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Detecting fibred links in S3

David Gabai(1)

§0. Introduction

In §1 we describe a simple effective procédure which allows one (in practice)
to décide whether or not the oriented link L dR (R a smoothly embedded
oriented surface in S3) is a fibred link with fibre R. As an application in §3 we

give an elementary géométrie proof of the following fact «= was first proven by

Stallings [S2]). Let R be a Murasugi sum of Rx and R2, then L dR is a fibred
link with fibre R if and only if for / 1, 2 L, dR, is a fibred link with fibre Rr A
corollary (worked out with M. Boileau) of the only if proof shows that if R is the

unique Seifert surface for the oriented link L, then L, fibres with fibre Rt for at
least one i&lt; As further applications in §4, §5, §6 we show how to décide which
oriented links of ^9 crossings, knots of ^10 crossings, oriented alternating links,
and oriented pretzel links are fibred links. We either indicate or explicitly exhibit
the fibres.

In §7 we give some insight into how essential tori and annuli may arise in the

complément of a fibred link where the fibre is a nontrivial plumbing i.e., Murasugi
sum along a square. As an application we show how to construct in any closed

oriented 3-manifold a fibred knot with pseudo-Anosov monodromy, i.e., a

hyperbolic fibred knot. See also Soma [So] for a proof of this last resuit.

In §8, we discuss an appealing conjecture.

§1. The basic resuit

We recall the key définitions regarding sutured manifolds.

NOTATION 1.1. If E is a space (resp. set), then |£| dénotes the number of
components (resp. éléments) of E. Ê dénotes the interior of £, and N(E) dénotes
a regular neighborhood of E in an ambient manifold.

1
Partially supportée by grants from the National Science foundation.
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520 DAVID GABAI

DEFINITION 1.2. A sutured manifold (M, y) is a compact orientée! 3-

manifold M together with a set y c 3M of pairwise disjoint annuli A(y) and tori
T(Y).

The interior of each component of A(y) contains a suture Le., a homologi-
cally non trivial oriented simple closed curve. Dénote the set of sutures by s (y).
Finally, every component of R(y) 3M - y is oriented. Define R+(y) (or R-(y))
to be those components of 3M — y whose normal vectors point out of (into) M.
The orientations on R(y) must be cohérent with respect to s(y) i.e., if Â is a

component of 3R(y) and is given the boundary orientation, then À must

represent the same homology class in Ht(y) as some suture.

Remark 1.3. The rest of this paper involves the study of sutured manifolds
embedded in S3. Furthermore, ail sutured manifolds subsequently considered

satisfy T(y) 0 and every component of 3M intersects y non trivially. Under
thèse circumstances the sutured manifold is determined by M and s(y).
Therefore, one can view y as a set of thick oriented curves in 3M where such

curves induce the orientations on 3M — y.

One can think of a sutured manifold as a manifold with corners (equal to 3y)
together with a vector field which points in along R-(y) and out along i?+(y).

CONVENTION 1.4. Fix once and for ail an orientation on S3. A surface R is

oriented if and only if R has a well defined normal vector field i.e., transverse
orientation. The 4- side (- side) of R is that &quot;side&quot; of R where the normals point
out (in). A transverse orientation on R induces an orientation on 3R using the
rule that if an observer walking along 3R on the + side (- side) of R, sees R to
the left (right), then the observer is (is not) following the orientation of 3R.

DEFINITION 1.5. Let /?c53bea compact oriented surface with no closed

components, then (R x /, 3R x /) (N, ô) is the sutured manifold obtained from
R. Use Convention 1.4 to orient R(y) R x {0, 1}.

If (M, y) is a sutured manifold in S3, then (N, ô) (S3 - M, y) is the

complementary sutured manifold.
If S is a &quot;reasongble&quot; [i.e., 5 is transverse to y, each arc component of S H y

is an essential arc in y, and if Â is a circle component of S H y, then Â (oriented as

a component of 3S) is homologous in y to a component of s (y)] properly
embedded oriented surface in the sutured manifold (Mu yO, then by applying the
sutured manifold décomposition opération of Définition 3.1 [G5] to 5 and
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(M1,y1) we obtain the new sutured manifold (M2f y2). Topologically M2 —

Mi — N(S). The notation for this opération is as follows.

If (Mi, yi) is a sutured manifold in S3, then one may think of this as the

opération

where (Nn yt) is the complementary sutured manifold to (Mlf yt). Note that [G4]
views sutured manifold décomposition from the latter point of view.

This paper focuses on a very spécial type of sutured manifold décomposition.

DEFINITION 1.6. A product décomposition is a sutured manifold
décomposition

(Mu y1)^(M2f y2).

where D is a dise properly embedded in Mx and D Ci s (y) 2 points. Therefore,
M2 Ml — N(D) and s(y2) is obtained by extending s(yi) — N(D) in the natural

way (figure 1.1a).

Dually, if (Nu y,) is the complementary sutured manifold to (Mlf y,), then a

C-product (C for complementary) décomposition is the opération

where D is a properly embedded dise in S3 - Nx with 3D H s(yl) 2 points. N2 is

obtained from Nx by attaching the 2-handle D and s(y2) is obtained by extending
s(yl) - N(D) in the natural way (figure 1.1b).

DEFINITION 1.7. Let (/0, y0) be a sutured manifold in S3. A complète

(C)product décomposition of (Jo, Yo) is a séquence of (C)product décompositions

Dx D
(Jo&gt; Yo)*&quot; (A, yO^ • • •w (^&gt; yP)

where 3/p is a union of 2-spheres Sx,..., Sk with 1s(yp)flSr a unique simple
closed curve for r 1,..., k.
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a) A Product Décomposition

b) A C- Product Décomposition

Figure 1 1

A product décomposition of a smooth surface R in S3 is a complète C-product
décomposition of the sutured manifold (iV0, y0) (R x I&gt; 3/f x /), i.e., the
sutured manifold obtained from R.

DEFINITION 1.8. An oriented link L is a fibred link in S3 with fibre R if
a/? L (oriented boundary) and S3 - N(L) fibres over S1 with fibre R.

THEOREM 1.9. Let R be an oriented surface in S3, L the oriented link dR,
then L is a fibred link with fibre R if and only if R has a product décomposition.

