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The influence of the boundary behaviour on hypersurfaces
with constant mean curvature in H*1

M. P. do Carmo^J. de M. Gomes and G. Thorbergsson(1)

1. Introduction

This paper deals with complète, properly embedded hypersurfaces Mn with
constant mean curvature H of the hyperbolic space Hn+l, and addresses itself to
the following gênerai question. How is the behaviour of such hypersurfaces
influenced by their behaviour at infinity?

Hn+1 has a natural compactification //n+1 and we will call dJA M H dHn+l
the asymptotic boundary of M where M is the closure of M in Hn+l. Some récent
work ([dCL], [GRR], [Hs], [LR]) has shown the strong influence of dM on M.
To describe our contribution, we first observe that dHn+l has a natural conformai
structure where the conformai transformations are induced by the isometnes of

i jt makes sensé to talk about &amp;-dimensional sphères 5* in dHn+\

In Section 2 we define a conformally invariant distance between two compact
sets in dHn+l and show (Theorem 1) that for H e [0, 1) there exists a real number
dH that is an upper bound for the distance between any connected component A
of &lt;9ocM and its complément d^M —A (supposed nonempty). Furthermore if the
bound dH is attained for some component A, M is a rotation hypersurface of
sphencal type, i.e., M is invariant by a group of isometries that leave a géodésie
pointwise fixed. Since the distance is defined in such a way that the distance from
a point to a compact set not containing it is unbounded, it follows that d^M
contains no isolated points for H € [0, 1) (Corollary 1). The resuit in Corollary 1

is sharp, since for any // &gt; 1 there exists examples of embedded hypersurfaces

with constant mean curvature H whose asymptotic boundary consists of two
points (see [Go] or [GRR]).

It has been noticed that some condition at infinity is necessary for some of the
theorems in the quoted literature (see, e.g., the final remark in [dCL]). In Section

1 The third author was supported by the exchange program of GMD (Germany) and CNPq
(Brazil)
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430 M P DO CARMO, J DE M GOMES AND G THORBERGSSON

3 we présent a définition of regularity at infinity that is a slight modification of the

one given in [LR] for the minimal case and turns out to be very strong. With such

a condition, we show that the fact that H belongs to one of the intervais [0,1),
(l,oo), or H l can be completely characterized in terms of the boundary
behaviour of M (Theorem 2). In particular we show that if M is a properly
embedded hypersurface regular at infinity with constant mean curvature H&gt;1, it
must be compact.

In Section 4 we prove (Theorem 3) that if 3XM consists of two disjoints
(n — l)-spheres, M is regular at infinity and H=£l, then M is a rotation
hypersurface of spherical type. This extends a resuit in [LR], where the theorem
is proved for H 0 (as usual in cases where M is minimal, no embeddness is

assumed hère), and is related to [GRR] where similar results were obtained for
isometries of Hn+1 that leave fixed one point in 3Hn+l (parabolic isometries) or
two points in dHn*1 (hyperbolic isometries). The idea of the proof of Theorem 3

can be used to give simpler proofs of some results in [dCL] and [LR]. We do not
know whether Theorem 3 holds true for H 1.

The method used in proving the above results is essentially Alexandrov
maximum principle, that we will call the tangency principle, in the form given in
Proposition 1.5 of [dCL]. In section 2 we make essential use of some facts from
the classification of rotation hypersurfaces of spherical type. Thèse facts were
proved in Gomes&apos; thesis at IMPA; we describe them and refer to [Go] for the

proofs.

2. Non-existence of isolated points in the asymptotic boundary

Hn+l will dénote the natural compactification of hyperbolic (n +1)-
dimensional space, and Sn(°°) is the boundary dH&quot;*1 of Hn+1. The asymptotic

boundary d^A of a set A c Hn+l is d^A =ÀC\ Sn(°°), where À is the closure of A
in Hn+1.

