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Extremal length and Hôlder continuity of conformai mappings

Raimo Nakki* and Bruce Palka

1. Introduction

Let A be a set in the complex plane C and let 0 &lt; a &lt; 1 A complex-valued
function / defined on A îs said to belong to Lip* (A), the Lipschitz class in A with

exportent ay if there îs a constant M &gt; 0 such that

\f(z)-f(w)\&lt;M\z-w\a (1)

for ail z and w in A, î e if/satisfies a uniform Holder condition with exponent a
on A

Consider a simply connected proper subdomain D of C and a conformai

mapping f of D onto the open unit disk B {z \z\ &lt; 1} Of late ît has become a

matter of some interest to identify géométrie entena under which either the

mapping / or îts inverse belongs to some Lipschitz class Sufficient conditions for
uniform Holder continuity on the part of/or/&quot;1 are to be found, among other
places, m [7], [8], [9], [13] and [15], while [10] contains a description of certain

necessary conditions for such behavior The conditions referred to are ail
euchdean géométrie m nature If, on the other hand, one actually desires to
charactenze the domains D for which either / or f~l îs a member of some

Lipschitz class, évidence would suggest that one îs compelled to abandon a

euchdean perspective and to enter the realm of conformai invariants Thus, for
example, Becker and Pommerenke [1] and the authors [11] hâve exhibited

necessary and sufficient conditions for Holder continuity of conformai mappings
in terms of hyperbohe geometry In the présent article we employ a différent
conformai invariant, extremal length, to provide alternative charactenzations of
the domains D for which /, as well as those for which f~\ belongs to a spécifie

Lipschitz class Our charactenzations are subsequently apphed to dérive euchdean

géométrie entena for Holder continuity Thèse applications include

simphfied proofs and extensions of two récent results due to Lesley [7]

* Part of this research was done while the author was visiting The Untversity of Texas at Austin m
1984-85
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390 RAIMO NAKKI AND BRUCE PALKA

2. Modulus of an arc family

Let F be a family of arcs in C. Consider non-negative extended real-valued
Bord functions p in C such that

f

for each rectifiable arc y in F. Define

M(F) inf f p2 dx dy.
p Je

The quantity A/(f) is tertned the modulus of F, while its reciprocal,

1

is referred to as the extremal length of F. We prefer to work with the modulus
rather than with extremal length, although the latter is perhaps a more common
term of référence in the literature. Both the modulus and the extremal length of
an arc family are conformai invariants.

For future référence we compile hère some more or less standard modulus
estimâtes.

The Grôtzsch ring domain. For 0 &lt; r &lt; 1 let

The domain RG(r) is called the Grôtzsch ring domain corresponding to r. Let
jUG(r) dénote the modulus of the family of arcs joining the boundary components
of RG(r). Then

— • (2)

log- log-

See [6, p. 64]. Using the identity

1 8
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[6, p. 63], we obtain from (2)

4
t

1 + r 4 4(1 + r)
-tog—^(r^-log-^i, (3)

with the resuit that

-log- s/iG(r) s-log- (4)
k 1 — r jt 1 — r

The estimâtes for ^iG(r) in (2) are most useful for small r&gt;0; in fact, the lower
bound in (2) is asymptotically sharp as r—»0. For r near 1, however, the estimâtes
in (3) are better than those in (2).

The Teichmùller ring domain. For r &gt; 0 let

RT(r) C\ {z jc + r&gt; : -1 &lt; jc &lt; 0 or r &lt; a: &lt; oc, &gt;&gt; 0}.

The domain RT(r) is called the Teichmiiller ring domain corresponding to r. Let
jUr(r) dénote the modulus of the family of arcs joining the boundary components
of RT(r). Then

(5)

See [6, p. 63]. Combining (2) and (5) we obtain

2n 2n
M0log 16(1+ r) ^&apos;w log(l

(6)

Arcs joining connectée sets in B. Given three sets, E, F and G, we let
A(E, F : G) dénote the family of ail arcs joining £ to F through G. Now let E and
F be nondegenerate connected sets in the closed unit disk B. Then [3]

M[A(E, F:B)] M[A(Ë, F : B)]
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where a, b e Ê and c, deF and where q désignâtes the chordal metric in the
extended complex plane C defined by

for points z and w in C and by

Since \z — w\I2 &lt; q(z, w) &lt; \z — w\ for z and w in B&gt; we obtain using (6)

M[A(E,F:B))* ~ (7)

1Ogdia(£:)dia(F)

Inequality (7) is valid for ail connected sets E and F in B.

Cross-cuts separating interior points of B. Fix a point z 9^0 in B and consider
the family F of cross-cuts of B separating 0 from z in B. Elementary
considérations reveal that

where r \z\. Invoking (4) and a standard lower bound for M(F) we thus obtain

Next, let F( dénote the subfamily of Fconsisting of circular cross-cuts centered at

zl\z\. A direct computation shows that

dt

~r tl jr-2arcsin-j

from which it can be inferred that
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Finally, let F* designate the family of circular arcs in C\B complementary to the

arcs in Fc. Again, an elementary calculation yields

dt

&apos; tin + 2arcsin-j

which gives rise to the estimâtes

1 1

Cross-cuts separating boundary points of B. Let z and w be two distinct points
on 3B and let Al and A2 be the arcs into which dB is partitioned by z and w,
labeled so that dia(Aï)&lt;dm(A2). For i 1, 2 dénote by Ft the family of
cross-cuts of B which separate At from the origin. By [12, p. 196],

where /(^4i) désignâtes the length oîAx. Since

we deduce from (3) that

ilog^,

Consequently, if F désignâtes the family of ail cross-cuts of B separating a pair of
boundary points z and w of B from the origin, then

z - iv
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3. Extremal length characterizations for Hôlder continuity

In this section we characterize those plane domains D for which a conformai
mapping / of D onto B belongs to Lipa (D) and those for which f~l is a member
of Lipp (B). We advise the reader of one notational convention: throughout this
article the notations D and dD are used to designate the closure and boundary of
D relative to C, not relative to the extended complex plane.

