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On foliations of Un+l by minimal hypersurfaces

Bruce Solomon

Introduction and preliminaries

This paper sets forth several basic theorems regarding foliations of R&quot;+1 by
minimal hypersurfaces; hère n + l&gt;8, for reasons discussed below. First we
outline our primary results.

In §1, we prove a local resuit (Theorem 1.1), concerning smoothness. It is

shown that any a priori merely continuous foliation of an open subset of R&quot;+1 by
minimal hypersurfaces is actually Lipschitz, and oriented by a Lipschitz unit
normal. This resuit is sharp, as evidenced by several accompanying examples, and

perhaps surprisingly so, since minimal hypersurfaces are themselves always real
analytic. We proceed in §2 to study the global structure of such foliations, when

they are defined on ail of Euclidean space. In this regard, Theorem 2.3
establishes that, in any dimension, the leaf space of the foliation is R, the real
line. Geometers, it seems, are often unaware that this is far from being true for
gênerai hypersurface foliations of R&quot;+1, even when leaves are assumed proper
and real-analytic, even if n + 1 2 (cf. §2 below). In Theorem 2.4, we specialize
to foliations which hâve an asymptotically regular leaf. This natural hypothesis
always obtains in the critical case n + 1 8, and the theorem states that such a

foliation is diffeomorphic to the cartesian product of a contractible area-
minimizing hypersurface with R, and that, near infinity, each leaf looks like the
central cône over a homology (n — l)-sphere embedded &quot;symmetrically&quot; in the
unit sphère 5&quot; (cf. remarks following Theorem 2.4).

Our interest in foliations of R&quot;+1 by minimal hypersurfaces dérives from a

very natural problem which has yet to be solved. We précède its statement with a

few words of background.
Recall that a solution of the minimal surface équation in R&quot; is a function

whose graph in Rn+1 is a minimal hypersurface. The classical Bernstein problem,
which asks whether an entire solution is necessarily a linear polynomial (i.e.
whether its graph must be an affine hyperplane) is well-known, and has a long,
fascinating history. Bombieri, DeGiorgi, and Giusti solved it completely in 1968

([BDG]), building upon a number of other important works (e.g. [B], [FW], [D],
[A], and [SJ]) in doing so. Their resuit (the &quot;Bernstein Theorem&quot;) states that
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68 BRUCE SOLOMON

entire minimal graphs are always hyperplanes when n + l&lt;8, whereas in any
higher dimension, this assertion fails.

Consider, however, that Un+l is foliated by the vertical translates of any
entire graph, minimal or not. In light of this simple observation, the following
deeper, but perhaps more natural (from a géométrie standpoint) problem seems
inévitable.

Is every foliation ofUn + lby minimal hypersurfaces a foliation by parallel affine
hyperplanes?

When n + 1 =£ 8, the theory developed in connection with Bernstein&apos;s problem
yields an answer: affirmative if n + 1 &lt; 8, négative if n +1 &gt; 8. But in the critical
dimension n + 1 8, it appears qui te difficult to settle this question. More
generally, one might ask, when n + 1 &gt; 8, whether such foliations always arise by
translating an entire minimal graph, or, whether the assumption of an asymptoti-
cally regular leaf implies that ail leaves are parallel hyperplanes. We would guess
that both thèse questions hâve négative answers in high dimensions. Some

discussion of this is given following the proof of Theorem 2.4.

Henceforth our basic setting will be a codimension one, Ck foliation of R&quot;+1

(or some open subset thereof) which will generally be denoted by 9. Hère
ky n ^0 are unrestricted non-negative integers. We thus hâve a décomposition ot
Rn+1 into a union of Ai-dimensional submanifolds, called the leaves of 3F

f and
each point of Un+1 has a neighborhood U where there is a distinguished Ck

coordinate System

(x,y):U-+RnxR.

That is, for each t eM, y~l(t) is a connected component of À Pi U for some leaf
À e 3&gt;. Furthermore, we will always assume that leaves of 3F are minimal, i.e.,
smoothly immersed submanifolds having zéro mean curvature.