Let Sx and S2 be two disjoint codimension-one sphères in S&quot;(°°); we will
dénote by Dx and D2 the components of Sn(&lt;*&gt;) - (Sx U S^ that are homeomorphic
to disks. Given two (not necessarily connected) subsets Ax and A2 in Sn(&amp;) we say

that Sx and S2 separate Ax and A2 if Ax c Dx and A2 a D2. The distance d(Sx, S2)

will mean the hyperbolic distance of the two totally géodésie submanifolds

HXf H2, where doaHl Stf i 1,2.

Given two compact sets AXtA2czSn(&lt;x&gt;), we define the distance d(AltA2)
from Ax to A2 by

{0
if there does not exist sphères Sx and

S2 that separate Ax and A2;

sup {d(SXt S2); Sx and Sz separate Ax and A2}.
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Since conformai transformations of Sn(™) are induced by hyperbolic iso-
metries of Hn+1, d(A1,A2) is conformally invariant. Notice for n&gt;2 that the
distance of a compact set to a point away from this set is infinité; also if
d(Alf A2) &lt; +00, by compactness there exists 5^,, and SAl such that d(Au A2)
d(HAl, HAl), where dxHAï SAl, and d*HAl SAl. Although we called d a

distance, we observe that the triangle inequality does not hold in gênerai.

THEOREM 1. Let Mn czHn+l be a complète connected, properly embedded
hypersurface with constant mean curvature H e [0, 1). Assume that the asymptotic
boundary 3XM has at least two components and let A be any such component.
Then there exists a constant dH (depending only on H&gt; and computable) such that

and equality holds if and only if M is a rotation hypersurface of spherical type.

Before proving the theorem, we will mention the following

COROLLARY 1. Let Mn aHn+l be a complète connected, properly embedded

hypersurface of Hn+l with constant mean curvature H e [0, 1). Then the asymptotic
boundary of M has no isolated points.

Proof of the corollary. If the asymptotic boundary reduces to one point, the
resuit follows from the characterization of horospheres by do Carmo-Lawson
[dCL]. Otherwise, there are at least two connected components in dxM, and we
can apply the theorem. Since the distance from a compact set to a point is

infinité, the corollary follows.

Before starting the proof of the theorem, we need some facts from the
classification of rotation hypersurfaces of spherical type in hyperbolic space, with
constant mean curvature. Thèse questions were treated by Wu-Yi Hsiang [Hs],
and do Carmo-Dajczer [dCD], but the facts that we need hère were proved in
Gomes&apos; thesis [Go].

We will use the half-space model of the hyperbolic space:

Hn+l {(xu...,xn+l)eRn+l; xn+l&gt;0},

with the metric gy ôi;/jc^+1. In this model, certain rotation hypersurfaces M of
spherical type with constant mean curvature H can be described as follows. Let y
be the axis of rotation, that we take to be perpendicular to the hyperplane

ig. 1).
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Figure 1

Let g be any géodésie perpendicular to y and consider a totally géodésie plane a
containing y and g. There exists, in the plane o, a curve c that is symmetric
relative to g (Fig. 1) and is such that M is obtained by rotating c about y. The

properties of M that hâve a bearing in our proof are as follows:
i) For each H e [0, 1), and each g perpendicular to y, there exists a

one-parameter family Mk, À e (0, œ), of rotation hypersurfaces of spherical type
with mean curvature H. The points where Mk intersects the totally géodésie

hypersurface generated by the rotation of g hâve a constant (hyperbolic) distance

to y, and this distance is the value of the parameter A. Furthermore, the

asymptotic boundary 3ocAfA of each hypersurface in the family Mk consists of two
disjoint codimension-one sphères.

ii) Consider a hypersurface MA of the family defined in (i), let Sx and S2 be the

two components of d*Mx and set d{X) d{Sx, S2). The function of d d(X)
satisfies d(0) 0, increases initially, reaches a maximum dH, and decreases

asymptotically to zéro as À -* &lt;». The maximum value dH dépends only on //, and

it is given in terms of an intégral; thus dH can be explicitly computed to any
degree of accuracy. If H &gt; 0, then dH &gt; d0, and the mean curvature vector of Mk

points to the connected component of Hn*{ - Mk that contains the axis of
rotation y.