Let A be a set in a simply connected domain D and let z and w be points on
dD. A cross-cut y of D is said to separate A front z and w if A lies in one of the

two components of D \ y and if the closure of this component contains neither z

nor w.

THEOREM 1. Let fbe a conformai mapping of a domain D onto B and let
0 &lt; or &lt; 1. Then f belongs to Lipa (D) if and only if&gt; corresponding to some (each)
continuum A in D, there exists a constant a &gt; 0 such that each pair ofpoints z and

w on dD with \z — w\ &lt; a can be separated from A by a cross-cut y of D satisfying

M[A(A, y : D)] &lt; (13)

alog
\z — iv |

Proof For the necessity, fix a continuum A in D. We may assume that / is

defined and continuous on D and that / belongs to Lip* (D). Let M &gt; 0 be a

Lipschitz constant for / corresponding to the exponent a and let d

dist \f{A)y dB). We verify (13) with a (d/M)1/a.
Fix a pair of points z and iv on dD with \z — w\ &lt; a. Since

|/(z) -/(h&gt;)| &lt; M |z - iv|a &lt; Maa d

and since /-1 has angular limits almost everywhere in dBy we can separate
A&apos; =f(A) from /(z) and f(w) by a cross-cut y&apos; of fi which is an arc of a circle
centered at /(z) and at the endpoints of which f&apos;1 has angular limits. The set
y=/&quot;1(y&apos;) is a cross-cut of D which séparâtes A from z and iv. Elementary
properties of the modulus yield

M[A(A&apos;, y&apos;:B)]&lt; —A
&lt;

where a (d/M)l/a. This establishes (13).



Extremal length and Holder continuity of conformai mappings 395

For the sufficiency, fix a continuum i4inD and choose a &gt; 0 for which (13) îs

vahd We begin by demonstratmg that / can be extended to a contmuous mapping
of D

Consider a point z of 3D and suppose that / fails to hâve a hmit at z Then we
can choose séquences (zk) and (wk) m D such that zk^&gt;z and wk-*z, while
f(zk)-*z&apos; and /(&gt;*&gt;*)-» w&apos;, where z&apos;#w&apos; An elementary géométrie argument
estabhshes the existence of end-cuts Ek and Fk of D joining zk and wkf

respectively, to distinct points zj* and w£ on 3D and satisfymg dia(£/f)—&gt;0 and

dia (Fk) —? 0, as k —&gt; oc Obviously

hm M[A(A, Ek D)] 0 lim M[A(A, Fk D)] (14)

Since B satisfies the modulus condition (7), ît follows that dia [f(Ek)]-*0 and

dia[/(Ffc)] —&gt;0 Furthermore, a classical theorem of Koebe asserts that/(E^) and

f(Fk) are end-cuts of B terminating at certain points z&apos;k and w&apos;k on 3By

respectively Since zî-*z and vv£—&gt;z, there îs, in view of (13), a séquence (yk)
of cross-cuts of D such that y* séparâtes zt and w| from A and such that the

component Gk of D \ y^. not containmg ^4 satisfies

M[A(A,Gk D))^M[A{Ayyk D)]-&gt;0

The set yk=f(yk) is a cross-cut of fî separating A&apos;=/(i4) from Gk=:f(Gk)
Clearly Gk contains zk and w&apos;k But since z^—&gt;z&apos; and w&apos;k-*w&apos;, where z&apos;=£w\ ît
follows that dia (Gk)-A0 The modulus condition (7) then implies that

M[A(A&apos;,G&apos;k B)]-^0,

as /: —» «5 This contradiction to the conformai invariance of the modulus shows

that / must hâve a hmit at z, an arbitrary point of 3D We conclude that / admits

an extension to a contmuous mapping of D The notation / will be retained for
the extended mapping

We are now m a position to demonstrate that / belongs to Lip^ (D) For this,
fix a pair of points z and w on 3D Assume that \z - w\ &lt; a and that /(z) =#/(h&gt;)

Let y be a cross-cut of D separating A from z and w and satisfymg (13) Next let
G be the component of D\y not containmg A Then by (13)

M[A(A,G D)]&lt; (15)

\z-w\
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We dénote A&apos; =f(A) and G&apos; =/(G) and use (7) to estimate

G:B)]*,1Ogdia(&gt;l&apos;)dia(G&apos;) 1Og|/(z)-/(»v)|

where b 128/dia (A&apos;). Since the modulus is a conformai invariant, we infer from
(15) and (16) that

The above estimate holds trivially for boundary points z and w of D satisfying
\z-w\&gt;a or /(z)=/(h&gt;). Hence the boundary mapping f\dD belongs to
Lipa (9D) and, consequently,/belongs to Lip* (D). (See [5] or [14].)