Of spécial interest, particularly in §2, will be the case in which leaves are
hypersurfaces. By this we mean a codimension one, locally intégral current 5 of
the form

S dlVl VczUn+l open,

where IV} dénotes the current corresponding to oriented intégration of (n + 1)-
forms over V. (The reader may wish to consult one of the books by H. Fédérer

[FH] or L. Simon [SL], if unfamiliar with the theory of intégral currents.) This
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point of view will be useful to us because there is a geometrically natural topology
on the space of hypersurfaces; the intégral flat topology [FH, 4.3.16] or (SL, §31).

Roughly, two hypersurfaces are close in this topology if their différence bounds
an open set having &quot;small&quot; volume in any bail.

When the support of a hypersurface 5 (denoted spt (5)) is a Riemannian
submanifold of Mn+l, we may sometimes refer to this submanifold as &quot;the

hypersurface 5&quot;. No serious ambiguity will arise through this practice.
A further useful aspect of hypersurfaces is the naturality with which one can

impose a more global variational hypothesis than that of minimality; namely, that
of area-minimization. A hypersurface S is said to be area-minimizing in an open
set l/dlR&quot;*1 if

for ail sufficiently large r&gt;0, whenever Z is a hypersurface having compact
support in U. (We use Br to dénote the open bail of radius r &gt; 0 and center at the

origin O e Un+l). Roughly speaking, this means that no compact pièce of 5 in U
can be replaced by a pièce having less n-dimensional area, without introducing
boundary.

Before we proceed, it is our pleasure to thank the Mathematical Sciences
Research Institute in Berkeley, Indiana University, Bloomington, and the Centre
for Mathematical Analysis in Canberra, for supporting this research.

§1. Local regularity

In this section, we discuss the smoothness of foliations having codimension
one minimal leaves. Our basic resuit is the following.

(1.1) THEOREM. Let 2F be a codimension one, C° foliation of an open set
(/cR&quot;+1. If ail leaves of &amp; are minimal, then 9 is orientée by a locally Lipschitz
unit normal vector field, and admits a locally Lipschitz structure.

Though it gives only local C01 regularity, this theorem is actually sharp. We
illustrate by some simple examples.

Let l/cR2 be the open dise of radius 1 and center at the point (2,0).
Consider the foliation of U by straight line segments, given as level sets of the

Lipschitz (but not C1) function
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A moment&apos;s méditation on this example makes it clear that more regularity
than Theorem 1.1 provides cannot be expected, at least locally. On the other
hand, it may be true that a global C° foliation of Un+l by minimal hypersurfaces
is necessarily C1 or smoother, possibly even real analytic. This is true when

n + 1&lt; 8 of course (at least, assuming leaves are proper) but it appears to be a

considerably more subtle matter when n + 1 &gt;8. Indeed, if true, it must dépend
on the metric properties of Un+l. For, if we interpret the open dise above as the
&quot;Klein model&quot; for hyperbolic 2-space [HCV, §35], we obtain a C° foliation of the

hyperbolic plane by proper minimal (in fact, totally géodésie) hypersurfaces,
which is locally Lipschitz, but not C1.

It may also be worth mentioning hère that the normal to a C° foliation of
Un+l by real analytic-but not minimal - leaves, is generally discontinuous. For
example, one can foliate the upper half plane in M2 with leaves which are ail
homothetic images of the graph {(jc, /(*)) :x e R}, where f(x) (jt/2) + tan-1(jc).
The jc-axis then complètes this foliation continuously to the closed half plane, and

reflection across the jc-axis even gives an entire foliation of IR2. Each leaf is real

analytic, but the normal to this foliation is clearly discontinuous at the origin.
Having brought the content of Theorem 1.1 into focus with the above

examples, we now proceed to its proof.

Proof of Theorem 1.1. First, by the purely local nature of the theorem, it will
suffice to assume that 3* is comprised of the level sets of a single continuous
function y : U —&gt; M having no extrema in £/, and which séparâtes leaves. Dénote
by A, the leaf y~\t).