Proof L is û fibred link with fibre R if and only if (S3 - N(L)) - N(R)
RxL

=^ Let D, yf x / where y\%..., yn is a set of pairwise disjoint properly
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embedded arcs in R such that

1=1

If follows that

(Rxl, dRxI) (N0,Y0)^(Nuri)Z&gt;(N2,Y2)&lt;~---Z&gt;(Nn,Yn) (D2x

/, 3D2 x /)
is a product décomposition for R.

4= This is 4) of Theorem 2.1 of [G4]. We give an alternative proof. A product
décomposition gives a prescription to show that (S3 - N(L)) - N(R) is a product.
Let

(No, Yo)~*&apos;- &apos;&quot;*&amp;„, yn)

be a product décomposition of R. Let (Mkf Yk) be the complementary sutured
manifold to (Nk, yh)- Starting with (Mn, yn) (E x /, 3E x /) where £ is a union
of 2-discs, one inductively observes that each (Mk, Yk)» hence (Af0, y0), is a

product sutured manifold, i.e., of the form (Rk x /, 9Rk x /).

EXAMPLE 1.10. a) Figure 1.4b) of [G4] shows a product décomposition of
an oriented surface.

b) Figure 1.2 shows a product décomposition of an oriented surface.

DEFINITION 1.11. If L is a fibred link with fibre R, then the monodromy of
L is represented by f:R-^&gt;R if there exists an orientation preserving
homeomorphism

where

a) g\R is an orientation preserving homeomorphism onto R

b) g(mt) xtx [0, 1] for every meridian m, of L
c) f\dR id.
Hère Rxl is oriented so that the identity map id:R-*RxO is orientation

preserving and one standing at R x \ sees the + side of R x 0.
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C-Product I Décomposition

C-Product
Décomposition

Figure 1.2

Note that fuf2:R-+R represent the monodromy of the same fibred link if and

only if fx is isotopic (rel3) to hf2h~x for some orientation preserving home-

omorphism h of R.

Remark 1.12. One can view the monodromy of / as the automorphism of
Jtx(R) obtained by pushing loops (with basepoint on dR) off the + side of R

through S3 — R and onto the — side of R where the basepoint travels along a

meridian.

§2. Technical lemmas

DEFINITION 2.1. A product annulus in the sutured manifold (M, y) is an
annulus A properly embedded in M such that dA c R(y), dA H R+(y) # 0, and

dA fl R-(y) #0. A product dise is a dise D properly embedded in M such that

dDf\y equals two essential arcs in y. Product dises and annuli detect where a

sutured manifold is locally a product. (Af, y) is a product sutured manifold if
M /?x/, y 3/?x/, R+(y) Rxl, and R.(y) /? xO.

Similarly, a C-product annulus in the sutured manifold (Ny ô) is an annulus A
properly embedded in S3-N such that dAczR(ô), dAnR+(ô)*0,o and

dA n R-(d) # 0. A C-product dise is a dise D properly embedded in S3 - N such

that dD H 6 equals two essential arcs in 6.
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The following lemmas are helpful in deciding whether or not a sutured
manifold (Af, y) is a product sutured manifold. To understand §3, §4, §5, and

most of §6 one needs only the very elementary Lemma 2.2.

LEMMA 2.2. Let (Af, y)A/^(Mlf yx) be a product décomposition, then

(Mlf yx) is a product sutured manifold if and only if (Af, y) is a product sutured

manifold.

Proof =&gt; clear.
&lt;£: Certainly the homeomorphism type of (Mlf yt) is unchanged if one

replaces D by an isotopic dise E where the isotopy is done rel^(y). If
(M, y) (R x /, 3R x /), then view D as / x / where / x 0, /xl are properly
embedded arcs in R x 0, R x 1 respectively and 0x7, 1 x 7 are properly
embedded arcs in y dRxI. Now isotope (rels(y) 3R x 1/2)7) to be of the
form a x 7 where oc is a properly embedded arc in R. D

In Lemma 2.4 we give a more gênerai version of ^ Lemma 2.2 which is only
needed in §6.

DEFNITION 2.3. (Af, y) is taut if M is irreducible and R(y) is Thurston
norm minimizing. Le., if T is a properly embedded incompressible surface in M
having the properties that dTczy and [T, dT] [R(y)&gt; dR(y)] e H2(M, y), then

LEMMA 2.4. If (M, y)/v^&gt; (Mu yx) is a sutured manifold décomposition such

that (Mlf Yi) is taut, then (Mlf yx) is a product sutured manifold if (M, y) is a

product sutured manifold.

Proof. Since the product sutured manifolds are exactly those with minimal
sutured manifold complexity (§4 of [G5]) this resuit follows from Lemma 4.11 of
[G5].

The following lemma describes a sutured manifold décomposition (not used in
this paper) which is very helpful in practice. The proof follows as in Lemma 2.2.

LEMMA 2.5. Let (Af, y)^(Af!, y^ be a sutured manifold décomposition
where A is a product annulus, then (Mif y^ is a product sutured manifold if and

only if (M, y) is a product sutured manifold. O
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The following lemma and corollary are used only in §6.

LEMMA 2.6. Let (M, y)£»(Mlf yx), (Af, y) *£ (M2, y2) ^ sutured manifold
décompositions such that (Mïf yi) and (M2, y2) «re teuf, (M, y) is a product
sutured manifold and -S dénotes S oppositely oriented, then S Â x / for some
properly embedded curve A in /?.

Froo/.
CASE 1. 3/? #0. Let D1? D2, Dn be a set of pairwise disjoint product

dises in M such that

(M, y)~(M&apos;, y&apos;) (D2 x /, 9D2 x /) where D \J D,.
1 1

Isotope S so that |5 (1 D\ is minimal and SDD SC\D— A(y). [If a component
of 35 lay completely in A(y), then one of the décompositions of the lemma would
not be defined.] It follows as in p. 462-464 of [G5] that SDD appears as in figure
2.1a and if 5&apos; is the surface obtained by doing the boundary compression of figure
2.1b then 5&apos; satisfies the hypothesis of the theorem. Since the resuit is evidently
true if D H 5 0 the lemma follows by induction.