An analogue to the preceding theorem for mappings from B into the complex
plane is:

THEOREM 2. Let fbe a conformai mapping of B onto a domain D and let

0 &lt; P ^ 1. Then f belongs to Lip^ (B) if and only if&gt; corresponding to some (each)
continuum A in Dy there exists a constant b&gt;0 such that

M[A(A, y :/&gt;)]&gt; ^~—, (17)

\z-w\

whenever z and w are distinct points on SD and y is a cross-cut of D terminating in

z and w.

Proof For the necessity, fix a continuum A in D. We may again assume that/
is defined and continuous on B and that / belongs to Lipp (B). Let M &gt;0 be a

Lipschitz constant for / corresponding to the exponent /}. Next, let y be a

cross-cut of D terminating in distinct points z and w. The set/&apos;^y) is a cross-cut

of B with distinct endpoints £ and a&gt;. Using the estimate (7) we obtain

M[A(A, y:D)] M[A(f\A)f /-&apos;(y) : B)] ^ *
128

k

where c 128/dia \f~l(A)] and b cpM. This establishes (17).
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For the sufficiency, fix a continuum A in D and choose a number b &gt; 0 for
which (17) is valid. It is an elementary conséquence of (17) that D is bounded.
We show first that/can be extended to a continuous mapping of B. To do so, we

modify slightly the argument used in the proof of Theorem 1.

Fix a point z on dB and suppose that / fails to hâve a limit at z. Then we can
choose séquences (zk) and (wk) in B such that zk—*z and wk-*z, while

f(zk)-*zr and /(w^)-&gt; w&apos;, where z&apos;=£w&apos; and |z&apos;-w&apos;|&lt;fc. Select end-cuts Ek
and F* of D joining f(zk) and /(w*), respectively, to distinct points z&apos;k and w&apos;k on
&lt;9D and satisfying dia(£fc)—»0 and dia(F*)—?(), as £—»o°. Since (14) holds again
and since B satisfies the modulus condition (7), it follows that diaf/&quot;1^)]—»0

and dia[/~1(F^)]-^0. Furthermore, classical theorems of Koebe and Lindelôf
assert ihdX f~l(Ek) and f~1(Fk) are end-cuts of B terminating at certain points zt
and wkJ respectively, on the unit circle and that/has angular limits zk at zt and

wk at wk. Let yt be the line segment with endpoints zt and w£. Then

as /c-*o°, since z^—&gt;z and wj—&gt;z. On the other hand, f(yt) is a cross-cut of D
with terminal points zk and w^. In light of (17),

since z&apos;k-*z&apos; and wj^^ w&apos;. This contradiction to the conformai invariance of the
modulus shows that / must hâve a limit at z, an arbitrary point of dB. We
conclude that / admits an extension to a continuous mapping of B. We retain the
notation / for this extension.

We next verify that / belongs to Lip^ (B). Fix a pair of points z and w on dB
for which /(z) =£/(w). Assume first that \z — w\ &lt; d&gt; where d dist \f~l(A), dB].
Join z to w by a line segment y0 and consider the arc family F
A{f~\A)y yo:B). By virtue of (17),

ë|/(2)-/(H0|

from which we infer that

(18)
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If \z - w\ &gt;d or if/(z) =/(w), then

(19)

Combining (18) and (19) we see that (1) holds, with M d&quot;^max {b, dia (£&gt;)},

for ail z and w on dB. Thus the boundary mapping/1 dB belongs to Lip^ (dB). A
classical resuit due to Hardy and Littlewood allows us to conclude that / is a
member of Lip^ (B).

4. Hôlder continuity and separating cross-cut families

In the section at hand we discuss alternative formulations of Theorems 1 and
2.

THEOREM 3. Let f be a conformai mapping of a domain D onto B and let
0&lt; ar&lt; 1. Then f belongs to Lipa (D) if and only if, corresponding to some (each)

point z0 in D, there exists a constant a &gt; 0 such that, for each pair of points z and

w on dD, the family F of cross-cuts of D which separate z0 from z and w satisfies

^logI^H&apos; &lt;20)

Proof To establish the necessity of condition (20), fix a point z0 in D. We may
assume that f(z0) 0. We may further assume that / is defined and continuous on
D and that / belongs to Lipa (D). Let M &gt; 0 be a Lipschitz constant for /
corresponding to the exponent oc. Fix a pair of points z and w on dD. Let F
dénote the family of cross-cuts of D which separate z0 from z and w. Next, let A
dénote the family of cross-cuts of B which separate 0 from the shorter of the arcs
into which dB is partitioned by the points/(z) and/(w). (If /(z) =/(w), the arc
dégénérâtes to a single point.) Finally, let Ao designate the family of those

cross-cuts in A whose images under f&apos;1 are rectifiable and are, therefore,
cross-cuts of D. Write F0=f^1(A0). Since/is continuous on D, each cross-cut in
Fo séparâtes z0 from z and w. The conformai invariance of the modulus, in
combination with (11) and other elementary properties of the modulus, implies

where a (2(1 + V2)/M)1/ûf. This establishes (20).
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Conversely, assume that (20) is satisfied, with zo=/~1(0). We first demon-
strate that / can be extended to a continuous mapping of D.