Next, we claim that (in contrast to the last example above) the unit normal v
to 2F is continuous. Since we are free to reparametrize y, it will suffice to dérive
the continuity of v on Ao (i.e. at t 0). If p e Ao and Br{p) c c U for some r &gt; 0,

then one easily sees that as f—&gt;0, À,-» Ao as hypersurfaces in Br(p), in the

intégral fiât topology. Under our présent hypothesis that ail leaves are minimal, it
is a basic fact that whenever K c c U is open and convex, and A e 2F is a leaf,
A H K is area-minimizing. (We do not argue this fact hère, because a stronger
version of it is proved later, in Lemma 2.2.) In particular, therefore A, n Br(p) is

minimizing for each teU, and hence the convergence A, -» Ao is governed by the
basic regularity theory for minimizing hypersurfaces [FH, 5.3.14], which provides
that intégral flat convergence of minimizers to a smooth limit is actually smooth

convergence. More precisely, for sufficient small |f|^0, Xtf\Br{p) can be

expressed as the graph of a function /, : Ao -» IR (relative to the unit normal v on
Ao) in Br(p), where /, -» 0 in the Ca norm for every a &gt; 0, as t —» 0. This clearly
gives the continuity of v on Aon Br(p), hence throughout U.

We emphasize that this Ca convergence of nearby leaves to A does not imply v
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is Ca_! for ail œ&gt;0. Indeed it cannot, by virtue of the first counterexample
preceding this proof. We can show, however, that v is locally Lipschitz; we now
proceed to do so.

For this, observe that since v is continuous, we may restrict our attention to a

neighborhood in which v barely varies. Indeed, it will suffice to consider the case

U B3xI2,

where, for each r &gt; 0,

Br Br(O) c Un, lr (-r, r) c U.

Moreover, we may assume without loss of generality that

supv\v-n\&lt;ôf (1.2)

where ô &gt;0 will be chosen shortly. It will then be shown that there is a constant
C C(n, ô) such that

\v(x)-v(y)\&lt;C\x-y\ (1.3)

whenever Je, y e W : B2 x IY.

For this purpose we now define V : B2 x lx, and note that whenever
u:Rn —&gt; [R is any smooth function, the unit normal v to the graph of u in (Rn+1

satisfies the elementary estimâtes

for each x e Rn, v being evaluated at (x, u(x)) e Rn+1, provided |v-n|2&lt;l.
Hence we may choose ô&gt;0 in (1.2) sufficiently small to ensure that for each

telu the leaf of 9 containing (0, 0, 0, t) e V is the graph of a function

ut:B3-+I2.

Now, the minimality of leaves of 9 implies that, for each t e lu ut satisfies the
minimal surface équation
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Hère and henceforth we employ the summation convention, and hâve, for
1 &lt; i, ; &lt; n,

a»(p) (1 -f \p\2)ôtJ-ptPj, Du DtD^^f^.

ôtJ being the Kronecker symbol, and p any vector in Un. The point hère is that
since \ut| &lt; 2 on B3, we may invoke well-known a priori estimâtes for the minimal
surface équation [GT, Corollary 16.7] to obtain, for any given multi-index j8, a

constant C C(nf )8) such that

sup {|D&quot;u,(jt)| :x € #3} &lt; C. (1.5)

/n particular, our bound on |w,|, /zence the constant in (1.5), w independent of
tel,.

Suppose then, that s,t e Iu s &gt; t, and dénote by v\ the positive différence

v) us — ut &gt; 0.

It is a standard observation that v\ satisfies an elliptic differential équation, but

we wish to emphasize hère that v) satisfies such an équation having smooth
coefficients. Precisely, we hâve

where

B\x) D]kut(x) • f Dpa&apos;k[rDus{x) + (1 - r)Dut(x)] dr,

(see [BJS, §11.7.1]). From thèse formulas, it is easy to verify, using (1.5), that for
any a e (0, 1), there are constants À &gt; 0, C &lt; 00, such that

A \p\2 &lt; A&apos;ptPj &lt; \p\2 for ail peUn (ellipticity)

k*&lt;;|o,ar,£2&gt; \Bl\o&gt;atB2&lt; C (uniform Holder continuity),

The Holder norms above being denoted as in [GT, p. 53]. Moreover, thèse
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bounds are independent of s, t e I2, despite the dependence of AlJ, B&apos; on s, t&gt;

because (1.5) holds uniformly. Our positive solutions vst are therefore governed
by the classical Schauder estimâtes, and satisfy a Harnack inequality. We proceed
to exploit thèse facts.

