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The rational homotopy of Thom spaces and the smoothing of
homology classes

Stefan Papadima

1. Introduction

Let G ^ SO(n) be a closed connectée! subgroup and let Vm be a closed
oriented manifold. A homology class z e Hm_n(Vm; Z) is said to be G-smoothable
if z [Wm~n], the submanifold W having G as structure group for its normal
bundle. In his famous paper [13] Thom showed, among other things, that the
G-smoothability problem is of a homotopy theoretic nature. One first has to
construct the universal Thom space MG, by taking the Thom space of the bundle
7° over BG, which is the pull-back of the universal oriented n-plane bundle yn
over BSO(n). If V is a finite complex, a cohomology class u e Hn(V; Z) is said to
be G-realizable if u g*(uG) for some map V £+ MG, uG being the universal
Thom class. If u is the Poincaré dual of z, then Thom&apos;s resuit reads: z is

G-smoothable if and only if u is G-realizable.
The problem of deciding the G-smoothability (G-realizability) is in gênerai a

difficult one. There are very few gênerai results in this direction, the oldest and

perhaps the most important also belonging to Thom:

THEOREM ([13], Théorème 11.25). If G SO(n) then, for any u, some

nonzero multiple of u is G-realizable.

The question of G-realizability up to a nonzero factor turns out to be a

rational homotopy problem. The answer is strongly influenced by the nature of
the universal Euler class eGeHn(BG;Q), eG e(yG). The main resuit of this

paper is:

1.1. THEOREM. (i) If eG 0 then: some nonzero multiple of u is G-
realizable if and only if u2 is a torsion élément

(ii) If eG^0 then: some nonzero multiple of any u is G-realizable if and only if
eG is not decomposable in H*BG.

(iii) 7/ V is a finite connected complex such that Hl(V; Q) 0 for i&gt;2n + 3

then, for any G^ SO(n) with eG^09 some nonzero multiple of any u is G-
realizable.
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602 STEFAN PAPADIMA

COROLLARY. If G is one of the classical groups U(r), Sp(r)9 r ^ 1, or SU(r),
r^2, with standard embeddings, then some nonzero multiple of any u is G-
realizable.

Proof. By simply checking the conditions on eG given in (ii) above (see e.g.
[4]). The first two examples are implicit in [13] (see the remarks following
Théorème 11.25). For the dependence on the embedding, see the beginning of
Section 4, which is devoted to the proof of Theorem 1.1 and ends with a

discussion of the gênerai solution of the G-realizability problem up to a nonzero
factor.

The rational homotopy approach goes as follows: first &quot;tensor&quot; with Q the

given problem. For the moment, this means nothing but just making a new
définition: let us say that veHn(V;Q) is G-realizable if there is a map V-^&gt;

MG0 such that /*(uG)0 v, where the subscript dénotes rationalization ([12], [8]).
One can then try to solve this problem by using the purely algebraic technique of
the minimal models of Sullivan [12].

Supposing that one is able to construct in this way a rational solution
Vo -U MG0, there is still one more thing to do, namely to find V -^ MG such that

go /. This is the gênerai delocalization problem: given a map between localized

nilpotent spaces Vo -4- Mo, is there V -^ M such that g0 /?
Section 3 is devoted to this problem. Roughly speaking, the main results

(Proposition 3.1 and the remark following it) assert that, whenever V and M are
finite complexes and one of them is a 1-connected formai space, there is a

delocalization, for any f. As a typical application we offer the following:

1.2. PROPOSITION. Ifue Hn(V; Z), where V is a finite complex then: some

Z*-multiple of u is G-realizable if and only if some Q*-multiple of u0 is

G-realizable.

Both Sec. 4 and the above resuit dépend on the analysis of the homotopy type
of MG0, which is carried out in §2. The starting point is to observe a very simple
but very useful fact, namely that the universal Thom spaces are formai. A formai
space is defined by the property that its Q-type is entirely determined by the

cohomology algebra ([12]). Using formality arguments, we give in Theorem 2.6 a

concrète convenient description of the Q-types of universal Thom spaces.
The rest of Sec. 2 contains results of independent interest, derived along the

lines of the central idea of this paper, which says that the universal Thom
constructions possess strong formality properties facilitating précise rational
homotopy computations. For example, Proposition 2.7 and Corollary 2.8 give the
Whitehead product structure of the rational homotopy Lie algebra of MG in
terms of H*BG and eG, thus answering a question raised in [2].
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More applications are contained in [10]. I owe many thanks to the référée for
his valuable suggestions which led to many improvements of this paper.