Fix a point z in dD. Choose a séquence (zk) of distinct points in dD
converging to z and choose, for each k, a cross-cut yk of D which séparâtes z and

zk from z0 and whose chordal diameter q(yk) satisfies

9(7*)-&gt;0, (21)

as ifc—&gt; oc. The existence of such a cross-cut yk is a straightforward conséquence of
inequality (20). Let Dk dénote the component of D\yk which contains z(). Since

dist(z, Dk) is positive, we can find a séquence (Uk) of neighborhoods of z such

that f4 fl Dfr 0 for each k. Combining (21) with standard conformai modulus
considérations yields

dia[f(y*)]-&gt;0. (22)

Since f(yk) séparâtes f(D n £4) from 0 in By we infer from (22) that dia [f(D H

Uk)]-+0 and, thus, that the cluster set of/at z reduces to a single point. In other
words, / has a limit at z, an arbitrary point of dD. Therefore, / admits a

continuous extension to D. We continue to dénote the extended mapping by /.
We now verify that/belongs to Lip^ (D). For this, fix a pair of points z and w

on dD such that/(z)^/(w). Consider the family Fof cross-cuts of D separating

z0 from z and w in D. By virtue of (12) and (20),

nr a
_ j. 32

w \z-w\

which implies

where M 32/a&quot;. This estimate holds trivially for points z and w on dD with

/(z) =/(w). We infer that the boundary mapping/1 3D belongs to Lip« (3D). As
before, this fact permits us to conclude that/belongs to Lipa (D).

Theorem 2 has the following counterpart in the présent setting.

THEOREM 4. Let f be a conformai mapping of B onto a domain D and let
0 &lt; /? &lt; 1. Then f belongs to Lip^ (B) if and only if, corresponding to some (each

point z0 in D, there exists a constant b&gt;i) such that, for each cross-cut y,, of D
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with distinct endpoints z and w, the family F of cross-cuts of D which separate z0

front y0 in D satisfies

(23)

Proof. To establish the necessity of condition (23), fix a point z0 in D.
Once again we make the assumption that /(0) z0. In addition, we may assume

that / is defined on B and that / belongs to Lip^ (È). Let M &gt;0 be a Lipschitz
constant for / corresponding to the exponent p. Fix a cross-cut y0 of D with
distinct endpoints z and w. Let F dénote the family of cross-cuts of D which

separate z0 from y0. By a classical theorem of Koebe, f~l(yo), as well as each

member of the family f~l(F), is a cross-cut of B. Let z* and w* be the endpoints
off~l(yQ). Each arc in f~l(F) séparâtes 0 from/~1(y0) and, by virtue of (12),

M{F) M[f~\F)] &lt;ilog ^,^,1 *^log~^,

where 6 M32fi. This establishes (23).
Conversely, assume that (23) is satisfied, with zo=/(0). We observe, as an

elementary conséquence of (23), that dia (D)^b. Once more we begin by

demonstrating that / can be extended to a continuous mapping of B.

Fix a point z in dB and suppose that / fails to hâve a limit at z. Then we can
choose séquences (zk) and (wk) in B such that zk-^z and wk—&gt;z, while
f(zk)-~+z&apos; and f(wk)~* w&apos;, where zf ¥=w&apos;. As in the proof of Theorem 2, we find
distinct points zk and wk on 3D such that z&apos;k-+zf, w&apos;k-&gt; w&apos; and such that z&apos;k and

wk, respectively, are angular limits of/at certain points zt and wt on dB, with
z£—&gt;z and wk-»z. Let y£ be the line segment with endpoints zt and wk. We

may assume that y* does not pass through the origin. Dénote by Fk the family of
cross-cuts of B separating yk from the origin. It is easily seen that

as k—&gt; o°. On the other hand, f(yk) is a cross-cut of D with terminal points zk and

wk. Let Fk be the family of cross-cuts of D separating z0 from f(yî). Since the

paths in the family f(Fk)\Fk are non-rectifiable, we can use (23) to estimate
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This contradiction to the conformai invariance of the modulus shows that / must
hâve a limit at z, an arbitrary point of dB. We conclude that / admits an
extension to a continuous mapping of B. The notation / will be retained for the
extended mapping.

Finally, we verify that / belongs to Lip^ (B). Fix a pair of points z and w on
dB for which /(z)=£/(h&gt;). Assume first that |z-w|&lt;l. Join z to w by a Une

segment y0 and let F* dénote the family of ail cross-cuts of B separating y0 from
the origin. Then /(F*) is contained in F, the family of ail cross-cuts of D
separating z0 from the cross-cut /(y0) in D. We employ (9) and (23) to estimate

This permits us to infer that

If/(z) =/(w) or if \z - w\ &gt; 1, this inequality holds trivially, because dia (D) &lt; b.

Thus the boundary mapping/1 dB belongs to Lip^ (dB). A classical resuit due to
Hardy and Littlewood allows us to conclude that/is a member of Lip^ (B).

Although the condition described by Theorem 4 might strike one as somewhat
awkward, something of this nature is really needed to deal with non-Jordan
domains. Anticipating future référence, we record the following variant of
Theorem 4 valid in the spécial case where D is a Jordan domain. The proof,
which is a much simplified version of the proof given for Theorem 4, is left to the
reader.

THEOREM 5. Let f be a conformai mapping of B onto a Jordan domain D
and let 0 &lt; /? ^ 1. Then f belongs to Lip^ (B) if and only if, corresponding to some

(each) point z() in D, there exists a constant b&gt;0 such that, for each pair ofpoints
z and w on 9D&gt; the family F of cross-cuts of D which separate z() from z and w

satisfies

A complex-valued function / on a set A in C is called a quasi-isometry if there
is a constant L &gt; 0 such that
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for ail z and w in A. We conclude this section by characterizing the plane domains
D with the property that conformai mappings between D and B are quasi-
isome tries.