First of ail, the Schauder interior estimâtes [GT, 6.2] yield a constant C

independent of s, t el2, such that

l
\Dvst\ &lt; C • sup^ |vî|. (1.6)

At the same time, using the Harnack inequality (e.g. [GT, 9.25]), we obtain, for
any x e B2,

suPB2 \v)\ &lt; C - inf^ K| &lt; Cvst(x). (1.7)

Combining (1.6) and (1.7) with the définition of vsn we therefore see that for any
x e Bl, 5, t e Ii y

\Dus(x) - Dut(x)\ &lt; C{n, à) \us(x) - ut(x)\,

so that, by (1.4), we hâve

|v(jc, us(x)) - v(jc, ut(x))\ &lt; C \u,(x) - ut(x)\. (1.8)

That is, v satisfies a Lipschitz condition between pairs of points in V which are
&quot;vertically&quot; aligned. We extend this relationship to arbitrary pairs of points in V

to obtain (1.3), as follows.
Let i, y € V. Then there exist x,y eBus,teIlt such that

x (x, ut{x))y y (y, us{y)).

We then define

y (y&gt; ut{y)).

Consequently,

|v(jc) - v(y)| ^ |v(jc) - v(y)| + |v(y) - v(y)|,

and from (1.8), we hâve C C(n, &lt;5) such that
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Furthermore, from (1.4), (1.5), and the mean value theorem we hâve C

C{ny ô) such that

\v(x)-v(y)\&lt;C\Du,(x)-Dut(y)\

&lt;CsupBl\D2ur\\x-y\

Thus

implying

\v(x) - v(y)\2&lt;2C(\x -f\2 + \y-y\2). (1.9)

Now, if (x —y), {y —y) were perpendicular (i.e., (x —y) horizontal), we would
immediately obtain the desired Lipschitz condition (1.3). But recall that ô&gt;0

bounds |v — n|, hence |£&gt;wr| by (1.4), so that the vertical component of (x -y) is

controlled. It is therefore elementary to deduce (1.3) from (1.9) despite
non-perpendicularity. We hâve proven that v is locally Lipschitz.

The remaining assertion of Theorem 1.1 requires us to establish that $F has an
atlas of distinguished coordinate charts which are bilipschitz homeomorphisms.
Again, however, it will suffice to consider the particular neighborhood V studied
above, and, in our notation there, to show that the bijection

(x, i*,(*)) &lt;-&gt; (x, t)

is bilipschitz on V. We leave the détails of this argument to the reader; it is quite
straightforward in view of (1.4), our choice of ô &gt;0, and the following
conséquence of the Harnack inequality satisfied by vst in (1.7). Namely,

us{x) - ut{x) vst(x)

&lt;C2vst(x)~C2(us(x)-ut(x)).

This concludes our proof of Theorem (1.1).

(1.10) Remark. Theorem 1.1 remains true with R&quot;+1 replaced by any smooth
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ambient manifold. The argument of Theorem 1.1 is further complicated by the
need to write leaves as graphs over a given base leaf, instead of over fi2cR&quot;, but
no essentially new ideas are involved.

(1.11) COROLLARY. Let 9 be a codimension one, C° foliation of a

Riemannian manifold M. If &amp; is oriented, and ail leaves are minimal, then any
positive linear combination of closed leaves (with orientations induced by 9) is

homologically area-minimizing in M.

Proof Since v is locally Lipschitz (Theorem 1.1), it is differentiable almost
everywhere (Rademacher&apos;s Theorem [FH, 3.1.6]). A standard calculation using
the minimality of leaves then shows that div(v) 0 almost everywhere. 9
therefore corresponds to a calibration of M, in the sensé of Harvey &amp; Lawson
[HL]. The resuit foliows immediately, then, as in [HL] or [SD], by the divergence
theorem.