2. Formality properties of universal Thom spaces

The study of the Q-type of universal Thom spaces was started in [2], where
the cases of MO(r), MSO(r) and MU(r) were considered. In this section we shall
extend the results of [2] to the case G -^ SO(n) closed connected arbitrary, using
a new point of view, namely the formality.

2.1. DEFINITION. S is a formai space if, denoting by (M,d) its minimal
model, there exists a differential graded algebra map (M, d) A (H*M, 0) such that
p* id.

2.2. LEMMA. Let M be a formai minimal algebra and ueZnM such that
[u]e HnM is not a zéro divisor.

Consider: M -^&gt; M&lt;g)dAn_1(y) N, where the right hand extension of M is

constructed by setting dy u. Then p* is onto, and N is again formai

Proof. The first assertion is immédiate, by looking at the algebraic Serre
spectral séquence of p. Since M is formai, there is a d.g.a. map M fM

&gt; H*M such
that /m=^- Construct a d.g.a. mapjV^-&gt;H*jV by /nm* P*/m and /N(y) 0.

Since p* is onto, /*= id.

2.3. LEMMA. Let G c-&gt; O(n) be a closed subgroup. If G is connected or if
G O(n) then the Thom space MG is formai.

Proof. MG appears as a cofibre in the séquence SG ^&gt; BG —» MG, where SG
is the associated sphère bundle of 7°. We are going to use the fact that the
cofibre of a formai map is a formai space [3]. A formai map is defined by the

property that its minimal model, say M—^M\ satisfies an algebraic homotopy
commutativity condition of the form p&apos;f — f*p, where p and p&apos; are formalization
maps as in Définition 2.1. Since H*BG is a polynomial algebra we only hâve to
check that SG is a formai space.

If G O(n), SG has the homotopy type of BO(n -1) and we are done. If G is

connected, then Sn-1 c—» SG -&gt; BG is a rational fibration in the sensé of [5],
hence we may write a nilpotent model of SG which fits into an algebraic fibre
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séquence of the form

proj _
(H*BG,0) &lt;¦&gt; H*BG®dA(zn-i) &gt;(A(zn^),d)

when n is even, or of the form

proj _
(H*BG,0) ^ H*BG®dA(xn_1,y2n_3) »(A(xn_1, y2n_3), d)

when n is odd, where the d.g.a.&apos;s with induced difïerential d are the minimal
models of the appropriate spheres.The difïerential structure of the extensions is

given by dz eG, dx 0 and dy x2+ sx + f, for some s, t e H*BG. If n is odd or
n is even and eG is nonzero, Lemma 2.2 is available. In the remaining case, the

formality of SG is obvious.
It will often happen that our discussion splits into two rather contrasting cases,

according to the nature of the Euler class. This can be seen as follows: if eG 0

the Gysin séquence of the fibration Sn~lc—&gt; SG —» BG shows that p* is injective
and identifies coker p* Xnl H*BG; the Barratt-Puppe séquence of the cofibra-
tion SG -&gt; BG -» MG gives then H+MG £n H*BG, with trivial multiplication.
If eG^0, again by the Gysin séquence p* is onto and ker p* eG • H*BG; the
exact séquence of the cofibration identifies H+MG eG • H*BG, with the
multiplication induced from H*BG.

The above discussion also shows that H*MG is determined by H*BG and by
eG. By the previous lemma, this gives ail the information about MG0, at least

theoretically. We are going to be more précise about this point in what follows.
To start with, we shall describe H*MG by generators and relations, in the case eG

is nonzero.
Choose a graded complément, X, for eG • H*BG in H*BG, with homogenous

well-ordered indexed basis xa and write \a\ for deg xa. Let x0 1 € H°BG. Then a

minimal set of generators for H*MG is given by

They form a basis for a graded space Zo £n X(£n x eGx, xeX). The relations

among them are described as follows: write

Xa*b= I eGyk, ykeX.