THEOREM 6. Letfbe a conformai mapping ofa domain D onto B. Thenfis
a quasi-isometry if and only if corresponding to some (each) point z0 in D, there
exist constants a &gt;0 and b&gt;0 such that, for each pair of points z and w on dD,
the family F of cross-cuts of D which separate zQfrom z and w satisfies

- log r-^-T &lt; M(r) &lt; - log p-^—:. (24)

Proof The necessity of (24) follows from Theorems 3 and 5. To prove the

sufficiency, we first employ Theorem 3 to infer from the left-hand inequality in
(24) that / belongs to Lipa (D) for a l. In particular, / has a continuous
extension to D. From the right-hand inequality in (24) we deduce, without
difficulty, that D is bounded and that the extension of / is injective. In other
words, D is a Jordan domain. Theorem 5 then guarantees that f~l belongs to

Lipp (B) for fi 1. Consequently,/is a quasi-isometry.

5. Euclidean géométrie séparation properties

In the remainder of this paper we illustrate how the preceding charactenza-
tions can be used to retrieve information on the Hôlder continuity of a conformai
mapping from certain euclidean géométrie data.

Let D be a simply connected domain in C. Fix a point z(, in D and let
0&lt; j8 ^ 1. If there exists a constant b &gt;0 such that any pair of points z and h- on
dD can be separated from z0 by a cross-cut y of D satisfying

dia(y)&lt;6|z-H&gt;|0, (25)

we will déclare D to hâve the séparation property with exponent /?. In the spécial
case fi 1 we will say that D has the linear séparation property. It is not difficult
to see that, except for the value of the constant b, (25) does not dépend on the
choice of Zq.

A class of domains satisfying (25) was considered in [9]: domains which are
arewise connected with exponent p. A domain D in C is said to be arewise
connected with exponent fi if there exists a constant b &gt; 0 such that each pair of
points z and w in D can be joined by an arc y in D satisfying (25). If D satisfies
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this condition with j8 1, we referred to D in [9] as b-arcwise connectée! Ail
bounded simply connected domains of such types are necessanly Jordan domains
On the other hand, ît îs not difficult to exhibit bounded simply connected
non-Jordan domains which hâve the hnear séparation property

THEOREM 7 Let f be a conformai mapping of a domain D onto B and let
0 &lt; /3 &lt; 1 If D has the séparation property with exponent j3, then f belongs to
Lipa (D) for a /3/2 This Holder exponent is the best possible for each /3,

0&lt;j8&lt;l

Proof Fix a point z0 in D Let d dist (z0, dD) and let b &gt;0 be a constant
such that (25) holds Define a &gt; 0 by bap d/2 We show that each pair of points
z and w on dD with \z — w\ &lt; a can be separated from A B(zQ, d/2), the closed
disk of radius d/2 centered at z0, by a cross-cut y of D satisfying

M[A(A, y D)]^ — (26)

\z - w\

Fix such a pair of points z and w Select a cross-cut y of D which séparâtes z

and w from z0 and satisfies (25) Then y séparâtes z and w from .A, because

dia (y) &lt; d/2 It is routine to obtain the estimate

M[A(A,y d/2
&apos;dia(y)

and (26) follows with a as indicated Theorem 1 now implies that / belongs to

Upa(D) with a j3/2

Finally, the sharpness of the Holder exponent # for fixed j8, 0&lt;j3&lt;l, is

demonstrated by a conformai mapping/of Dfj onto B, where

COROLLARY 1 Letfbe a conformai mapping of a domain D with the hnear

séparation property onto B Then f belongs to Lip« (D) for a 1/2

The conclusion of Corollary 1 cannot be improved if D is allowed to vary over
the entire class of domains enjoying the hnear séparation property It is natural to
ask what supplementary information is required concerning a domain D from this
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class in order to place/in Lipa (Z&gt;), where now 1/2 &lt; ar&lt; 1. One possible answer
to this question is supplied by the next theorem. In this resuit the notation hD

désignâtes the hyperbolic distance in D normalized to hâve curvature —1. As
earlier, dist (z, 3D) indicates the euclidean distance of a point z from BD.

THEOREM 8. Let f be a conformai mapping of a domain D with the linear
séparation property onto B and let 1/2 &lt; oc &lt; 1. Then f belongs to Lipa (D) if and

only if, corresponding to some (each) point z0 in D, there exists a constant a &gt;0

such that

dist
(27)

for ail z in D.

Proof The necessity of condition (27) is immédiate. Indeed, if we fix z0 in D,
if we assume that /(z0) 0, and if we choose a Lipschitz constant M &gt; 0 for /
corresponding to or, we obtain for z in D

&apos; e dist [/(z), 3B]
1 a

&apos;M dist (z, 3D)a 6dist (zfdD)&apos;

To prove the sufficiency, fix z0 in D for which (27) holds. We may again
assume that /(z0) 0. By Corollary 1, we may further assume that / is defined on
D and that / belongs to Lip1/2(D). Let Mx&gt;0 be a Lipschitz constant for /
corresponding to the exponent 1/2. By assumption, there exists a constant b &gt;0

such that each pair of points z and w on 3D can be separated from z() by a

cross-cut y of D satisfying

dia(y)&lt;ft|z-w|. (28)

Let c be a constant satisfying 0 &lt; c &lt; 1/6A/?.

Consider a pair of points z and w on dD for which \z — w\ &lt; c and for which
Select y as in (28). Then/(y) is a cross-cut of B satisfying

dia [/(y)]&lt; M, dia (y)l/2&lt;Mxbmcm&lt; 1.