§2. Global structure

In this section we prove two global theorems concerning &quot;entire&quot; foliations of
Euclidean space by minimal hypersurfaces. While the first (Theorem 2.3) is valid
quite gênerally, the second (Theorem 2.4) requires that some ieaf be

asymptotically regular (see below). This requirement is always satisfied in R8, but
is a significant restriction in higher dimensions. A few preliminary facts are in
order before we state and prove thèse results.

Let 9 dénote a Ck foliation of R&quot;+1 by minimal hypersurfaces. Implicit in our
earlier définition of hypersurface, is the assumption that every leaf of 9 is

properly embedded (for short, proper). This assumption is rather strong, though it
can be deduced from minimality when n 2, or from real-analyticity of 9 for
arbitrary n. We do not know how to remove it in gênerai.

An important aspect of properness is the fact that each leaf of 9 séparâtes
Un+l. It follows from this that the leaf space of 9 is locally homeomorphic to R

(e.g., see [H]). The latter space, denoted hère by A{9)9 is the set of leaves of 9,
topologized so that the obvious projection map

n:Mn+l-&gt; A(9)

is continuous. The fact that A(9) is locally R makes it a Ck one-manifold, but
considération of simple examples shows that in gênerai, A{9) is not a Hausdorff

space. Indeed, as is nicely elucidated in a 1957 paper of Haefliger and Reeb
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[HR], every simply connectée! non-Hausdorff one-mainfold is the leaf space for a

smooth foliation of U2 by properly embedded curves.
One property that A(^) does inherit from R&quot;+1, is simple connectivity. (The

proof of this, which makes an amusing exercise, again uses the fact that Mn*\
hence A(^), is separated by each leaf.) It is well-known that a simply connected
one-manifold which is Hausdorff, is homeomorphic to R. The following Lemma
generalizes this fact to the non-Hausdorff case.

(2.1) LEMMA. (Haefliger &amp; Reeb [HR, §1.2, proposition 1). Let A be a

simply connected one-manifold, not necessarily Hausdorff. Then there exists a

globally defined local homeomorphism f : A ~&gt; R.

This resuit is a key tool in proving the next Lemma, from which Theorem 2.3

will quickly follow. Below, leaves klfk2e&amp; will be termed inséparable if, as

points in A(^), they do not hâve disjoint open neighborhoods.

(2.2). LEMMA. Let &amp; be a Ck foliation of Un+Ï by proper minimal
hypersurfaces, k &gt; 0. Then any finite sum of arbitrarily oriented, pairwise
inséparable leaves, is area-minimizing.

Proof Suppose At, Am are pairwise inséparable. They by letting

be as in Lemma 2.1, and replacing/by/-/(Âj) (without renaming), we clearly
obtain a local homeomorphism / such that

Next, give each A, an orientation, sum the resulting hypersurfaces to form a

locally intégral current

and let r &gt; 0. By using the compaetness theorem for intégral currents [FH, 4.2.17]
or [SL, §27], we may obtain, as the limit of a minimizing séquence, a

hypersurface Sr, which is minimizing in B(O, r), and satisfies

spt(r-5r)cB(O,r),

The same holds for any indécomposable component [FH, 4.2.25] of T — Sr} and
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we now restrict our attention to one such, call it Q. Note that in view of [FH,
4.5.17], we may reorient Q so that Q dA for some bounded measurable set

A c= B(O, r), i.e. Q is a hypersurface in our terminology.
Now, at some point p in the compact, connectée! support of Q, the continuous

function

must attain a maximum. Let kp e &amp; be the leaf through p. Since / is locally
monotonie, it follows from the constancy theorem [FH, 4.1.7] that A (which is

connected because Q is indécomposable) lies in the closure U of one connected

component of Un+l ~ kp. Moreover, Q clearly minimizes area in R&quot;+1 -spt (T),
so that spt (Q) fïspt (T) ^0, and we may apply the generalized maximum
principle [SL, 37.10] to deduce that in a neighborhood of/?, spt (Q) coincides
with kp. But the set of points where Q contacts kp is then both open and closed in

spt (Q) — spt (T), whence / ° n must vanish identically on spt (g), and we
conclude that spt (Q) a kp c spt (T).