Proof of the theorem. We may suppose that d^M is contained in the

hyperplane jcw+i =0. Consider a totally géodésie submanifold HA, such that A is

contained in the disk bounded by dxHA:s=SA. Let y be the géodésie in Hn+l

représentée in Rn+l as a half-line emanating from the center of the sphère S4 (see
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Fig. 2). We will assume that

433

d(A, dM-A
and we will dérive a contradiction.

Set B dxM — A y and let HB be a totally géodésie submanifold orthogonal to y
and such that B is contained in the disk bounded by d^HB -SB\ HB exists since
d(A&gt; B)&gt; dH&gt;0. Let pA and pB be the intersections of y with HA and HB

respectively, and let p be the (hyperbolic) middle point of the segment pApB
along y. Let g be a géodésie orthogonal to y at p, and consider the family Mk
described in (i). Then

where the last inequality cornes from (ii).
It follows, for each H e [0, 1), that the family MA has the property that d^Mk

does not intersect either A or B. Furthermore, given e &gt;0, there exists À k(e)
with À &lt; e. Since À is the distance from MA to the axis of rotation y, and, for À

sufficiently large, MA H M 0, there exists Ao such that MAo touches M for the
first time, say at a point q e M.

Since M is embedded, /frt+1 - M has two connected components. Let us
dénote by O the component that contains Mk for large À and by / the other one.
We orient M in such a way that the mean curvature H &gt; 0. We claim that either
M is minimal, or the mean curvature vector of M points towards /. Otherwise,

Figure 2
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consider the minimal spherical hypersurface MAo that is tangent to M. By looking
at the normal sections at the tangency point, it is easy to see that the mean
curvature of MAo is greater than or equal to the mean curvature of M, and this

proves the claim.
If M is minimal, an application of the tangency principle shows that M agrées

with MAo, a contradiction to the fact that d(A, B)&gt;dH&gt;d0. If M has constant
mean curvature H&gt;0, the mean curvature vector points towards /, and a

application of the tangency principle gives again a contradiction.
This shows that d(Af B) &lt; dH, and proves the first part of the theorem.
Now assume that d(A, B) dH, and choose SA and SB as in the above proof,

so that d(HA, HB) d(A, B). Proceeding as in the proof, we obtain that
M MAo. This proves the second part, and complètes the proof of the theorem.

3. Boundary regularity

Until further notice, we will use the unit bail model for the hyperbolic space
Hn+l. Hn+l will dénote the closed unit bail and Sn(&lt;*&gt;) will dénote the unit sphère.
AH topological notions used hère will refer to the topology of the closed unit bail.

Given an embedded hypersurface M aHn+1, we will say that M is Ck-regular
at infinity, k&gt;\, (or simply C*-regular) if M aHn+1 is a C*-submanifold with
boundary of Hn+l, and dxM is a C*-submanifold of Sn(°°); in particular, if M is

C*-regular, it has a well defined tangent space at each point in M n Sn(o°) which is

the limit of tangent spaces of M (this définition is a slight modification of the one
given in [LR]).

It is sometimes convenient to localize the définition of regularity at infinity
and say that M is Ck-regular at a point p e M C\S&quot;(°°) if there exists an open
neighbourhood U of p in H&quot;+l such that M H U is a C*-submanifold with
boundary of Hn+\ and 3M H U is a C*-submanifold of S&quot;(oo).

A gênerai discussion about regularity at infinity, with many examples is given
in Chapter IV of [Go].

When M is C*-regular, it will be convenient to consider the boundary 9M of
the submanifold M. It is easily checked that 3M &lt;= d^M, but equality may fail to
occur. For instance, if M is a horosphere, BM 0 and dxM {one point}. Also
note that proper embeddedness together with the additional hypothesis that
d*M 0 means that M is compact.

