

WJx) - WIm(x&apos;) ^ Wlm(x&quot;) - Wlm(x0 -1 WIm(x&quot;) - Wlm(x)|

W, l+(x&quot;) - Wt l+(xf) - \ Wlm(x&quot;) - WIm(x)|

2* W, Jy) - W, l+(x&apos;) -1 WJix&quot;) - Wlm(x)|
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if /&lt;i_ and m&gt;i+. The last inequality is a conséquence of the fact that
N N(h, û&gt;, n, PJ£))&gt;4C(h, a&gt;, n^P^Ç), by the définition of N(h, co, n, P) (§15).
The equality is a conséquence of the fact that x[ =x&quot; for i^i\_ and i^i+.

We hâve x&apos;eâf&lt;onAt+, i.e.

where i and j* run over ail the integers. For i&lt;î_ or i&gt;i+, this is obvious,
because xe%(onAt+ and x&apos;, x,. For i_^i^i+, it is enough to show that t + &lt;of&lt;

/* + 40&apos;*)O/ + û&gt;i&lt;/*, i.e. that f + coi^/* + 40&quot;*)0/ + û&gt;i^/*, i.e. that r + cui is

in the interval [/* H- 4 (/*),/* + 1 + 40* +1)) if and only if j + o)i is in the interval

We prove the last statement, as follows: First, note that 4+&lt;4_+l, since

||4||^l/2. In particular, / + 4+&lt;/+ l + d_^/+ 1 + 40&apos;+ 1). We hâve assumed at
the outset that / + A (j) ^ t, and we are considering the case that t&lt;j + A+. Thus,

so the case i 0 holds. For the case i&gt;0, we use the fact that the intervais

[f —4+ + a&gt;i + /*, f —4_ + a&gt;i + /*] are mutually disjoint for i, j*eZ and O^i^N.
Since je[t — A+9t — A-], this implies that none of the intervais [t-A+ + a)i, t — 4_ +
coi], i 1,..., i+^N contains an integer; moreover, each of thèse contains j + wi.

Consequently, if j + ûiî€[/*,/* + 1), then [f-4+ + wi, r-4_ + û&gt;î]c:0&quot;*,/* + l), and

so, t + kû is in the interval (j* + A+Jj* + l + AJ), which is a subinterval of 0* +
40&quot;*)» J* + 1 + 40* + 1))- For the case i &lt;0, we use an argument similar to that for

Thus, x&apos;€afftmAf+. We hâve previously proved that Wlm(x)~ Wlm(x&apos;)&gt;0. Still
earlier, we had proved that x is a relatively minimal energy configuration for
^&lt;oruit+&gt; so we hâve obtained a contradiction. This contradiction was obtained
under the assumption that xo f+ j, i.e. that inequality 3&apos;) in Theorem 15 was not
satisfied.

Thus, we hâve proved that the inequality 3&apos;) of Theorem 15 holds if
The proof that 2&apos;) holds if t^/ + 40) is similar.

§26. Proof of Addendum 2

Set
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If &lt;f&gt; is continuous at f, then V^(f-)^ V+(t+\ because fi12&lt;0. Moreover, we have

equality if and only if &lt;f&gt; is continuous at both t~(o and f + o&gt;. In the case that
&lt;t&gt; &lt;^cun^A and 2&apos;) and 3&apos;) of Theorem 15 are satisfied, the Euler-Lagrange
équation holds, i.e. V(t&gt;(t-) V^(f+) 0. Since we have equality in this case, the
continuity of &lt;fr at t implies the continuity of 4&gt; at t — tu and at t + a).

§27. Continuons dependence of the relatively minhnizing élément on the
constraints

As in §16, we let 3) dénote the set of ail mappings A:Z-*M of period n for
which sdA is non-empty and inequalities 2&apos;) and 3&apos;) in Theorem 15 hold for 4&gt;A. In
§17, we defined a set Yn and a metric d on it. In this section, we will show:

PROPOSITION 27. The mapping A &gt;-&gt; &lt;f)A is a continuous mapping of 2 into
the metric space (Yn, d).

Hère, we provide 3) with the induced topology associated to the inclusion

Proof. As we remarked in §17, Ô8A is a compact subset of Yn. Moreover, it is

easily seen that A »-&gt; £$A is a continuous mapping of 3) into the space of
compact subsets of Yn, where the latter is provided with the Hausdorfï metric on
compact subsets of (Yn, d). The continuity of zl«-»&lt;£A then foliows from the
uniqueness assertion in Theorem 15.