Each indécomposable component of T - Sr is therefore seen to be a compactly
supported n-cycle in a non-compact, n-dimensional manifold. Such cycles
necessarily vanish (as currents; constancy theorem again), hence T — Sr 0. Since
r&gt;0 was arbitrary, we hâve that 7is area-minimizing, as desired.

We may now easily state and prove the first main resuit of this section.

(2.3) THEOREM. Let &amp; be a Ck foliation of Un + l by proper minimal
hypersurfaces, k ^ 0. Then A(9*) is Ck diffeomorphic to R (homeomorphic if
fc 0).

Proof. We show that A(3&lt;) is a Hausdorff space. Having noted earlier that
is a simply connected Ck one-manifold, it then follows immediately that
is homeomorphic to R, and in the Ck sensé, when 9 is C\

Suppose A(ZF) were not Hausdorff. Then we could find a pair of distinct but
inséparable leaves kïf k2 e 5F. Each of thèse leaves divides its complément in R&quot;+l

into exactly two connected open sets. For each (i, y) (1, 2), (2, 1), let û, be the

unique component of R&quot;+1~A, which does not contain kr Thus 6X^J€2 is a

non-empty, disconnected open set, call it C, whose topological boundary is

À, fl k2. But we may orient kx and k2 so that the resulting hypersurface kx+ k7

forms the oriented boundary of 6:
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On the other hand, since kt and Â2 are inséparable, it follows from Lemma 2.2

that dû is actually area minimizing. This directly contradicts a theorem of
Almgren and DeGiorgi (as attributed by Bombieri &amp; Giusti [BG, Theorem 1]).

Namely, an open set (9dR&quot;+1 having area-minimizing boundary is always
connected. Hence no such pair of inséparable leaves can exist, A{9) is Hausdorff
and the proof of Theorem 2.3 is complète.

We now need to define asymptotic regularity, for which purpose we recall the

construction, due to W. H. Fleming [FW], of &quot;tangent cônes at infinity&quot;. (This
construction is also central in the resuit of Almgren/DeGiorgi to which we
reduced Theorem 2.3 above.)

Let 5 be an area-minimizing hypersurface. By well-known arguments, every
séquence of radii {rj —? 0 has a subsequence for which the corresponding

séquence of homothetic images {(r,)#S} converges, in the intégral flat topology,
to a homothetically invariant area-minimizing hypersurface C; i.e. C is a

hypercone. (Hère (r,) signifies the homothety x »—&gt; r,jc for x e Rn+l.) We will say in
this case, that 5 is asymptotic to C. Note that 5 may be asymptotic, in this sensé,

to more than one such cône, depending on the defining séquence {rt}. This

ambiguity will not be a source of difficulty below, however.

If S is asymptotic to a cône C which is smooth away from the origin Ce Rn+1,

we will say that 5 is asymptotically regular. In this situation spt (C) fl 5&quot; is a

smooth minimal hypersurface of the unit sphère Sn c R&quot;+1, which will be referred
to below as the associated link at infinity.

(2.4) THEOREM. Let &amp; be a Ck foliation of Rn+1 by proper minimal
hypersurfaces, and suppose some leaf ke 9 is asymptotically regular. Let
Y1&apos;1 c Sn be the associated link at infinity. Then

(i) 9 is Ck-diffeomorphic to kxU.
(ii) k is contractible.

(iii) There is a dijfeomorphism of Sn which exchanges the two components of
Sn ~ 21 while leaving Z pointwise fixed.

(iv) S is a homology (n — l)-sphere.