If M is an embedded hypersurface in //&quot;+1 with constant mean curvature
H # 0, we will orient M in such a way that H &gt; 0.

THEOREM 2. Let Mn c Hn+X be a connected, complète, properly embedded
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hypersurface with constant mean curvature H. Assume that M is C2-regular at
infinity. Then

if, in addition, dM ^ 0,
ii) H &lt; 10 dM dM. In this case, M is nowhere tangent to Sn (&lt;*&gt;).

iii) H le&gt;3M 0.

Proof. M divides H&quot;*1 into two components denoted by / and O. Assume
that the normal vector points towards /. We will first prove some assertions that
will imply the theorem.

ASSERTION 1. Let dM # 0 and dM * 0. Then H&lt;\.

Since dM =£0, both d^I and d^O hâve interior points. Let p e Int (d^I) and

let Ht be the family of horospheres with p as asymptotic boundary; the parameter
t is chosen in such a way that a géodésie y(t) with y(°°)=p satisfies y(t)eHt.
Since p e Int (3*/), the intersection HtDM 0 for large t. Therefore, there
exists t0 such that Ht0 is tangent to M and Hto c /. Since the normal vector of M
points towards /, we see that H ^ 1. If H 1, by the tangency principle, Ht{s M,
and this contradicts the fact that dM =£0. Thus H &lt;\, and this proves Assertion
1.

ASSERTION 2. Let djtf =#0 and H&lt;\. Then M is nowhere tangent to

Assume the contrary, i.e., there exists p e d^M where M is tangent to S&quot;(&amp;).

By C2-regularity, there exists a codimension-one sphère 2*0 dB in Sn(oc) that is

tangent to dxM at p, and is such that Int B n M 0. Foliate # by codimension-

one sphères 21,, 0&lt;f^l, and consider one of the two continuous families of
hyperspheres ht that satisfy djnt — Zt and hâve mean curvature H. Clearly, for
some of the two possible choices of I{) and some 0 &lt; t0 &lt; 1, the hypersphere ht{) is

tangent to M. We can assume that the normal vector of ht0 and M agrée at the

tangency point; if this is not the case, we just hâve to choose the other family of
hyperspheres with the same mean curvature and same asymptotic boundaries. By
the tangency principle, ht{) M and this contradicts the fact that d^ht{) 0 d^M 0.
This proves Assertion 2.

ASSERTION 3. Let dM *0 and dM 0. Then H &lt; 1.

Choose p e dM. Since M is a submanifold with boundary, and dM 0, M is

tangent to Sn{^&gt;) at p. By C2-regularity, there exists a codimension-one euclidean
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sphère Ip in Hn+1 such that Sp is tangent to M and Ip c/. By decreasing the
euclidean radius of 2*p, if necessary, we can find a continuous family of euclidean
sphères Zq, q eM HV, where V is a sufficiently small neighbourhood of p. From
the view point of hyperbolic geometry, Ip is a horosphere and if p ¥= q&gt; Iq is a

hyperbolic sphère tangent to M, with the same normal vector as M. Let
q?(q) Hq~ H, where Hq is the mean curvature of the hyperbolic sphère Sq. By
looking at the normal sections we see that at qy &lt;p(g)&gt;0. Since S1 is a
horosphere, ç?(p) 1 - H, and by continuity 1 - /f &gt; 0. This proves Assertion 3.

Now we come to the proof of the Theorem itself.
Assertions (1) and (3) imply that if dxM^0 then H &lt; 1. This proves (i)=&gt;.

The converse cornes from the tangency principle, and this complètes the proof of
(i).

We now prove (ii). Assume that H &lt; 1 and that there exists p e dxM with
p i dM. Then M is tangent to Sn{*&gt;) at p and this contradicts Assertion 2. Thus
H&lt;l^dxM 3M. The converse follows from Assertion 1, and the last
statement of (ii) follows from Assertion 2.