Then a complète set of relations is given by

I I (2.5)



The rational homotopy of Thom spaces and the smoothing of homology classes 605

In particular they ail hâve degrees greater than or equal to 2n + 4.

2.6. THEOREM. 1/ eG 0 then MG has the Q-type of a wedge of sphères.

If Ca^O then MG fibres over K(Z, n), the fibre having the Q-type of a wedge of
sphères.

Proof. The first assertion is clear. Suppose then that eG / 0 and consider the
p uG

fibration given by the universal Thom class FC—&gt;MG &gt;K(Z,n) and the

localized fibration K(Q, n- 1)^FO-^MGO. Since H*(MG; Q) may be iden-
tifled with a subalgebra of H*(BG; Q) in such a way that the rational Thom class
is identifîed with eG, we may use Lemma 2.2 to deduce that F is a formai space
whose cohomology algebra has trivial multiplication. Consequently, Fo is again a

wedge of sphères. (More precisely, Fo-(Va&gt;oSn+|a|)o.)

The rest of this section is not needed for the proof of Theorem 1.1. The results
below show that the rational homotopy theory of universal Thom spaces is a direct

conséquence of the cohomological picture, which is a striking formality property,
worth to be included hère.

The proofs are slightly more technical; they are based on the bigraded models
introduced in [6], which are the most appropriate ones when dealing with
formality. We shall recall briefly, following [6], the construction of the bigraded
model (AZ, d) of a connected graded algebra H. The generators are bigraded by
Z ®n&gt;0Zp, the differential is bihomogenous of upper degree +1 and lower
degreeP^-°l. The graded space Zo is isomorphic to a minimal System of homogen-
ous algebra generators for H and X^i is isomorphic to a minimal System of
relations. The modelling map (AZ, d)-^&gt; (H, 0) is defined in the obvious way on
Zo and sends Z+ to zéro, and H(AZ) H0(AZ) H. If S is a formai 1-connected

space, it inherits by Sullivan duality a new grading 7rn(S)®O (&amp;p^0 ^n(S), with
ttZ dual to Zî.

2.7. PROPOSITION, (i) tt(MG) is generated as a Lie algebra by tt0.

(ii) For any p^O, ttp(MG) ad(7T°)p(7r0).

Proof. For any space the Whitehead bracket is dual to the quadratic part of
the differential of its minimal model [12]. Due to the homogeneity properties of
the differential of the bigraded model there is an inclusion valid for any formai

space, namely ad(7r°)p(7r°) &lt;= ttp. Therefore (ii) is an immédiate conséquence of (i).

If S is a formai 1-connected space a similar degree argument provides an
inclusion [ir(S), tt(S)] c tt+(S). Moreover, one has a dual Hurewicz exact séquence
[6] 0 -* H+(AZ) • H+(AZ) -» H+(AZ)-^-+Z0^&gt; 0 which gives by Sullivan duality
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an exact Hurewicz séquence:

0 -&gt; tt+(S) -&gt; tt(S) i PH*(S) -&gt; 0.

Putting thèse facts together, it is readily seen that the property stated in (i) is

équivalent with the equality [tt, 7r] ker fi (which does not hold in gênerai even
for formai spaces).

If eG 0, MG is rationally a wedge of sphères and, by the theorem of Hilton

[7], we are done. If eG^ 0, recall the fibration F0-&gt; MG &gt;K(Z, n) in Theorem

2.6 and the fact that p induces an injection in rational homology (by Lemma 2.2),
and apply the Hilton theorem again.

2.8. COROLLARY. Suppose that eG is nonzero. Then

(i) tt(MG) TTn@{free Lie algebra generated by tt^J, where 7r° tt^, which is

generated by the Hurewicz dual of uG, appears as a subalgebra, the Lie algebra
extension is nontrivial unless rank G 1, and the full bracket structure may be

explicitly written down in gênerai using the relations (2.5).
(ii) irp ad(&lt;rrln)p(irln), for any p&gt;0.