Proof. Suppose £ &gt; 0 is given. By Theorem 1.1 and the simple-connectivity of
Rn+1, there is a global, locally Lipschitz unit vector field v, normal to 9. Let

¦î) • D&gt;n + ^ © n +1V IKi —* IW

be a C00 approximation to v, with
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(since v is locally Lipschitz, this can be achieved on annuli by mollification, then
on Un+l by partition of unity.) We henceforth assume 0&lt;e &lt;1, so that v is

bounded and everywhere transverse to 3F \ in particular v never vanishes. The
fundamental existence/uniqueness/smooth-dependence theorem for ordinary
differential équations consequently gives a C~ embedding

such that

l G(x, t) v o G(x, 0, G(jc,O)=jc.
ut

Inverting G on its image 6: G(X xi), and projecting A x R -&gt; A, we obtain a

C* submersion

V&gt;:0-» A.

By Theorem 2.3, there is also a C* submersion

whose level sets are the leaves of J\ (Hère and below, one must argue slightly
differently in case k 0. We leave this to the reader.) Since the leaves of 9 are

infinitely smooth, and transverse to v, the product map

(V, n)\€-&gt; AxR

is then clearly a C^ embedding. Conclusion (i) of the theorem is now easily
derived with the aid of two facts: 6= Un + l, and (\p, jï) is surjective. Both thèse

facts are immédiate conséquences of the following claim.

(2.5) CLAIM. Each intégral curve of the vector field v meets every leaf of 2F.

To verify this claim, let a, /3 e 3F be arbitrary, with v pointing into the

component Ua of Rn+l ~ a which contains j8. Fix also an arbitrary point y e a. It
will then suffice to show that the intégral curve which enters Ua at y eventually
crosses j3. We will accomplish this in the process of proving conclusion (iii) of the

theorem.
Dénote by Cx, U+, and U~ respectively, the cône over 21, and the two
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(exactly two, by [BG]) components of Rn+l ~ Cr. Let

be the corresponding components of Sn ~ S. By our hypothesis of asymptotic
regularity, there are radii r, -* 0 for which the corresponding séquence A, : (r,)#A

converges to Cz in the intégral flat topology. For each i 1, 2, 3, consider
the &quot;rescaled&quot; foliation ^: (r,)^, which contains À,, and defîne A,+, À,&quot; e ^ to
be the unique leaves (one on each side of A,) having distance e &gt; 0 from 2. Since

each A,+, X~ is minimizing (Lemma 2.2), it is standard that (for suitable
subsequences) {A,*}, {k~} converge, as i-&gt; » to area maintaining-hypersurfaces
having distance £ &gt; 0 from Z. In addition, however, since A,+ lies on one side of A,

for each i, linv^ A* is supported on one side of lim,^ A, Cs. Similarly for A&quot;.

This situation is a rather spécial one in light of the following resuit of Hardt &amp;

Simon [HS, Thm. 2.1]:

There is a unique area-minimizing hypersurface T* (respectively, T~)
supported in the open set U+ (respectively, (/&quot;), having distance e &gt;0from 2. T*
and TJ are smoothly asymptotic to C^ near infinity, and representable (in polar
coordinates) as radial graphs over Q*, Q~ respectively. As e-*0, r+, T~ —&gt; CZy

and uniformly so outside B&gt; (O, 1).

We immediately see from this that

A,+ -» Tt, K -^ T7, as i -+ x,

and that Tt, T~ are diffeomorphic (by graphing) to Q+, Q~, respectively.
Combining thèse facts with the basic regularity theory [FH, 5.3.14] for

area-minimizing hypersurfaces (which, again, says that weak (i.e. intégral flat)
convergence of minimizers to a smooth limit is actually smooth convergence), it
follows that by making e &gt; 0 small, and then rescaling (i.e., choosing i large), we

may proceed under the following assumptions.

(2.6) 9 contains leaves A+, A~ such that any leaf y e &amp; between A+ and A&quot;

(i.e. jï(k&quot;)^Jï(y)&lt;jt(k+)) is expressible in si {x e Rn+1:| &lt; |*| &lt;|} as the

graph over a domain in Cx (relative to the unit normal vc on Q) of a function
whose gradient is small; that is O(e).

(2.7) There are diffeomorphisms

&lt;t&gt;±:Û±-&gt;D±: k±nB, (O, 1)
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such that for any co eZ, p ° (j&gt;±(a)) co. Hère p is defined, on a tubular
neighborhood of I containing 3D+, dD~, to be the &quot;nearest point retraction&quot;

onto X.