Figure 2.1

CASE 2. dR 0. Note that 3S¥=0 else S is isotopic to R x 1/2, but then
one of (Mi, yx) or (M2, y2) would not be taut. Now isotope 5 and find an annulus

A- ô x IczRxI such that A H S is a union of arcs of the form P x /.
o

We now hâve the commutative diagram where S&apos; ~S — N(A). Since (Mu yx)
is taut, Lemma 3.12 [G5] implies (Àfî, y[) is taut. Since a similar diagram holds
for -S, -S&apos; the hypothesis of the lemma holds for (M&apos;, y&apos;) and ±S&apos;. The resuit
now follows from Case 1.
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(M, y) —U (M,, y,)

Ia &lt; product dises

(M&apos;, y&apos;) ~~U (M&apos;,t y&apos;,)

COROLLARY 2.7. // the sutured manifold décompositions
ç ç

(M, y)~*(MXj yO, (M, y)A/^(M2, y2) yfeW tewf sutured manifolds and sortie

comportent of S is neither a product annulus nor a product dise, then (M, y) is not
a product sutured manifold.

§3. Applications

THEOREM 3.1. Let RczS3 be a Murasugi sum ([M] or [G2]) of oriented
surfaces Rly R2 in S3, then L — 3R is a fibred link with fibre R if and only if for
i 1, 2 Lt 9Rt is a fibred link with fibre R,.

Remark. &lt;^ was proven algebraically by Stallings in 1976. A géométrie proof
can be found in [G2].

=&gt; was proved algebraically in [G2] and geometrically in [G3].

What follows is a completely elementary géométrie proof.

Proof. R being a Murasugi sum implies that there exists a 2-sphere Q c S3

separating S3 into two 3-balls Bx, B2 where /?flfl, R, and R n Q is a

2-ttgonD. Let (N, ô), (Nu &lt;5,), (N2, ô2) be the sutured manifolds obtained
from R, Ru R2 respectively and let (M, y), (M,, yO, (M2, y2) respectively be the

complementary sutured manifolds. Note that (figure 3.1)

Bx H R.(ô) *.(£,), Bx H R+(ô) R+(ôt) - N(D)
fî2 H /?_(&lt;5) i?_(ô2) - N(D), B2 H /?+(&lt;5) R+(ô2).

Hère we assume that the normal to D (D is a square in Figure 3.1) points into B2.

Proof of 4=. Each (M,, y,) is a product sutured manifold so there exist

product dises

D,,...,DM in (Muyx)

DH+U...,D, in (M2fy2)



528 DAVID GABAI

a)

Z--r ¦-_¦= -

fM^^^«^%

b)

such that

and

Figure 3 1

R±(Yi)~UN(Dt), R±(Y2)~ U N(D,) are dises.
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Using (*) (recall R±(y) R±(ô)) we can view each Dt as a product dise in
(M, y). We conclude that the séquence

is a product décomposition for (M, y).

Proof of =&gt;. (This sharp proof was inspired by a question from Michel
Boileau.) Assume that R (figure 3.2a) was summed along a square for the other
cases follow similarly. By summing Rt and R2 along the square S2 — D 2s we
obtain the surface T (figure 3.2b) which is disjoint from R in S3 - N(L) (figure
3.2c) and homologous to R in H2(S3 - N(L), 9N(L)). Since L fibres with fibre R,
R and T are isotopic by [N] hence separate S3 — N(L) into 2 product sutured
manifolds (Hly ôi) and (//2, ô2) where (Hl9 &lt;5x) is the sutured manifold whose

a)

RUT

Di
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&quot;thick part&quot; lies above Q. The sutured manifold décomposition

D, D2

along the product dises Du D2 (figure 3.2c) yields by Lemma 2.2 {H&apos;[, ô&quot;) a

product sutured manifold. The sutured manifold obtained by splitting S3 - N(L)
open along Ri (figure 3.3) is the component (//, ô) of (H&quot;, ô&quot;) which is contained
in Bu which is a product, so Lx is a fibred link with fibre Rx. Similarly, L2 fibres

with fibre /?2.

COROLLARY 3.2 (with Michel Boileau). If R is a Murasugi sum of Rx and

R2 and L is an oriented link with R its unique incompressible Seifert surface, then
for some i Lt dRt is a fibred link with fibre /?,.

Proof. Any minimal genus surface for L is incompressible, hence R is minimal

genus. The surface T (of the =&gt; proof of Theorem 3.1) is a Seifert surface for L.
Since x(T) — x(R)y T *s minimal genus hence incompressible. Therefore T is

isotopic to S so some component of (S3 - N(L)) - N(T U S) is a product. The

proof follows as in the =&gt; proof of Theorem 2.1.

Remark 3.3. This resuit was known to Eisner [E] for connected sums.



Detecting fibred links in S3 531

DEFINITION 3.4. A compact oriented surface R c53 can be desummed in

/?!,..., Rn if one can obtain R by performing a finite number of Murasugi sum

opérations starting with Rïf. Rn.

QUESTION 3.5. How to décide whether or not an oriented link in S3 is a

fibred link?

PRACTICAL ANSWER. First find a surface 5 of minimal genus for L. If L
fibres with fibre F, then 5 is isotopic to Fhence is a fibre. Next try to desum S. By
Theorem 3.1 if any of the desummed pièces St,.. Sn is not a fibre, then L does

not fibre. Next analyze each of the S/s. Let (Nt, ôt) be the sutured manifold
obtained from St and perform as many C-product décompositions as possible to
(A/i, Yi)&gt; We either might obtain a complète C-product décomposition or still be

left with a non trivial sutured manifold (N, ô) with complementary sutured
manifold (M, y). If we can show that (M, y) is not a product sutured manifold
then by Lemma 2.2, S, is not a fibre.

Algebraically by [SI] if M is irreducible and connected then (M, y) is a

product sutured manifold if and only if n\(R+(Y))-+ ni(M) is an isomorphism
and both R+(y)&gt; ^-(y) are connected. Geometrically if M =£ B3 and there exists

no product dise in (M, y), then (M, y) is not a product. One can use other
methods (see §2) to help décide if (M, y) is a product. We demonstrate those

techniques in §5 and §6.

§4. Fibred knots of ^10 crossings, links of ^9 crossings

If L is an alternating knot or link see §5.