Proof. The décomposition in (i) cornes from the exact homotopy séquence of

the fibration F^&gt; MG -^ K(Z,n), namely ir*(MG) &apos;îrn(hfG)(Bp#ir*(F)

7rn(MG)©&apos;7r&gt;n(MG). The same argument used in Proposition 2.7 shows that
Tr&gt;n-[/n&gt;n, ^&gt;n}- The free Lie algebra p#?r*(F) being thus generated by the

graded subspace 7r&gt;n which has the right dimensions in each (lower) degree (see

the proof of Theorem 2.6), the assertion on freeness follows again by Hilton&apos;s

theorem. The equality 7rn tt° is a conséquence of the Hurewicz theorem.
The Whitehead product tï^Att0—» tt1 is dual to the quadratic part of the

difïerential Zx —» Z0AZ0, which in turn is obtained by simply taking the quadratic
part of the relations (2.5). To be a little bit more précise, dénote by {z*} the basis

of tt0 which is dual to the basis {za} of Zo given by (2.4) and notice that z*
générâtes tt°, while {z*}a&gt;o generate 7r&gt;n. It is straightforward to see that
[z$, Zq] 0 and that [z*, z*] is Sullivan dual to the élément of Zx corresponding
to the relation rab (2.5), for any b ^ a &gt; 0. It is now easy to find the coefficients in

Uo,z*]= Z Ccab[zt,zt], foranyc&gt;0.
bs*a&gt;0

In particular, if the décomposition in (i) is a Lie product one then it follows from
the construction of the relations (2.5) that xaxb e eG • H*BG, for any a, b &gt; 0. We
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infer that H+BG • H+BG c eG • H*BG, which forces rank G 1, H*BG being a

polynomial algebra.
The equality (ii) follows exactly as in the previous proposition, with ir&gt;n(MG)

replacing ir(MG).

3. Delocalization

Let Kbea finite simply connectée complex and consider the following subset
of the self O-equivalences of K

E {K-^K\ f(x) f|x| • x, any x e H*(K; Z), for some t e Z*}.

We are going to exploit in this section the fact that the formality of K is

équivalent to the existence, for any t e Z*, of an fe E which acts on H*(K; Z) by
f*(x) s|x| • x, for some nonzero multiple s of t ([12], [11]).

3.1. PROPOSITION. Let V be a finite complex and K be a finite simply con-
nected complex with localization map L If K is formai then, given any map V-^&gt; Ko,
there isanfeE and V-3- K such that foh IH.

Proof. K being formai, the same argument used in [9] (with / restricted to lie
in E) shows that for any integers n, s there is an / e E such that for î =^ n tt, (/) kills
the s-torsion of 7Tt(K) and Im irx{f)^-s •

Now let F-*K be the homotopy fibre of K -» Ko. Any / e E localizes to f0,
and induces fF :F-&gt; F. The remark above implies (via the long exact homotopy
séquence) that for any finite subgroup S c tt*(F) there exists / e E such that
&apos;&quot;&quot;hcC/f) annihilâtes S.

In order to construct / and H satisfying the desired conclusion we proceed by
induction, putting hm h |Vm and supposing that Hm : Vm -&gt; K and fm e E hâve
been constructed so that (fm)ohm lHm- The obstruction to extending Hm to
Hm+1:Vm+1-&gt;K so that (JJohm+1=lHm+1 lies in Hm+1(Vm+1, Vm; 7rm(F)).
Since V is finite there is, in fact, a finite subgroup Sc7rm(F) such that the
obstruction lies in the image of Hm+1(Vm+1, Vm; S) -* ffm+1(Vm+\ V&quot;1; 7rm(F)).

Choose fe E such that 7Tm(f&apos;F) annihilâtes S. Then f&apos;Hm extends to Hm+1 such
that IHm+i (/%(/m)ohm+i- Put /m+i /7m- Because V is finite this proves the

proposition.

3.2. Remark. A similar (and even simpler) argument shows that, for a formai
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1-connectée! finite complex K and a 1-connectée! space X with localization map /,

for any map h:K-*X0 there is an feE and H.K-+X such that hf=lH (see
also [12], [9]).

g
3.3. Proof of Proposition 1.2. Suppose we hâve a map V~» MG0 such that

g*(wG)o= &lt;\
&apos;

Ho&gt; for some qe Q*. Since V is finite we may suppose g maps into
(MGN)0 for some skeleton MGN of MG. Since MG is formai this is a formai
([12]) finite complex. We may apply the previous Proposition and obtain
f:MGN-*MGN such that Hnf=kn-id, for some fceZ*, and H:V-+MGN
such that IH fog. It follows that H*uG is a Q*-multiple of u in Hn(V; Q), hence

r • H*uG s • u in Hn( V; Z), for a suitable choice of r,seZ*. Use the formality
again and choose f&apos;eE, MGN^MGN such that (/&apos;)*uG rt • uG; set then
g&apos; f&apos;H : V—? MG and conclude that st • u is G-realizable.