Finally we prove (iii). If 9XM¥^0 and 3Af =£0, then by Assertion 1, H &lt; 1.

Thus if H &gt; 1 either dM 0 or BM 0. But dxM 0 is équivalent to H &gt; 1

by (i). Thus // l^dM 0. Conversely, if dM 0 and ajlf*0, then
dM # d^M. Thus by (ii), // &gt; 1 and, by (i), H &lt; 1, hence /f 1. This complètes
the proof of the Theorem.

Remark 1. In [dCL] it is proved that if Mn czHnJtl is a complète properly
embedded hypersurface with constant mean curvature, 3acM 5&quot;~1, and M
séparâtes pôles, then M is a hypersphere with 5&quot;&quot;1 as asymptotic boundary. The
condition that M séparâtes pôles in the proof of [dCL] is équivalent to the
condition that both dxl and dxO hâve interior points, which by its turn is

équivalent to both docM^=0 and 9M¥^0. Thus in [dCL] we can, by Theorem 2,

replace the condition &quot;M séparâtes pôles&quot; by the stronger condition that &quot;M is

C2-regular at infinity&quot;.

Remark 2. It is easily checked that the implications &lt;= of Theorem 2 hold if M
is merely locally C2-regular. Also if we localize the right hand sides of the

implications in Theorem 2, the theorem holds true for local C2-regularity.

Notice that we did not use the regularity hypothesis in the proof of Assertion
1. In fact that proof shows the following &quot;dual&quot; of Corollary 1.

COROLLARY 2. Let M be a properly embedded hypersurface in //&quot;+1 with

constant mean curvature H&gt;1. Then the asymptotic boundary of M does not
contain any component whose codimension in Sn(°°) is one.



The influence of the boundary behaviour on hypersurfaces 437

4. A characterization of embedded rotation hypersurface of spherical type

In this section we will prove the following

THEOREM 3. Let MnczHn+l be a connected complète properly embedded

hypersurface in Hn+l with constant mean curvature H^l. Assume that M is

C2-regular at infinity and that dxM is the union of two disjoint codimension-one
sphères of Sn (o°). Then M is a rotation hypersurface of spherical type.

Remark 3. For the case H 0 and M not necessarily embedded, Theorem 3

was proved by Levitt and Rosenbert [LR]. Our proof is essentially the one in
Alexandroff [Al]; see also Hopf [Ho].

We will need the following elementary lemma, the proof of which will be

sketched for the sake of completness.

LEMMA 1. For any two codimension-one sphères Slf and S2 in the unit sphère
S&quot; czRn+l, such that 5j fl 52 0, there exists a conformai transformation of S&quot; that
brings Sx and S2 into sphères of equal radii which lie in parallel hyperplanes of
Rn+1.

Proof Let B be a bail bounded by Slf that contains 52. The bail B has a

hyperbolic metric with the property that the isometries of such a metric are the
conformai transformations of S&quot; that leave B and S{ invariant. The family S(t) of
codimension-one sphères in B czSn a Rn+\ parallel (i.e., in parallel hyperplanes)
to Si, is a family of hyperbolic sphères whose hyperbolic radii R(t) varies in the
interval [0, oc). Thus there exists t0 e [0, o°) such that the hyperbolic radius of S(t{))
and S2 are the same. Therefore there exists a conformai transformation that
leaves St invariant and brings S2 into S(tQ). It follows that we can assume that S{

and S2 are in parallel hyperplanes. By using the conformai transformations of 5&quot;

induced by the similarity transformations of Rn via a stereographic projection
(say, from the center of 5t), the proof of the lemma is easily completed.

Proof of Theorem 3. We will use the bail model Sn+l for hyperbolic
(n + l)-space. First we introduce the notation to be used in the proof. We can

assume by Lemma 1 that the two sphères in 9XM lie in parallel hyperplanes and

hâve the same radius. They are therefore symmetric to each other relative to an

equator of Sn(&lt;*&gt;) which we dénote by E (see Fig. 3 below).