Table 4.1

NonFibred NonAlternating Knots of ^10 Crossings
946 lui» IO142 10l63

%9 10,31 10,44 10,65

10,28 10,34 10,46 10166

10,29 10,35 10,47

NonFibred NonAlternating Oriented Links of ^9 Crossings
9^2,4 9^4 8|1,3 9^3,3
9^2,2 9?22 9?53 9^,1,1,3,3
9^2,4 9i42 9?63,3,3 8^2,2,2,2

9?71,3,3 8!0,0,2,2,2,2
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FACT 4.1. Thèse tables summarize work found in chapter 8 of [Gl]. There I
explicitly exhibited a minimal genus surface for each non alternating knot of ^10
crossings and oriented link of ^9 crossings. Using 3.5 one easily décides whether
such an oriented link fibres or not. For a given link (resp. knot) of n components
there exists 2&quot;&quot;1 orientation classes to analyze. In §2 of [G4] I tabulated the
absolute value (resp. genus) of the Euler characteristic of a minimal genus surface

for a given orientation class. Table 4.1 lists ail such non alternating nonfibred
knots and links. We use Rolfsen&apos;s notation to describe a given unoriented link.
The numbers associated to a given unoriented link indicate the absolute values of
the Euler characteristics of minimal genus surfaces spanning orientation classes

which do not fibre.
Kanenabu also computed the fibred knots of &lt;10 crossings. Pictures of the

fibres of such non alternating knots can be found in [K].

Remark 4.2. It is well known (see [R]) that if k is a fibred knot, then the

genus of k is equal to one half of the degree of the Alexander polynomial of k.

Also the leading term of the polynomial is 1. Conversely Murasugi [M2] showed
that the fibred alternating knots are exactly those alternating knots whose
Alexander polynomial has leading coefficient 1. From that fact and this list of
nonfibred nonalternating knots of &lt;10 crossings it follows that the fibred knots of
^10 crossings are exactly those knots whose Alexander polynomial has leading
coefficient 1. Since there exist knots of 11 crossing with trivial Alexander
polynomial this condition on the leading term is not sufficient to distinguish fibred
knots.

§5. Fibred alternating links

Recall that a Hopf band is an annulus spanning a (2,2) torus link.

THEOREM 5.1. Let L be an oriented link with an alternating projection. L is

a fibred link if and only if the surface R obtained by applying Seiferfs algorithm to
the alternating projection is connected and (obviously) desums (3.4) into a union

of Hopf bands.

Remarks. Murasugi [M2] showed that alternating links whose Seifert surfaces
desum into Hopf bands are exactly those with finitely generated commutator
subgroup; hence, this resuit follows from [M2] and [SI].

See [R] or [G4] for the définition of Seifert&apos;s algorithm.

Proof of &lt;£=. Since thèse bands clearly hâve product décompositions the resuit
follows by Theorem 3.1.
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Proof of =&gt;. By [Ml], [C], [G4], or [G6] (for an easy proof), the Seifert
surface R obtained by applying Seifert&apos;s algorithm to an oriented alternating
projection is minimal. R canonically desums into surfaces Rx,. Rn where
each Rt is the surface obtained by applying Seifert&apos;s algorithm to the oriented

alternating link Ln where the oriented projection to Lt has no nested Seifert
circles (i.e., the Seifert circles bound disjoint dises in S2). Therefore it suffices to
assume, by Theorem 3.1 that R has no nested Seifert circles, hence we can view
R as lying in a S2 a S3 except in small neighborhoods of the crossings.

We prove the theorem by induction on the number n of crossings of L. If
n &lt; 2 then R is a Hopf band or dise. Assuming that the resuit is true for links of
&lt;/î crossings we prove it for links of n +1 crossings. Let (N, ô) be the sutured
manifold obtained from R. Let E be a properly embedded non boundary parallel
dise in S3 — N with s(ô) HE 2 points (i.e., E is a non trivial C-product dise for
(N, ô)) and E C\ S2 has the fewest number of components of intersection of ail
such dises. Assume that E D s(ô) f) S2 0.

CASE1. EHS2 0.

If the points of E Ds(ô) &quot;occurred&quot; at the same crossing (figure 5.1a), then E
was boundary parallel, hence the points of E (1 s(ô) &quot;occur&quot; at différent crossings

(figure 5.1b). Therefore R is a Murasugi sum of Rx and R2, each of which is the
surface obtained by applying Seifert&apos;s algorithm to an oriented alternating link L,
of at most n crossings. The resuit follows by induction and Theorem 3.1.

CASE 2. EHS2*0.

£ fi S2 is a union of arcs, else E n S2 does not intersect S2 minimally. There
exists an innermost dise F œE (i.e., F is the closure of a component of E — S2

and F fi S2 is connected) with FDs(ô) being at most 1 point.

CASE2A.

The intersections of d(F C\ S2) occur at distinct crossings else we could hâve

isotoped E to reduce the number of intersections with S2, contradicting the

minimality of E. We conclude that R is a Murasugi sum (in fact a connected sum)

(figure 5.2) and the resuit follows as in Case 1.

CASE 2B. dFd s(ô) 1 point.

In this case, since E is of minimal complexity, F must appear as in figure

5.3a), b), or c). In either case R is a Murasugi sum and the resuit follows as in
Case 1.
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R isa Murasugi Sumof

a)

Figure 5.1

b)

Figure 5.2
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Figure 5 3

We have shown that if R =é D2 has a product décomposition, then R desums in
a recogmzable way as a union of Hopf bands

§6. Fibred pretzel links

In this section we give a complète list of ail the onented prime fibred pretzel
links together with their fibres We follow the program of 3 5 For a given
onented pretzel hnk L we utihze [G7] to find a surface 5 of minimal genus for L
We then apply the géométrie methods to décide whether or not L fibres

DEFINITION 6 1 An unonented pretzel hnk (w,, nk) îs a hnk of the

followmg form (figure 6 1)
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Figure 6.1

Remarks 6.2. If {0,0} cz {nïf. nk}, then L is a split link hence does not
fibre since Jt2(S3 — L) =£ 0.

If exactly one nt (say nt) equals 0, then / is a connected sum of L2,. Ln

where the unoriented Lt equals[ n,-! p 1. If \nt\ ^4, nt even and Lt t A

(rather than O J, then Lt does not fibre, otherwise Lt fibres.

By Theorem 3.1 L fibres if and only if each Lt i&gt;2 fibres (since any
incompressible Seifert surface for L can be expressed as a connected sum of
incompressible Seifert surfaces, one for each L,).

If no nt 0, then by [O] L is prime.

NORMALIZATION 6.3. If {1, -1} cz {nu nk}} then L is the pretzel
link (nx,. nk-2) obtained by deleting a 1 and a —1 from (nîf nk). We
now assume that nt =#0 and {1, —1} cz {nXy. nk}.

Let R be the surface obtained by applying Seifert&apos;s algorithm to an oriented
pretzel présentation of L. R must appear as one of the following 3 types.

TYPE 1.6.4. (e.g., figure 6.2). L is oriented so that R is the pretzel spanning
surface.