There is one more application of Proposition 3.1:

3.4. COROLLARY. If G is a compact connected Lie group let us choose

éléments c,eH*(JBG;Z) which freely generate the algebra H*(BG;Q). Given

any collection of classes ateHki\V; Z), where V is a finite complex, there exist
t € Z* and a map f : V -&gt; BG such that

Proof. Define h: V-&gt; BG0 by h*(ct)0 (ax)0, any i, and pick a large number
N such that h : V -* (BGN)0. By Proposition 3.1 one obtains f:BGN-*BGN
such that /*cl s|c&apos;l-cI, any i, for some seZ*, and H:V-+BGN such that
IH foh. As in the previous proof one may choose a sufficiently large fc € Z*
such that fc • 1**0, fes1&quot;*1 • a, in H*(V; Z), for any i. The formality of BGN
produces a map /&apos; : BGN —» BGN and a Z*-multiple of fc, say r, such that
(/&apos;)*Ci ^|c| • Ci, any i. We may then take t rs and £ /&apos;H.

4. G-realizability up to a nonzero factor

4.1. Let G&lt;L^SO(n) be an embedding of a compact connected Lie group
and let Vm be a closed oriented manifold. We ought to point out from the

beginning that ail the previous constructions, définitions and notations coming
from this situation (MG, G-smoothability, G-realizability, eG,...) are in fact
depending on the embedding / and not only on the isomorphism class of G.

The G-abbreviation is only a notational simplification and should not be mis-

leading.
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As a very simple example we may take G SO(2), embedded in two ways
in SO(4):

(id, 1)

SO(2) » SO(2)xSO(2)^SO(4).

Dénote by j1 the embedding onto the first factor of the maximal torus and
by j2 the diagonal embedding. For z6Hm_4(Vm;Z) they give rise to two
distinct notions of G-smoothability, namely z is G-smoothable if and only if

with v(W) t®0 (via h)

with v(W) C®C (viaj2)

where f is a complex line bundle and 6 is the trivial complex line bundle.
Indeed we may take V=P4C and u a2 as the Poincaré dual of z, where
aeH2(P4C;Z) is the canonical generator. Since u is dual to P2C, it is G-
realizable via /2. On the other hand, since u2 is a generator of H8(P4C; Z),
Theorem l.l(i) shows that u is not G-realizable via jt. The point is that the
Euler classes constructed via the two embeddings are différent, namely eG 0

via jl9 but eG c\ via /2. We mention that we hâve no example (in connection
with Theorem 1.1 (ii)) where the property of indecomposability of the Euler
class really dépends on /.

4.2. Proof of Theorem 1.1

(i) If eG=0 then Theorem 2.6 gives a décomposition (MG)0= SqVX with
Sq carrying (uG)0. On the other hand, it is a classical fact that classes a e

Hn(V; Q) satisfying a2 0 ail arise from maps V-* Sq. Now apply Proposition
1.2.

(ii) Suppose that eG is not a decomposable of H*BG. This implies that
there is a graded algebra map H*(J3G; Q)-&gt; H*(K(Z, n)\ Q) sending eG to
(aJo&gt; aneHn(K(Z,n);Z) being the canonical generator. Since we know that
H+(MG;Q) eG-H*(BG;Q)czH*(BG;Q) as a subalgebra, the formality of
MG insures the existence of a map r : K(Z, n) -* MG0 with the property that

Passing to a large skeleton, we may delocalize it via Proposition 1.2, obtaining
a map s : K(Z9 n)N -* MG such that s*(wG) q • an, for some q e Z*.

Finally, given u e Hn(Vm; Z), represent it by a map û : V-&gt; K(Z, n)N and set

g su. Note that we hâve g*(uG) q • u, where the factor q dépends only on m

and on the embedding G0-» SO(n).
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Suppose now that eG^ 0 but eG e H+BG • H+BG. We shall construct a closed

manifold V and a class ueHn(V; Z) with the property that no nonzero multiple
of m is G-realizable.