(2.8) Letting oc, p e 9 and y e a be as mentioned earlier in référence to claim
2.5, we hâve

jï{X~) &lt; jz(a) &lt; jï(I3) &lt; jt(A+), and \y\ &lt; 1.

From (2.6) and (2.8), we can now deduce claim 2.5. For, (2.6) shows that in
sd, any leaf of 9 between A~ and A+ is l%nearly parallel&quot; to Cs D se. By
pre-assigning £&gt;0 small enough, therefore, we can clearly arrange that any
intégral curve of the approximately normal vector field v, which meets Sn

between A~ and A+, passes through both thèse leaves, hence a posteriori through
both a and p. Since v points into Ua on ût, and never vanishes, the intégral curve
of v which enters Ua at y e oc must eventually meet Sn H Ua. If it does so between
A~ and A+, then we hâve just seen that it must eventually reach j8. If not, it
clearly meets S&quot; after having already passed through j3. This establishes claim 2.5,
hence proves conclusion (i) of our theorem.

Conclusion (ii) of the theorem follows directly from conclusion (i), because

for each i l, 2, 3, the homotopy functor nl commutes with cartesian

product, and jti(R&apos;i+1) jrf(R) 0. It is well-known that contractibility of a

manifold is équivalent to triviality of ail its homotopy groups [GM, III.B].
To get conclusion (iii), observe that by the argument for conclusion (i), 9

itself gives an isotopy from D+ to D~ through diffeomorphisms. But then by (2.6)
and (2.7), the corresponding map

is a diffeomorphism, whose restriction to dÙ+ 1= 3Ù~ is isotopic to the

identity on 2&quot;. This diffeomorphism can then be smoothly modified in a collar

neighborhood of dû*, so as to leave I pointwise fixed. Conclusion (iii) is now
évident.

Finally, we deduce conclusion (iv) from (iii) by noting that for each

0 &lt; k &lt; n — 1, Mayer-Vietoris gives an isomorphism
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where i and / dénote the obvious inclusions. But since i and j are essentially the

same map, by conclusion (iii), (/*, —/*) cannot be an isomorphism unless

Hk(I) 0. Recalling the well-known fact that compact embedded minimal
hypersurfaces in Sn are always connected, we see that HkÇE) Hk(Sn~x) for ail
k ^ 0. This complètes the proof.

We conclude with a few remarks.
Theorem 2.4 suggests an interesting extension of the spherical Bernstein

problem [Y]:

Which (n - l)-dimensional homology sphères can be minimally embedded in
the unit sphère Snl More restrictively, which can bound area-minimizing
hyperconesl

Several authors hâve found non-equatorial minimal hyperspheres in 5&quot; ([FK],
[HW], [TP]). Though none of thèse examples are known to bound minimizing
cônes, expérience indicates that in sufficiently high dimensions, some of them will
(cf. [HsS]).

Regarding more gênerai homology sphères, M. Kervaire [KM] has shown that
when n &gt; 5, there are infinitely many homology (n — l)-spheres which bound
contractible smooth manifolds. But if n&gt;5 and Qn is contractible, its double

D(Qn) is simply-connected and bounds flx[—1,1], which is then

diffeomorphically an (n + l)-ball by the /i-cobordism theorem [MJ, §9 Prop. A].
Hence D{Q) is a smooth n-sphere. In particular, the situation described in
Theorem (2.4), where a homology sphère I décomposes Sn as the double of a

contractible manifold, is topologically very common. This again suggests that in

sufficiently high dimensions, there will be minimizing cônes on homology sphères.
In such a case, the existence of non-hyperplanar foliations of Rn+l by

asymptotically regular minimal hypersurfaces is, for large n, made rather
plausible. Neither could such a foliation arise by translating an entire minimal
graph because such graphs are never asymptotically regular [£)]. Thus, although
the italicized question posed in our introduction may hâve an affirmative answer
in R8, the obvious generalizations mentioned there for higher dimensions are

probably false.
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