Figure 6.2

TYPE II.6.5. Figure 6.3. Hère we require some ml} exists. Note that r is even



Detecting fibred links in S3 537

and each |mj &gt; 2 and even. Associated to L is the oriented pretzel link

1 &apos; - /&quot;2ml

lwil

ttÎ2l*&gt;&gt; &apos; &apos; • y &quot;1 ï&quot;
&gt;

&quot;^rl
&gt; • • • &gt; ^r/ I

l«r| V

where the term

—2m t

Kl
is deleted if ImJ 1. L&apos; is oriented so that the surface obtained by applying
Seifert&apos;s algorithm is of type I.

/ / 1
&apos;

y &quot;f21 21S

Figure 6.3

TYPE III.6.6. Figure 6.4. A type III surface is a type II surface where no mlf
exists.

Figure 6.4
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THEOREM 6.7. The following is an effective algorithm to décide whether or
not the prime oriented pretzel link L fibres. If L fibres we describe the fibre.

CASE 1. The surface R obtained by applying Seifert&apos;s algorithm is of type I.

L fibres if and only if L fibres with fibre R. Moreover this happens if and only
if one of the following holds:

(A) each nt ±1 or T3 and some nt ±1.
(B) (nu ,nk) ±(2, -2, 2, -2,. 2, -2, n) n e Z (hère k is odd).
(C) (nu...,nk) ±(2, -2, 2, -2,. -2, +2, -4) (hère k is even).

CASE 2. The surface R obtained by applying Seifert&apos;s algorithm is of type IL

CASE2A. Sr-1
L fibres if and only if L fibres with fibre R. Moreover this happens if and only

if the following holds:

(1) |mj 2 for ail indices ij and

(2)2^2.
CASE 2B. 2 -Tl ° and L&apos; * ±(2&gt; -2, 2, -2)

|m|

L fibres if and only if L fibres with fibre T (figure 6.5). Moreover this happens
if and only if V fibres.

CASE2C. 2r^r==OandL&apos;= ±(2,-2,..., 2, -2).

Isotope L 9T as exemplified in figure 6.6 to obtain a new pretzel
présentation for L which bounds a type III surface. Now consult case 3.

CASE 3. The surface R obtained by applying Seifert&apos;s algorithm is of type III.
If either

i^^O or L&apos; + ±(2, -2, 2, -2,.. 2, -2)
Kl
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where

or

if m,&lt;1 rflm.l-1

or

and

or

Figure 6.5

otherwise

(L&apos; defined in 6.5), then prétend R is of type II and apply case 2A or 2B.
Otherwise L is fibred if and only if there exists an n} such that \n\ &lt; \np\ if/ ¥*p.

To construct the fibre in this latter case first cyclically permute the «,&apos;s and/or
multiply ail the n,&apos;s by -1 so that

(1) n,&gt;0f odd
(2) nt&lt;0i even
(3) K| &lt; K| j + k{k as in 6.1)

Now construct the fibre as in figure 6.7. If we multiply the w/s by — 1, then the
fibre is the mirror image of the one constructed in figure 6.7.
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Figure 6.6

L&quot;(nl#•••,n6),herek-6.The B,&apos;sare

3-cells which contain the indicated sub-
tangles of L

a)

Figure 6.7
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b) Construction of S n (S3 - (B, U B2 U B3))

^W&gt;
|nj-nkf
twists

d) Construction of SnB,&apos;hère j»2r1

Construction of SnB,

twists

il w
j=k

e) Construction of SnB!&apos;hère | 2i

Figure 6.7 continued
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Remark 6.8. I was surprised that thèse last type III links fibred since their

minimal genus Seifert surfaces look very much like the minimal genus Seifert

surfaces of Kinoshita-Terasaka knots, which hâve trivial Alexander polynomials.
See §5 of [G7] and [KT].

HISTORY. Crowell and Trotter [CT] determined which &quot;classical&quot; pretzel
knots (i.e., k and each n} is odd) of 3 strings (i.e., k 3) fibred. Parris [P] showed

exactly which classical pretzel knots fibred. Such knots bound Type I surfaces.

Goodman and Tavares [GT] and Kanenobu [K] independently showed exactly
which Type I surfaces were fibres. Their methods were algebraic and relied on
Stallings&apos; work [SI].

Proof. Recall program 3.5.

ProofofCase 1.

n, odd ail L L had been normalized so that {1, -1} &lt;= {/i,, nk}&gt; hence by
§3 of [G7] R is a minimal genus surface for L. If some n, 4-1, say i 1, then R
desums into surfaces R2i.. Rk where R} is a n} + 1 twisted band. By Theorem
3.1, L is a fibred link with fibre R if and only if for every y, n} +1 ±2. If some

n, — 1, the resuit follows similarly. If |rt,|&gt;3 ail i, then géométrie arguments
show that there do not exist any C-product dises for the sutured manifold
obtained from /?, hence R does not hâve a product décomposition and L does not
fibre.

n, even ail i. By [G7] R is a minimal genus surface for L unless L
±(2, -2, 2, -2,... 2, -2) in which case its minimal genus surface is a union of
two k/2 punctured sphères (figure 3.3 of [G7]). If L is a fibred link its fibre, hence

its minimal genus surface, is connected.
Let (iV, 6) be the sutured manifold obtained from R. Apply C-product

décompositions to décompose maximal régions of (N, ô) corresponding to
maximal sets of consécutive numbers ±(2, —2.. 2, —2) or ±(2, —2,...
—2, 2) in the présentation (nx, nk) of L, as in figure 6.8 to obtain the sutured
manifold (AT, ô&apos;).

If L satisfies (B) or (C) of Case 1, then (N&apos;f ô&apos;) will be one of the sutured
manifolds of figure 6.9, so has a C-product décomposition, hence L fibres with
fibre R.

If L satisfies neither (B) nor (C), then by arguing geometrically we conclude
that there do not exist any nontrivial C-product décompositions for (7V\ ô&apos;). By
Lemma 2.2 and Theorem 1.9 (Af &apos;, y&apos;) (resp. (M, y)) the complementary sutured
manifold to (N1, ôf) (resp. (N, ô)) is not a product so L does not fibre.
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fiH-
2.-2.2.-2

.-2.2,

¦ |X
-2,2,

,2,-2,2, ,-2,2, ,-2,2-2, ,2,-2,

Figure 6 8

Of

Figure 6 9

Proof of Case 2.