Our hypothesis implies that eG may be written in the form eG e2+ • * * et+1,

where each ex is a linear combination of monomials containing exactly i

generators of the polynomial algebra H*BG(= free graded algebra on {c,}).
Choose integers k and / satisfying

and construct a graded algebra H An(x)l(x2k+l)®A4i+2(z)l(z2) keeping in mind
that, since eG is nonzero, n must be even. Notice that H is 1-connected, satisfies

Poincaré duality and has top dimension ^0 (mod4). Taking the formai Q-space
having it as cohomology algebra, there is no obstruction to rational surgery on it
([12], [1]). Therefore there exists a closed manifold V such that H*(V; Q) H.
Choose ueHn(V; Z) such that u0 is nonzero in Hn(V; Q).

In order to finish the proof, we are going to show that any graded algebra map
f:H*MG-*H* sends (uG)0 to zéro.

We hâve a graded algebra map A(Zn H*BG)^&gt; H*MG given by p(YJna)

uG - a, for any a eH*BG. Putting g fp, it is immédiate to see that

ar+1)

for any al9..., ar+1 e H*BG. Suppose that g(£n 1) q • x, with qj= 0.

We first remark that, due to the inequalities (*), the éléments {x1 | O^j*^ f+ 2}

represent a basis for H^(t+2)n. If the monomial ct • • • cr+1 appears in eG then
necessarily l^r^f and 0&lt;|c,|&lt;n, for any L Thèse imply that

* g(lT ci&quot;
&apos; cr+ij • xr 0, hence g^X&quot; eGJ 0.

Since g(IneG) gŒn l)2 this gives x2 0, a contradiction.
(iii) Suppose 6G^ 0. As observed in Section 2, H*(MG; Q) has relations only

in degrees ^2rc + 4. On the other hand, the assumption on V implies that it has

the same minimal model as a d.g.a. (A, dA) which is zéro in degrees &gt;2n + 3.

Thus given uoeHn(V;Q) we may find a d.g.a. map (H*MG9 0) -* (A, dA)

sending (wG)0 to a représentative of i*0. Since MG is formai this yields a

map g : V-^MG0 such that g*(uG)0= uQ. Now apply Proposition 1.2.

A solution of the G-realizability problem up to a nonzero factor may be

obtained in gênerai as follows:
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4.3. PROPOSITION. Suppose eG^0 and let V be a fmite connected complex
with minimal model Mv. One may construct an affine algebraic variety over
Q,A&lt;^ MyX X, the Q-vector space X and the variety A depending on the embed-
ding j and on Mv, such that:

(i) pr1{A)^ZnMv
(ii) given ueHn(V;Z), some Z*-multiple of u is G-realizable if and only if

some Q*-multiple of u0 lies in [pr1(A)]aHnMv Hn(V; Q).

Proof. Dénote by M the minimal model of MG and consider the
map[M, Mv]-^-&gt; HnMv, which sends the homotopy class of the d.g.a. map g to
g*[[/]. Hère we hâve written M (AZ, d) observing that Zn is generated by an
élément U such that dU 0 and [U] (uG)0, by the Hurewicz theorem. Proposition

1.2 may be restated as follows: some Z*-multiple of u is G-realizable if and
only if some Q*-multiple of u0 lies in the image of ev.

We therefore hâve to construct A and show that Im ev [p/vM. Pick m &gt; n
such that Hl(V;Q) 0 for i&gt;m. Standard algebraic obstruction theory shows

that there is a bijection induced by restriction [AZ,Jtv]—&gt;[AZ^m,Mv] so we

may consider a second évaluation map Homd g a (AZ*5™, Mv) -—&gt; HnMv defined
in the same way and having the same image as the previous one.

The graded algebra maps between AZ^m and Jtv are identified with the

vector space ]]^Ln¥Lom (Z\ Jilv) MyXX. The d.g.a. maps are those determined
by the algebraic conditions imposed by the property of commuting with the
differentials. We shall thus take A Homdga (AZ^m, Mv) and simply remark
that prx{A)&lt;=¦ ZnMv and [prtA] Imev.