It can be inferred from this information that/(y) has two distinct endpoints. Thus
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y must likewise possess two distinct endpoints, say z* and w*. Let y* be the
(necessarily unique) géodésie cross-cut of D with endpoints z* and w*. A
theorem of Gehring and Hayman [4] guarantees that

dia(y*)&lt;£dia(y), (29)

where A:&gt;0 is an absolute constant. If w0 dénotes the point of y* at minimal
hyperbolic distance from z0, we employ (27), (28) and (29), along with
elementary properties of the hyperbolic distance in B, to compute

\f(z)-f(w)\

with the resuit that

\f(z)-f(w)\&lt;4(bk/a)a\z-w\a.

This estimate holds trivially for points z and w on dD with/(z) /(w). Finally, if
\z - w\ &gt;c,

We conclude that (1) holds, with M max {4(bk/a)a, 2/ca}, for ail points z and

w on dD. In other words, the boundary mapping /1 dD belongs to Lipa (dD).
Thus/is a member of Lip* (D) [5], [14].

As pointed out in [11], condition (27) by itself affords no guarantee that/will
belong to Lipa (D). The following resuit describes a more concrète géométrie
condition which is sufficient to place a conformai mapping of a domain D
enjoying the linear séparation property onto B in Lipa (D) with a &gt; 1/2. At the

same time, it serves to illustrate the use of Theorem 3. (For related results, see

[2]-)

THEOREM 9. Let f be a conformai mapping of a domain D with the linear
séparation property onto B and let 1/2&lt; a^ 1. Suppose there exists an R&gt;0 such

that, for each w in dD and for 0&lt;r&lt;R, no component ofDC) dB(w, r) has

length exceeding nrioc. Then f belongs to Lip^, (D). This Hôlder exponent is the
best possible.
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Proof. Let b &gt;0 designate a constant corresponding to 20=/~1(0) for which
condition (25) holds with /? 1. We may assume that 0 &lt; R &lt; min {b, d}f where
d dist (z0, dD). Consider points z and w on dD, together with the family F of
ail cross-cuts of D which separate z and w from z0. We verify that

M(r) &gt;-log^-^,

where a R/b. As this is trivially the case when b\z -w\&gt;R, we may assume
that b\z — w\&lt;R. By hypothesis F contains a cross-cut y0 of D which satisfies
dia (y0) &lt; 6 |z — vv|. Let vv0 be an endpoint of y0. When b \z — w\ &lt; r &lt; R we can
sélect a component yr of D H 3B(w0, r) which séparâtes z0 from y0 in D. Such an
arc yr clearly belongs to F and, by assumption, its length does not exceed nrjoc.
Letting F* be the family of such yr, we hâve

\
n b \z — w\

&apos;

as desired. Theorem 3 insures that / is a member of Lip^ (D). The sharpness of
the Hôlder exponent is demonstrated by taking D {z : |arg z\ &lt; Jï/2a}.

For a simply connected proper subdomain D of C there is a natural way to
formulate a séparation condition dual to the linear séparation condition: given a

point z0 in D one can simply require the existence of a constant b &gt; 0 such that

dm(y)&gt;b\z-w\ (30)

for every pair of points z and w on dD and for every cross-cut y of D that
séparâtes z and w from z0. It is straightforward to demonstrate that only a

bounded domain can possess this property. The suggestion is that a condition
such as (30) will insure the uniform Hôlder continuity of a conformai mapping of
B onto D. If D happens to be a Jordan domain, this is actually the case. In order
to accommodate non-Jordan domains, however, condition (30) must be altered
somewhat. One possibility is to demand that (30) hold for cross-cuts y of D
separating points z and w inside D from z0. We prefer a slightly différent
modification of (30), one which has the added advantage that the Hôlder
exponent obtained is not far from being optimal. Given a cross-cut y of D, the
notation Dr will indicate the component of D\y having smaller diameter.

THEOREM. 10. Let f be a conformai mapping of B onto a bounded domain
D. Suppose there exists a constant c &gt; 0 such that

dia(Dy)&lt;cdia(y) (31)
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for every cross-eut y of D. Then f belongs to Lip^ (B) for

fi~h- (32)

Proof. Every cross-cut y of D satisfies

area (Dy) &lt; ^ [dia (Dy )]2 &lt; ^ dia (y)2 &lt;^ /(y)2 (33)

in view of the isodiametric inequality and (31). Lemma 5 in [9], a refined version
of Wolff&apos;s classical inequality, then implies the existence of a number r &gt;0 such

that, if z is a point of SB and if (X r &lt; R &lt; r, then

;r area (D)

log-

1/2

(34)

for some p in (r, /?). Hère j8 is as in (32) and A* =/[B H dB(z, p)]. The hypothesis
(31) combined with (34) - or merely with the classical Wolff&apos;s inequality, without
the term (RIt)ij - readily shows that / admits an extension to a continuous
mapping of B onto D, which extension we will continue to dénote by/.

Choose t &gt; 0 such that

\f(z)-f(w)\&lt;\dnx(D) (35)

for ail z and w in B satistying \z - w\ &lt;2t. Next fix distinct points z and w on 3B.
Assume, initially, that

2\z ~ w|&lt;min {/, r}. (36)

Invoking (34) with r \z - w| and R 2r, we infer the existence of p in (r, R)
such that

TO-A/Jz-nf, (37)

with M1 (4/r)^[jrarea(D)/log2]1/2. The set y A* is a cross-cut of D. The
closure of DY contains/(z) and/(w) by virtue of (35). Inequalities (31) and (37)

yield

\f(z) -f(w)\ &lt; dia (Dr) &lt; c dia (y) &lt; M{c \z - w\*. (38)
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Finally, if (36) is not satisfied, one evidently obtains

(39)

by simply taking M2 2^dia(D)max{f~^, t~p}. We infer from (38) and (39)
that the boundary mapping /1 dB belongs to Lip^ (dB). Consequently, / belongs
to Lip^ (B).