CASE 2A. By [G7] R is a minimal genus surface for L. R is a Murasugi sum

(1) surfaces #l; (which are mtJ twisted bands),

(2) a surface R&apos; (which is a - 2 j—^ twisted band),
\ y=i |m;| /

r
(3) and 2 (&quot;*/ - 1) HoPf bands-

The resuit now follows from Theorem 3.1.
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CASE 2B. L bounds the Seifert surface T (figure 6.5) which is a Murasugi
sum of Hopf bands (max. (0, \mt\ — 2) arise from each Tt) and the type I spanning
surface R&apos; to the pretzel link U (recall 6.5). By [G7] Tis minimal genus, hence L
fibres if and only if L fibres with fibre T if and only if (by Theorem 3.1 and Case

1) L&apos; fibres with fibre/?&apos;.

CASE 2C. There is nothing to prove hère. We remark that Tis not a minimal

genus surface for L.

Proof of Case 3. Ifboth

k n2rZï 0 and £&apos;= ±(2,-2, 2,-2),
/=i \nj\

then after performing a cyclic permutation of the n/s and/or multiplying ail the
n,&apos;s by — 1 we can assume that

(1) nt &gt; 0 i odd
(2) nt &lt; 0 i even
(3) K|&lt;=|/i,|

Construct a Seifert surface S for L as follows. If \nk\ &lt; |n;| ail / =£ k, then proceed
as in figure 6.7. Otherwise construct S as in figure 6.7 with the following

modifications. If \n,\ \nk\ j 2i - 1, define 5 H B[ jj) ^. If |ny| K| / 2i,

define S(1B;&apos;=^ M .If |n;| &lt; K| define the corresponding S n B[ or 5 H B&quot;t as

before.
Recall that (M, y), (Mp, yp)y etc. dénote the complementary sutured

manifolds in S3 to the sutured manifolds (N, &lt;5), (Npf ôp), etc. Using the methods of
[G7] we will show that S is a surface of minimal genus for L by showing that

(M, y) has a sutured manifold hierarchy (i.e., a séquence of sutured manifold

décompositions reducing (M, y) to a union of product sutured manifolds, where

(TV, ô) is the sutured manifold obtained from 5).
By Lemma 5.5 of [G7], if some S OBI or SdB&quot; (as in figure 6.7) equals

then one can décompose (M, y) to any one of (Mx, yx) or (M2, y2) where

(AT,, ô,) H (S3 - êt) (N, ô) fl (S3 - Bt) / 1, 2 and (NJf y,) D Bt appears as in

figure 6.10a if / 1 or figure 6.10b if/ 2. If for example i 2, then the first step
of each séquence of décompositions involves decomposing (Àf, y) along the
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orientée! annulus A (figure 6.7b), where distinct orientations on A are used in
thèse distinct séquences. It also foliows from Lemma 5.5 of [G7] that if neither

S H B[ nor S n B&apos;/equals ffl (ffïi then we can décompose (M, y) to (A/,, y,).

(N2.ô2)nB

Figure 6.10

To show that (M, y) has a sutured manifold hierarchy, décompose (M, y) to
(M&apos;, y&apos;) where

i&lt;kll
i fc/2

and

(k/2 o \S3-\jB,) (N, U
y=l

Now observe that (M&apos;, ôr) (/ x /, dJ x /) where J \nk\ + 1 copies of S2 -
A:/2(discs). Since (M&apos;, ôf) is a product, (M, y) has a sutured manifold hierarchy.

Now suppose that for some i^kll either |rt2/| W or \n2l-\\ \nk\.

Décompose (M, y) to (A/&quot;, &lt;5&quot;) where

(N&quot;, ô&quot;)
ffig. 6.10a if r±i
Ifig. 6.10b if r i

and

-, ô&quot;) n s3 - u b, (N, ô) n (s3 - U sy
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we again obtain (M&quot;, ô&quot;) (/ x /, 9J x /). Hence we hâve now obtained a second
sutured manifold hierarchy of (M, y). (Compare with previous paragraph.) If for
example, i 2, then we could hâve arranged the first term of each sutured
manifold hierarchy to involve decomposing along A (see figure 6.7b). We hâve
shown that by using distinct orientations on A the décompositions (*) yield taut
sutured manifolds (see 5.3 of [G5]). Since A n y #0, A is not a product annulus

so it follows by Corollary 2.7 that (M, y) is not a product sutured manifold,
hence L is not a fibred link with fibre S. Since S is a minimal genus surface for L,
L cannot fibre.

(M, Y)

y
(*) (M, y)

(M, Y)

We can now assume that L satisfies \nk\ &lt; \n,\ j&lt;k — \ and \nk\ ^ |/i*_i|. To
complète the proof of Theorem 6.7 we need to show that L fibres with fibre 5 if
|fl*|&lt;|/t*-il and does not fibre if |n*| |«*_i|. By using only C-product
décompositions, décompose (N, ô) to (N&apos;, ô&apos;) so that

(AT, ô&apos;) flfl, figure 6.10a if i&lt;k/2

and

*/2-l o\ / fc/2-1 o

y b&lt;

By performing |n*l (k/2 - 2) C-product décompositions in S3 - Bka to (N&apos;f ô&apos;) we
obtain the sutured manifold (N&quot;, ô&quot;) of figure 6.11 (hère k 6, n6 -4) which is

isotopic to the sutured manifold of figure 6.12. If |n*| |«*-i| then R(y&quot;) has 4

components, hence is not a product. Since S is a minimal genus surface, L does

not fibre. If nk^nk^u then (N&quot;, ô&quot;) has a C-product décomposition, hence L
fibres with fibre S.

§7. fibred links in gênerai 3-manifolds

In this chapter we continue to analyze the structure of knots whose fibres

décompose as nontrivial Murasugi sums. Our main resuit is Theorem 7.7. We will
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Figure 6.11

where

m
equals

|nk_1|=|nk|

Figure 6.12
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work in 3-manifolds which are not necessarily S3. For convenience of the reader
we will recall the appropriate définitions and results in this more gênerai setting.

DEFINITION 7.1. Lez H is a fibred link with fibre R in the closed oriented
3-manifold H if H - N(L) fibres over S1 with fibre R and dR D (each meridian of
L) 1 point.

Remark 7.2. Myers and Gonzales-Acuna (see [R]) showed that every closed
oriented 3-manifold M possesses a fibred knot. Harer [H] generalized this to

y 6 [tïi{M), 7t\{M)\ if and only if there exists a fibred knot k homotopic to y.