4.4. Remarks. The proof of Theorem 1.1 (ii) shows in fact that whenever

eG^0 but eGeH+BG • H+BG there exists a class ueHn(V; Q) for which the

G-realizability problem cannot be solved even at the cohomological level, that is

there is no algebra map H*MG -&gt; H* V sending (uG)0 to some Q*-multiple of v.

On the other hand, by exploiting more carefully the structure of the bigraded
model of the formai space MG([6]), it can be shown that if V is a finite connected

complex such that Hl(V;Q) 0 for i&gt;3n + 4 then, for any G^SOin) with
eG^0 ancj for anv ueHn(V\ Z), some nonzero multiple of u is G-realizable if
and only if there is an algebra map h :H*MG -* H*V such that h(uG)0 q • u0,

with qeQ*.
The example below shows that outside this range the existence of a

cohomological solution does not in gênerai imply the G-realizability, thus indicat-
ing the complexity of the problem, as reflected in the fact that in général A
dépends on more than H*(V; Q).
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4.5. EXAMPLE. We shall start with G SO(2)x SO(2) cannonically embed-
ded in SO(4) and we shall construct a 1-connected complex V of dimension 17

and an algebra map h :H*MG-+ H*V such that, setting h(uG)0=v, no Q*-
multiple of v is G-realizable.

H*BG is freely generated by two éléments of degree 2, say e and /, and

£g ~ «/. Writing as in §2

H*BG eG • H*BG®Q • 10span {ek | k ^ l}0span {/&apos; 11 ^ 1}

use (2.4) to conclude that H*MG is generated by the éléments: U e/, xk ek+1f,

fc^l, and yi c/l+1, 1^1. The relations (2.5) among them are of the following
types:

- UxJ+k,

(Vk)

With this information at hand, it is not difficult to construct a 16-stage minimal
model p : (AZ^16, d) -? (H*MG, 0) which, due to the formality of MG, may be

extended to a minimal model of MG, (AZ9 d) (see also [6]). Explicitly, Z^16 has a

basis consisting of éléments labeled U, xu yt,..., x6, y6, zl5..., z14, u^ t;2, on
which p acts by sending the first of them to the corresponding generators of
H*MG, and the rest of them to zéro. The differential structure is defined by
setting dU 0, dxt 0, dy, O, for l^i^6, the éléments dz} correspond to the
relations (I)-(V) with degrees ^16 as follows: dz1=V1, dz2 In, dz3= IIu,
dz4 I21, dz5 II2i, dz6 III21, dz7 IV2i, dz8 V2, dz9 ^î, dz10 H3i? d^ii
III31, dz12=IV31, dz13 I22, dz14 II22; finally:

di)1=Uz6+y1z2-x1z1

dv2=

Note that [dt&gt;!] and [dv2] form a basis of H17(AZ^15, d). Construct a 16-stage
minimal algebra
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and extend it to a minimal M by defining inductively:

^P ^p-i®ldAp(Hp+X-i)? forp&gt;16

in order to hâve HlM 0 for i&gt; 17. Take then V to be a 1-connected finite
complex with the property that Mv M.

Associating to each generator of H*MG of degree ^16 the corresponding
cohomology class of M gives rise to an algebra map h : H*MG -* H* V, due to the
fact that ail relations of degree ^16 hold by construction in H*M.

Suppose now that v is G-realizable up to a nonzero factor, which implies that
there exists a d.g.a. map F:(AZ^16, d)-+Mle such that F(U) k-U, with
fceQ*.

Consider the d.g.a. involution (AZ^16, d)^ (AZ^16, d) defined by: U++ U,

z11&lt;-&gt;z12, z13&lt;-&gt;z14, v1++v2- Writing the conditions of commutation with the
differentials for F, one finds out that there exist constants a and b with ab k3

and such that the following hold

G(U) kU, G(xx) axl9 G(yi) byl9 G(zx) k3zu

G(z2) a2z2, G(z3) b2z3, G(z6) k2az6, G(z7) k2bz7

either for G F or for G Fs.

Restrict F and s to 15-stage models. Since F*[di)J 0 in H17M15 (i 1, 2), we
infer that in both cases we must hâve G*[duJ 0 in H17M15 (i 1, 2). This would

imply that [dvt] 0 in H17 (AZ^15, d), a contradiction.
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