6. Wedge conditions

In this section we demonstrate how two theorems of Lesley in [7] can be

deduced from the results in the présent paper.
Let D be a bounded Jordan domain in C and let 0&lt; fi &lt; 1. The domain D is

said to satisfy an interior (respectively, exterior) fi-wedge condition if there exists

an R &gt;0 such that, for every point w in dD, there is a closed circular sector of
radius R, angular opening fin and vertex w which lies in D (respectively, in

C\D).
Suppose that D satisfies an interior )3-wedge condition for some fi. Fix a point

z() in D. Then there exists a constant c() &gt; 0 such that each point w of dD is the

terminal point of an end-cut E of D from z() satisfying

dia(£2)&lt;c()dist(z, dD)

for ail points z on E, where Ez dénotes the subarc of E with z and w as its

endpoints. As observed by Lesley [7], Theorem 1 in [13] then guarantees the
existence of a constant c &gt; 0 such that

dia(y)&gt;cdia[C(z, w)], (40)

whenever z and w are distinct points of dD and y is a cross-cut of D terminating
in z and w. Hère C(z, w) indicates the arc of smaller diameter on dD with
endpoints z and w. Next, an elementary argument involving (40) shows that any
pair of points z and w in the exterior D* of D can be joined by an arc y* in D*
with

* J*~H
c
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This, in turn, insures that D* is b-arcwise connectée! for any b larger than 1/c.

Similarly, if D satisfies an exterior j8-wedge condition for some /J, then D is

6-arcwise connectée for some b.

The foliowing resuit was established by Lesley [7, Theorem 2] using
strip-mapping techniques. In view of the above considérations, it could also be

inferred as a corollary of Theorem 9. For reasons that ought to become clear in
the closing section of this paper, however, we présent a short proof in full détail.

THEOREM 11. Let f be a conformai mapping of a bounded Jordan domain
D onto B. Suppose that D satisfies an exterior fi-wedge condition for some /?,

0 &lt; p &lt; 1. Then f belongs to Lipa (D) for a 1/(2 - j3).

Proof Fix z0 in D and choose R, 0&lt;R&lt;dist (z0, dD), for which the exterior
/3-wedge condition is satisfied. Next choose b such that D is 6-arcwise connected.
Fix a pair of points z and w on dD. By Theorem 3 it is sufficient to exhibit a

constant a &gt; 0 such that the family F of cross-cuts of D which separate z() from z
and w satisfies

We establish this with a R/2b.
If \z - w\ &gt;RI2by (41) follows trivially. Assume, therefore, that \z - vv| &lt;RI

2b. The points z and w are the terminal points of a cross-cut y() of D, which can
be so chosen that

When 2b \z — w\ &lt; r &lt; R, the set D 0 dB(wf r) has a component which séparâtes

y() from z0 and which, as a resuit, belongs to F. Let 5 be a closed sector in C\D
with radius R, with angular opening fin, and with vertex w. It is then apparent that

F minorizes the family F* composed of the circular arcs dB(w,r)\S, where
2b \z - w\ &lt; r &lt; R. Consequently,

confirming (41).
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We next show that the second major resuit in [7] can be obtained using
Theorem 5 m this paper

THEOREM 12 Let f be a conformai mapping of B onto a bounded Jordan
domain D Suppose that D satisfies an intenor /3-wedge condition for some /?,

0 &lt; j3 &lt; 1 Then f belongs to Lip^ (B)

Proof Fix Zq m D and choose R, 0&lt;R &lt;dist (z0, dD), for which the intenor
/?-wedge condition îs satisfied Next choose c, 0 &lt; c &lt; 1, such that every cross-cut
of D satisfies (40) (Should the endpoints z and w of a cross-cut coïncide, we

mterpret C(z, w) to mean this single point By Theorem 5, ît suffices to find a

constant b &gt; 0 such that, for any pair of points z and w on dD, the family Tof ail
cross-cuts of D which separate z0 from z and w satisfies

(42&gt;

We estabhsh this with

r2j8jr2
t 16^area(D)1

c2R2 J

Fix z and w on dD Let y be an arc m Twith endpoints z&apos; and w&apos; Then either
z0 lies m the subdomain of D bounded by the Jordan curve y U C(z&apos;, w&apos;) or else

C(z&apos;, w&apos;) contains z and w Thus, by virtue of (40),

min {/?, \z - w\} &lt; dia (y) + dia [(C(z&apos;&gt; w&apos;)] &lt; 1 + -) dia (y) &lt; - dia (y) (43)
\ cl c

If \z - w\ &gt;/î, we hâve, accordmgly,

dia (y) &gt; y (44)

for each y m J\ whence

4 area (D)
C MX

and (42) follows without difficulty
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We proceed assuming \z — w\ &lt; R In hght of (43),

dia(y)&gt;-^—1 (45)

for each y in r Consider the family

r1 {yer y meets B(w, c\z-w\/S)}

By (45), each y m Fx must meet dB(w, c\z - w|/4) The minonzation property of
the modulus gives

(46)