Le H3 is a fibred link with fibre R if and only if dR H (each meridian of
L) l point and ((H - N(L))-N(R), dN(L)-N(R)) is a product sutured
manifold. It follows that an appropriately stated version of Theorem 1.9 holds for
gênerai 3-manifolds and the methods of §2 and §3 can be used for deciding
whether or not a link fibres.

We show how to generalize the notion of Murasugi sum and hence Theorem
3.1 and Corollary 3.2 to gênerai 3-manifolds.

DEFINITION 7.3. Let R, czHt i 1, 2 be compact oriented surfaces in the
closed oriented 3-manifolds H,. Then /îc/Zj # H2 H is a Murasugi sum of Rt
and R2 if

H (Ht- Èx) y (H2 - 4), Bt 3 cell, S2 3B, 3B2

PICTURE. For a view of this situation consult figure 3.1a after relabelling as
follows. Replace Bx by Hx and B2 by H2.

The following resuit follows exactly as in the old and new proofs of
Theorem 3.1.

THEOREM 7.4. Let R cH Hx # H2 be a Murasugi sum of Rt c Hx and
R2 c H2 and let L dR, Lt dRJ 1,2. Le H is a fibred link with fibre R if and
only if for i 1,2 LtdHtis a fibred link with fibre Rr

The following very useful resuit proven (e.g., see [G3] or [M]) for links in S3

has been restated for closed oriented 3-manifolds. The proof follows exactly as

before. (Recall Remark 1.12.)



Detecting fibred links in S3 549

LEMMA 7.5. Let L be a fibred link in H HX# H2 with fibre R which is a

Murasugi sum of RrczHi and R2 c H2 where 9Rt L,. ///:Rl-*Rl représente the

monodromy of Lt and the + side of the summing dise points into (resp. out of) the

component of H - S2 containing Rly then the monodromy of L is represented by

f:R-»R where f=f2°f, (resp. frf2).

Remark 7.6. Abusing notation slightly, when we say f:R-*R is periodic,
reducible, or pseudo Anosov we mean the/is isotopic to such a map.

Recall that /:/?—»/? is reducible if there exists a set / cz R of pairwise disjoint
essential (Le., neither bounds a dise nor is boundary parallel) simple closed

curves and arcs such that /(/) is isotopic to /.
Let H be a 3-manifold with nonempty boundary which fibres over S1 with

monodromy/:/?-»/?, R=£D2, then Thurston [Tl], [T2] proves that/is pseudo
Anosov if and only if every incompressible torus and annulus is boundary parallel
if and only if H has a complète hyperbolic structure of finite volume.

THEOREM 7.7. Let Lx be a fibred link in S3 with fibre RXy let L2 be a fibred
link in the compact oriented 3-manifold H with fibre R2f let RczH S3 # H be a

Murasugi sum of Rx and R2 summed along a square (Le., R is a plumbing of Ri
and R2) and let L 9R.

One of the following must hold.

(A) Some Lt is a 2-bridge link in S3 (so ifi 2H S3).

(B) The monodromy of L is pseudo Anosov.
(C) The monodromy of L is reducible where one invariant set of reducing

curves is either contained in R2 — Rt or R1 — R2.

Remark. By considering the trefoil knot (resp. figure 8 knot), whose fibre is a

Murasugi sum of Hopf bands, one sees that possibility (A) (resp. (B)) can occur.
If L is a connected sum of two hyperbolic non two bridge knots, then (C) occurs.

Proof. By Thurston [Tl] there exists a g :R-*R such that g is isotopic to a

représentative of the monodromy of L and either (B) holds, or L is the unknot in
S3 and (A) holds, or there exists an essential set of g invariant simple closed

curves or arcs. (If g was periodic, then H - N(L) is Seifert fibred and the
intersection of an essential vertical annulus and R would be a set of reducing
curves.) Therefore if neither (B) nor (A) holds there exists either a torus T or an

annulus A which is incompressible and non boundary parallel in H - N(L).
Let S be the 2-sphere along which Rx and R2 were summed.

CASE 1. There exists a non boundary parallel incompressible torus T or
annulus A such that either
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Proof. Assume that we are dealing with an annulus, the other case is similar
and easier.

Since A H 5 0 each component of BA must be a meridian of N(L) and

A H /?, 0 (or A H #2 0) hence we can isotope ;4 so that A H 5 0, BA is

transverse to the fibres of the fibration ^, A is transverse to /?, and A is

transverse to &amp; except possibly at a finite set of points, where at a point of
tangency A looks like either a saddle or a hilltop with respect to 3F. Now apply
the isotopy theorem of [Ro] to isotope A to A&apos; rel 3.4 so that A&apos; is transverse to
3F. By considering Roussarie&apos;s proof we observe that the isotopy could hâve been

performed so that A&apos; H R &lt;= A (1R, so in particular A&apos; D /?, 0.
Now g is the return map of a vector field transverse to 3F. Since one can

homotope this vector field through non singular vector fields to one keeping A
invariant it follows that g(AHR) is isotopic to ADR, hence conclusion (C)
holds.

Now suppose that each essential torus or annulus intersects 5 nontrivially. We

now consider the case where there exists a non boundary parallel incompressible
torus T. Assume that T has been chosen to minimize the number of components
of intersection with S. By the usual dise swapping argument we can assume that
no component of T D S is a circle bounding a dise in S — N(L).

CASE 2. Some component of T — N{S) is a dise D.

No component of T - N(S) is a dise D with BD boundary parallel in S - N(L)
for this would imply that there exists a sphère in H intersecting L in one point,
contradicting the fact that L is homologically trivial.

Proof. We will assume that D is contained in the H factor of S3 # H for the

proof in the other case is similar. For / 1, 2 F} £; U D is a 2-sphere in H which
intersects L in 2-points, where Eu Ej are the dises in 5 which BD bounds. If some

Fj does not separate H, apply Case 1 to F} to conclude that conclusion (C) holds.

Now suppose that each F} séparâtes H. Let Cy be the component of H — N(F})
which does not contain S. First observe that F} — N(L) is an annulus A} which can
be extended to a torus T} 3(Cy — N(L)). By the isotopy resuit of [Ro] we can

assume that A} is transverse to 3F. Since 3N(L) is transverse to 3F we conclude
that Tj is transverse to 3F.