Let y: (~oo, +oo) —? Hn+i be a géodésie of Hn+l whose image is a diameter of
E, and such that y(0) is the center of E. Consider the family Pt, -oo&lt;t&lt; +&lt;x&gt;, of
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Figure 3

totally géodésie hypersurfaces orthogonal to y at y(t). Notice that d^Pt is the
family of parallel codimension-one sphères which approaches y(+°°) or y(-00) as

t tends to +°° and —00, respectively, and that dxPQ is the great sphère in S&quot;(°°)

orthogonal to E. Pt divides Hn+l into two components: the one that contains

y(-oo) is denoted by P,~, and the other by Pf. Set M, M D Pi.
Consider the reflection Rt\Hn+l -&gt; Hn+1 across Pt. We want to show that Rt

extends continuously to a map Rt of Hn+l and we proceed as follows (cf. [Al] and
also [LR]). For each p e Hn+l, as t runs the interval (-00, +oo)? Rtp will describe
the hypercycle passing through p and joining y(—00) to y(+°°). Let cp be such a

hypercycle and parametrize it in such a way that cp(t) ePt, te (-», -f») (see Fig.
3). As p approaches a point q e Sn(°°), q # y(+°°), 9 # y(-°°), cp approaches the

(unique) arc of circle cq of S&quot;(°o) that passes through ^ and joins y(-oo) to y(+00).
For convenience, we will say that cq is the hypercycle passing through q, although
this notion dépends on the choice of y (which will be kept fixed throughout the

proof). We now define Rt in an obvious continuous way and call it the reflection
across Pt.

Let M&apos;t be the reflection of M, accross Pn and dénote by / the component of
Hn*l-M that contains the north and south pôles relative to £. Notice that
Sn(&lt;x&gt;) - d^M has three connected components; dénote by IN (resp. ls) the

component that contains the north (resp. south) pôle relative to E. Since H # 1

and M is C2-regular, it follows from (ii) of Theorem 2 that dxl IN U Is. Hence
the reflection of d^M across PtnSn(°o) is contained in / if f^O, and it is not
contained in / if t &gt; 0.
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We now start the proof. Set

tx inf {t; M[ is not contained in /}.

By the behaviour of the reflections of d^M, it is clear that tx &lt;0. Furthermore,
M&apos;h a î, since it is the limit of such sets. The crucial point of the proof is to show
that tx 0.

Assume that tx&lt;0. Choose an orientation for M, and define a function
çp.M - {y(-°°), y(+°°)} —? R by &lt;p(p) (N(p), c&apos;p)y where N(p) is the normal
vector of M at p (notice that M has normal vectors at infinity although it makes

no sensé to talk about their lengths). Set A &lt;f&gt;~l{—°°, 0), B q)~l(0, +&lt;»), and
C ç?~1(0). Of course, cp is tangent to M if p e C, and by changing the
orientation of M, if necessary, we can assume that the normal to M points
towards /. We say that cp enters M in the points of A, and leaves M in the points
of the set B. In figure 3, the points Ax and A2 belong to A, the point Cx belongs
to C, and the points Bx and B2 belong to the set B.

We claim that Mh a A. Since Mt 0 for t near — &lt;*&gt;, if we set

then P,oflM &lt;=A If there exists peMtxnB, by continuity of &lt;p, we can find
t2 ^ t\ and q e Mt2 D C. Thus q e Pt1 t2 ^ tx and M&apos;t c 7. Since M is C2-regular, and

H^\t it follows from Theorem 2 that M is nowhere tangent to S&quot;(°°), hence

q e M. Furthermore since q e C, P, intersects M orthogonally at g, which shows

that Mrt is, around g, a manifold with boundary that is tangent to Mt at q. Since
M&apos;t a I, we can apply the boundary tangency principle to conclude that
dxM&apos; 9XM and this contradicts the boundary behaviour of the reflection for
tx &lt; 0. It follows that there are no points of Mt{ either in C or in B, and our claim
is proved.