§28. The vague topology on Denjoy minimal sets (définitions)

In this section, we give a detailed définition of the vague topology on the set of
Denjoy minimal sets for / in (R/Z)xR. We have already briefly described this

topology in the introduction.
First, we need the notion of the vague topology on the set of Radon measures

on (R/Z) x R. This is a spécial case of a notion which may be found in Bourbaki [8,
Chapt. III §1.9]. We recall the Bourbaki notion: Let X be a locally compact,
Hausdorfï space. We let 3K{X) dénote the real vector space of real-valued
continuous functions on X of compact support. If K is a compact subset of X, we
let 3iT(X, K) dénote the vector subspace of 3if(X) consisting of ail real-valued
continuous functions on X having support in K. We provide 3f(X, K) with the
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topology of uniform convergence. The space JC(X) is the union of the subsets

$f(X, K), where K runs over ail compact subsets of X. We provide JC(X) with the
inductive limit (i.e. direct limit) topology of the topologies on $f(X, K), By
définition, a Radon measure on X is a real-valued continuous linear functional on
$T(X). The real vector space of Radon measures on X is denoted M(X). The

vague topology on M(X) is the topology which is variously called the topology of
simple convergence on JC(X) (Bourbaki), the topology of pointwise convergence
on %(X) (Kelley [15, Chapt. 7, p. 217]) or the 3f(X)-weak topology (by
functional analysts; see, e.g., Reed and Simon [24, IV.5, bottom of p. 119].)

Second, we need the fact that any Denjoy minimal set supports a unique
invariant probability measure. We recall that a Radon measure /ut is said to be

positive if for every /e$T(X) such that /^0, we hâve jul(/)^O; it is said to be a

probability measure if ||/x||= 1, where, following Bourbaki [8, Chapt. III §1.8], we
deflne

and ||/|| sup {|/(jc)|:jc€X}. A proof that a Denjoy minimal set has a unique
invariant probability measure is given, for example, in [12, II, 8.5]; a Denjoy
minimal set is said to be uniquely ergodic because it has this property. (See, e.g.,
[12, II, 8].)

Since every Denjoy minimal set is uniquely ergodic, we hâve an inclusion

{Denjoy minimal sets for /} c {/-invariant probability measures},

obtained by associating to a Denjoy minimal set the unique invariant probability
measure which it supports. We define the vague topology on the set of Denjoy
minimal sets to be the topology induced from the vague topology on Radon

measures.

§29. Continuous dependence of the Denjoy minimal set XA on the constraint A

For ieS,we defined the Denjoy minimal set XA c (R/Z) x M of / after Lemma
16.4.

THEOREM 29. The mapping A^&gt;2Aof3) into the space of Denjoy minimal
sets of /, provided with the vague topology, is continuous.

Proof. Consider a compactly supported function û on (R/Z) x R. For AeQ), let
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IA dénote the intégral of û with respect to the unique /-invariant probability
measure on XA. In view of the définition of the vague topology, it is enough to
prove that A —» ÎA is a continuous mapping from S toR.

Let u be the composition of the projection U2 -» (R/Z) x U and the function û.

Clearly,

h — n~

where tja is as defined in §16 (preceding Lemma 16.3). Let ô&gt;0 be a positive
number. The argument given in [16, §6] shows that there exists 8t&gt;0 such that if
A, A&apos;eQ) and d(&lt;t&gt;A,4&gt;A)&lt;8l9 then \&lt;l&gt;A(t)-&lt;l&gt;A&gt;(t)\&lt;8 fails to hold for te[0,n] at
most on a set of measure 8. Since t]A(t) -~h1(&lt;^A(t), &lt;/&gt;a(* + w)) and there is a
uniform bound on \4&gt;A(t + &lt;o)-4&gt;A(i)\ for AeQ) and teU, the same statement
holds for t]a in place of &lt;f&gt;A.

The continuity of JA as a function of A follows immediately.
It follows from Theorem 29 that the (n -1) parameter family of Denjoy

minimal sets for / of angular rotation number co and intrinsic rotation number
congruent to (co + R)/n (mod. 1) which was described at the end of §16 is in fact a

topological (n - 1) disk with respect to the vague topology. Thus, we hâve proved
the resuit announced in the abstract of this paper.
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