Next, consider the family

F2 {yeF dm(y)&gt;-

Obviously

16 area (D)
(47)

The family F2 includes each y m F that meets both B{w&gt; R/2) and dB(w, R) It
contains, as well, every y m F for which there exists a radius of B(w, RI2) lying in
D, but faihng to intersect y In fact, mimickmg the argument used to dérive (43),
we hâve under the &quot;omitted radius&quot; condition

|&lt; dia (y) -h dia [C(zf, w&apos;)] &lt; (l + -) dia (y) &lt;-dia (y)

Finally, consider the family F^ F\(FX U F2) Choose a closed sector 5 in D
with radius R, with angular opening j8;r, and with vertex w Each y in F^ lies in
the annulus B{wy R)\B{wy c\z - w\/8) and intersects every radius of 5, implying
that y must possess a subarc joining the straight sides of 5 through 5 We can

once agam invoke the minonzation property of the modulus and infer that

1 RR
— log-, (48)
fa c\z-w\
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As a combination of (46), (47) and (48) we obtain

2n 16area(D) 1 SR
+ J ; + l°g

log2 c2R2 fa Bc\z-w\
1 b

l
\z-w\

provided b is as indicated.
The sharpness of the Hôlder exponents in Theorems 11 and 12 is demon-

strated by choosing for D an appropriate polygon.

7. Disk conditions

We conclude this article with a brief discussion of a class of domains satisfying
a /3-wedge condition for ail j8, 0 &lt; fi &lt; 1.

A bounded Jordan domain D is said to satisfy an interior (respectively,
exterior) disk condition if there exists an R &gt; 0 such that, for every w in dD, there
is a closed disk of radius R containing w which lies in D (respectively, in C\D).
The remarks prior to Theorem 11 in Section 6 remain valid for domains satisfying
disk conditions.

THEOREM 13. Let f be a conformai mapping of a bounded Jordan domain
D onto B. Suppose that D satisfies an exterior disk condition. Then f belongs to

Lipa (D) for a 1.

Proof The argument parallels that in the proof of Theorem 11. Under the

présent hypothèses the estimate (41) can be improved to read

(49)

with a 3R/8b. Indeed, we now take 5 to be a closed disk in C\£&gt; of radius R

containing w, rather than the earlier sector. The corresponding arc family F* can
then be estimated below using (10) to arrive at (49).

Our methods yield a new proof for the following natural companion to
Theorem 13, a classical resuit often attributed to Kellogg:
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1HEOREM 14. Let fbe a conformai mapping of B onto a bounded Jordan
domain D. Suppose that D satisfies an interior disk condition. Then f belongs to

Proof We mimic the proof of Theorem 12. Under the stronger hypothesis of
the présent theorem estimate (42) can be sharpened to

with b as in (42). To see this, merely replace the sector S in the earlier proof with
a closed disk of radius R contained in D and containing w. The only essential

change to be made, then, occurs in mequality (48), which by virtue of (8) can be

improved to

Thiswillyield(50).

We close this paper with a combination of the two preceding results.

COROLLARY 2. Letfbe a conformai mapping of a bounded Jordan domain
D onto B. Suppose that D satisfies both an extenor and an interior disk condition.
Then f is a quasi-isometry.

REFERENCES

[1] Becker, J and Pommerenke, Ch Holder continuity of conformai mappings and non-
quasiconformal curves, Comment Math Helv 57(1982), 221-225

[2] Gaier, D Estimâtes of conformai mappings near the boundary, Indiana Umv Math J 21

(1972), 581-595
[3] Gehring, F W Lectures on quasiconformal mappings, Institute Mittag-Leffler, Djursholm,

1972 (unpublished)
[4] Gehring, F W and Hayman, W K An inequality in the theory of conformai mapping, J

Math Pures Appl (9) 41 (1962), 353-361

[5] Gehring, F W Hayman, W K and Hinkkanen, A Analytic functions satisfying Holder
conditions on the boundary, J Approx Theory 35 (1982), 353-361

[6] Lehto, O and Virtanen, K I Quasikonforme Abbildungen, Spnnger-Verlag, 1965

[7] Lesley, F D Conformai mappings of domains satisfying a wedge condition, Proc Amer Math
Soc 93 (1985), 483-488

[8] Nakki, R and Palka, B Quasiconformal circles and Lipschitz classes, Comment Math Helv
55(1980), 485-498

[9] Lipschitz conditions, b-arcwise connectedness and conformai mappings, J d&apos;Analyse Math

2(1983), 38-50



414 RAIMO NAKKI AND BRUCE PALKA

[10] Boundary angles, cusps and conformai mappings, Complex Variables (to appear)
[11] Hyperbohc geometry and Holder continuity of conformai mapping, Ann Acad Sci Fenn

(to appear)
[12] Ohtsuka, M Dinchlet problem, extremal length and prime ends, Van Nostrand Reinhold, 1970

[13] Pommerenke, Ch One-sided smoothness conditions and conformai mapping, J London Math
Soc (2)26(1982), 77-88

[14] Tamrasov, P M Contour and sohd structure properties of holomorphic functions of a complex
variable, Russ Math Surveys 28(1973), 141-173

[15] Warschawski, S E On the Holder continuity at the boundary in conformai maps, J Math
Mech 18 (1968), 423-427

Unwersity of Jyvaskyla
Jyvaskyla, Fmland

The Unwersity of Texas

Austin, Texas 78712, USA

Received May 29, 1985


	Extremal length and Hölder continuity of conformal mappings.