Since M,, a A, M,, is compact and A is open, we conclude that Mt]+i/n ^A for
n&gt;n{), n0 sufficiently large. Since M&apos;h œÎ, a hypercycle cp that enters p e Mtx at a

time t is still in 7 at time t + 2{tx - t). Since Ml]+i/n &lt;£ 7, there exists a hypercycle

cp, p e Mt]+i/n&gt; and a real number &lt;5, 0&lt; ô &lt; l/n &lt; l/n0, such that cp(t -h 2{tx +
&lt;5 - 0) e B. By letting n() approach infinity, we see that there exists cqi q eMh,
such that cq(t + 2(tx -t)) reB.

Again, since M,&apos;, c 7, this implies that M,&apos;, is tangent to M at r and on the same

side of M. From the fact that t{ &lt; 0 and the boundary behaviour of the reflections,

we see that q $dxM. Thus r eM and we can apply the tangency principle to

obtain the same contradiction as before. Therefore tx 0, as we wished.

Let O be the closure of HnJhl -1. Since tx 0, Mo c 7. Thus the reflection of
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MDPq across Po is contained in 0. On the other hand, by using the above
construction for the géodésie —y, we see that the reflection of M D Pq across Po is

contained in /. It follows that M is symmetric about Po.

We now repeat the above argument for any géodésie whose image is a

diameter of the equator E. Thus M is symmetric about ail hyperplanes containing
the géodésie g that joins the north and south pôles relative to the equator E. Such

symmetries generate the group 0(w) of isometries of Hn+1 that leave g fixed. It
follows that M is a rotation hypersurface of spherical type, and this complètes the

proof of the Theorem.

Remark 4. Once one knows that M is a rotation hypersurface of spherical type, it
follows from the classification theorem of such hypersurfaces (see Gomes&apos; thesis
at IMPA [Go]) that both M D Pô, and MC\P^ are graphs over Po. It also follows
from Theorem 2 that the mean curvature H of M belongs to the interval [0,1).

Wu-Yi Hsiang has shown in [Hs] that if M is an embedded hypersurface with
constant mean curvature and at a finite distance from a totally géodésie

(k + l)-submanifold, then it is 0(n — &amp;)-invariant. It is clear that such a condition
(finiteness of distance) implies that dxM is contained in a fc-dimensional sphère
(the converse is not true). The ideas of the proof of Theorem 2 above apply and

yield a proof of the following resuit (Cf. [LR]).

COROLLARY 3, (of the proof). Let M be a complète nonumbilic properly
embedded hypersurface in Hn+l with constant mean curvature. Assume that d^M
is contained in a k-dimensional sphère SkcSn (&lt;*&gt;). Then M is an 0(n — k)-
rotational hypersurface whose &quot;axis&quot; is the totally géodésie (k + X)~submanifold
with Sk as asymptotic boundary.

Notice that there is no need of regularity at infinity in the above corollary.
This reflects the fact that in the proof we only reach the asymptotic boundary of
M at t 0.

We want to mention two spécial cases of Corollary 3 that were proved in

[LR]. If dooM is contained in a codimension-one sphère, then M has a

Zz-symmetry. If d^M consists of two points, it is a rotational hypersurface of
spherical type.

Corollary 3 can also be used to give a proof to the fact that if d^M reduces to
one point p, then M is a horosphere with p as asymptotic boundary (cf. [dCL]).
In fact, from the last resuit in the previous paragraph, M is symmetric relative to

any géodésie y in Hn+1 with y(&lt;») p. Thus if q € M n y, q is an umbilic point of
M. Since y is arbitrary, M is an umbilic hypersurface with dxM {/?}, hence a

horosphere.
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