Let &lt;§ be the foliation on C} — N(L) obtained by restricting 3*. Each leaf of CS

is compact so by the Reeb stability Theorem [Re] C; — N(L) fibres over S1 with
fibre a leaf of CS. We conclude that either Cy — N(L) is a solid torus with each leaf
of ^ a dise or Tf is incompressible. The latter cannot hold else we would hâve

contradicted the minimality hypothesis on T.
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Now C} is obtained by attaching a 2-cell (a meridianal dise of L) to a solid
torus. Since each meridian intersects a fibre of ^ exactly once we conclude that C}

is a 3-cell and L fï C; is a boundary parallel arc. It follows that if each C} - N(L) is

a solid torus, then L; is a rational link since, except for 2 &quot;bridges&quot;, it can be

made to lie in a plane, hence Conclusion (A) holds.

CASE 3. Each component of T — N(S) is an annulus. By hypothesis one side

of S bounds a 3-cell C. A component E of T D C is an annulus which can be

extended to a torus T&apos; EUE&apos; where E&apos; is the annulus which dJ bounds in
S — L. (If dJ did not bound an annulus, then the minimality hypothesis on T 0 S

implies that T would hâve been boundary parallel.) T&apos; does not bound a solid
torus else one could isotope T to remove intersections with S. T&apos; could not be

incompressible for that would contradict the minimality of T. D

We now assume that there exist no essential ton. As before, let C be the
closure of a 3-cell component of H — S.

CASE 4A. A H 3N(L) are meridians.

Assume that A has been chosen to hâve fewest number of intersections with S

and dA c H — C. If a component of A H 5 bounds a dise in A, then Case 4A
would follow by arguing as in Case 2. If there exists an annular component E of
C C\A with 9E c: 5, then arguing as in Case 3 éliminâtes that possibility.

CASE 4B. A fl 3N(L) contains a non meridian.

No arc of S C\A is boundary parallel in A&gt; else either Lx is a 2-bridge link or
Lx is a non trivial connected sum and (C) holds. If some component of S C\A was

a circle a, then oc bounds a dise in A hence Case 4B would follow by arguing as in
Case 2.

We now assume that S HA is a union of arcs. A component D of C Pi A is a

square with 2 edges on L and 2 edges in 5. If D intersected a unique component
of L H C, A is boundary compressible. Boundary compressing A yields a properly
embedded dise EczH-N(L) whose boundary is inessential in 3iV(L). Since

H - N(L) is irreducible (it fibres over S1) it follows that £, hence A, is boundary
parallel.

Now assume that dD intersects distinct components of L H C dN(D) - N(S)
is an annulus D&apos; which can be extended to a torus r D&apos;UD&quot; where D&quot; is the

annulus in N(S)-L which dD&apos; bounds (figure 7.1). Since we assumed that no
essential torus exists and T is contained in a 3-cell C we conclude that CD L are
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Figure 7.1

2 unknotted arcs. It follows that Lx is a rational (or 2-bridge) link, hence

conclusion (A) holds.

The following resuit has been also proven (although not stated in this

generality) by Soma [So].

COROLLARY 7.8. Let H be a closed orientée 3-manifold. Then fie
[jti(H)t Jt\(H)] if and only ifthere exists afibred knot k c // in the homotopy class

ofp with pseudo Anosov monodromy, Le., k is a hyperbolic fibred knot.

Proof of &lt;=, k dR hence is a product of commutators.

Idea of Proof of =&gt;. Given p e [nx(H), Jti(H)] apply Harer&apos;s resuit to find a

reasonable fibred knot kx in H with fibre Rx homotopic to j3. Find a sufficiently
complicated (i.e., non 2-bridge) hyperbolic fibred knot k2 with fibre R2czS3. Let
R be a sufficiently complicated Murasugi sum of R} and R2. Finally k dR is the

desired knot.

Proof of =&gt;. If H S3, then the figure eight knot satisfies the conclusion of
the corollary. Now assume H¥=S3. By Harer [H] given any f}e[jvx(H), Jtx(H)]
one can find a fibred knot kx representing /?. Let Ri be the fibre of k with

monodromy/:i?!-&gt;/?!• By [Tl]/is isotopic to g where there exists a set J czR, of

g invariant simple closed curves and arcs such that RX-J XKJY where g\X is

pseudo Anosov and g\Y is periodic. By first, if necessary, doing a connected sum
of ki and a hyperbolic fibred knot (e.g., figure eight) we can assume that
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By [Tl] every component of X has négative Euler characteristic and each set of
pairwise disjoint arcs or simple closed curves invariant (up to isotopy) by g can be

isotoped off of X.
Let Xx be a non boundary parallel properly embedded arc in Rx such that

RX-(XU N(k\)) is a union of dises and each component of Xx n X is an essential

arc in X.
Let k2 &lt;= S3 be a fibred knot with fibre R2 such that k2 is not a 2-bridge knot

and the monodromy of k2 is pseudo Anosov. For example, the pretzel knot

(5,-5,5,-4) fibres by §6, is not 2-bridge by [B] and has no essential tori or
annuli in its complément by [O]. Let Â2 c R2 be a non boundary parallel properly
embedded arc.

Let R c H S3 # H be the surface obtained by Murasugi summing Rx and R2

along the squares N(kx) &lt;= Rx and N(X2) c Ri- By Theorem 7.4 k dR is a fibred
knot in H with fibre R. k is clearly homotopic to j8. By construction and Theorem
7.7 it follows that the monodromy of k préserves no set of essential arcs or circles.

It now follows by [Tl] that the monodromy/of k is pseudo Anosov. (If/was
periodic, then H - N(k) is Seifert fibred, and the intersection of an essential

vertical annulus and R would be a set of reducing curves.)

§8. A conjecture

CONJECTURE 8.1. If A: is a non trivial atoroidal fibred knot in S3 with fibre

R, then R is a non trivial Murasugi sum.

EVIDENCE 8.2. This dubious sounding conjecture is true for alternating
knots, torus knots, knots of &lt;10 crossings and pretzel knots. (The conjecture
clearly holds for fibred pretzel knots bounding type I, type II surfaces. It is a good
exercise to show that a fibre constructed as in figure 6.7 is a non trivial Murasugi
sum.)

n ±0, ±2,

Figure 8.1
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Remark 8.3. The conjecture is false for links. For example a surface T in
figure 8.1 with n #0 is not a Murasugi sum. A link L bounding a thrice punctured
sphère S is not prime if 5 is a Murasugi sum. By [O], dT is prime.

The conjecture is false for knots if one drops the toroidal hypothesis.
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