On simple fibered knots in S 5 and the existence of decomposable algebraic 3 -knots.

Autor(en): Saeki, Osamu
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 62 (1987)

PDF erstellt am: $\quad 10.07 .2024$
Persistenter Link: https://doi.org/10.5169/seals-47363

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On simple fibered knots in S^{5} and the existence of decomposable algebraic 3-knots

Osamu Saeki

§1. Introduction

Let f be an analytic function on some neighborhood of the origin 0 in \mathbb{C}^{n+1} such that $f(0)=0$. Suppose that f has an isolated critical point at the origin. The algebraic knot associated with f is the isotopy class of the codimension 2 smooth closed oriented submanifold of $S_{\varepsilon}^{2 n+1}$ given by $f^{-1}(0) \cap S_{\varepsilon}^{2 n+1}$ for $\varepsilon>0$ sufficiently small. (As a general reference for this see [20].) More generally, a ($2 n-1$)-knot in the sphere $S^{2 n+1}$ is the isotopy class of a codimension 2 smooth closed oriented submanifold of $S^{2 n+1}$. We say that a knot is decomposable if it is the connected sum of two non-trivial knots.

In the case of classical knots ($n=1$), algebraic 1-knots are always indecomposable by a theorem of H. Schubert [26]. A. Durfee asks whether an algebraic knot is always indecomposable ([6, Problem 4]). In 1982, F. Michel and C. Weber showed that for any $n \geqq 3$ there exist decomposable algebraic ($2 n-1$)-knots in $S^{2 n+1}$ ([19]). This result is obtained by using the classification theorem of simple fibered knots by their Seifert matrices ([5], [10]). However, for $n=2$ this classification breaks down and the problem above has been open until now. The main purpose of this paper is to prove the existence of infinitely many algebraic 3-knots which are the connected sum of two non-trivial simple fibered 3-knots (§5).

We also prove that for a given closed orientable 3-manifold K there exists a simple fibered knot (S^{5}, K^{\prime}) such that K^{\prime} is diffeomorphic to K (§6).

Throughout the paper, all manifolds and maps are C^{∞}, the symbol \approx denotes diffeomorphism between manifolds, and the symbol \simeq denotes congruence over \mathbb{Z} between integral square matrices.

The author would like to express his sincere gratitude to Professor Y. Matsumoto for his constant encouragement. He also wishes to express his appreciation to the referee for giving invaluable advice.

§2. Preliminaries

In this section we recall the definitions of simple fibered knots and their Seifert matrices.

DEFINITION 2.1. A fibered knot is a knot (S^{m}, K^{m-2}) together with a smooth fiber bundle $\phi: S^{m}-K \rightarrow S^{1}$ that has the following property:

There exist a tubular neighborhood T of K and a bundle equivalence α of T to the trivial bundle $K \times D^{2}$ so that the diagram commutes, where p is the obvious

$$
T-K \xrightarrow[\phi(T-K)]{\substack{\alpha(T-K)}} K \times\left(D^{2}-\{0\}\right)
$$

projection. In other words, K is the binding of an open book decomposition of S^{m}.

DEFINITION 2.2. A fibered $\operatorname{knot}\left(S^{2 n+1}, K^{2 n-1}\right)(n \geqq 1)$ is simple if the manifold K is $(n-2)$-connected and the fiber of ϕ is $(n-1)$-connected.

Set $F=\phi^{-1}(1)-$ Int T. Then if $n \geqq 3$, the above condition is equivalent to that F has a handlebody decomposition consisting of one 0 -handle and some n-handles which are attached to the 0 -handle simultaneously. In this case we say that F has a special handlebody decomposition.

Remark 2.3. An algebraic knot is always a simple fibered knot ([20]). Furthermore, even when $n=2, F$ has a special handlebody decomposition ([16]).

Let ($S^{2 n+1}, K^{2 n-1}$) be a simple fibered knot. For $\theta \in \mathbb{R}$, let $F_{\theta}=\phi^{-1}\left(e^{i \theta}\right)-$ Int T. Then we have the homology isomorphism $h_{\theta}: H_{n}(F) \rightarrow H_{n}\left(F_{\theta}\right)$ induced by the path $\omega: I \rightarrow S^{1}$ defined by $\omega(t)=e^{i \theta t}$, where $I=[0,1]$. (We always assume that the homology is with integer coefficient, unless otherwise indicated.)

DEFINITION 2.4. The Seifert form of a simple fibered $\operatorname{knot}\left(S^{2 n+1}, K^{2 n-1}\right)$ is the bilinear form $\Gamma: H_{n}(F) \times H_{n}(F) \rightarrow \mathbb{Z}$ defined by $\Gamma(x, y)=\operatorname{link}\left(h_{n} x, y\right)$ where link $\left(h_{\pi} x, y\right)$ is the linking number of $h_{\pi} x$ and y in $S^{2 n+1}$.

When we fix a basis $\left\{a_{i}\right\}$ of $H_{n}(F)$, we can identify Γ with the square matrix $L=\left(\Gamma\left(a_{i}, a_{j}\right)\right)$. We call L a Seifert matrix. By the Alexander duality, we see easily that L is always unimodular.

For $n \geqq 3$, one has the following classification theorem.

THEOREM A ([5], [10]). For $n \geqq 3$, the map
$\Phi_{n}:\left\{\begin{array}{l}\text { isotopy classes of } \\ \text { simple fibered }(2 n-1)- \\ \text { knots in } S^{2 n+1}\end{array}\right\} \rightarrow\left\{\begin{array}{l}\text { congruence classes of } \\ \text { integral unimodular } \\ \text { matrices }\end{array}\right\}$
which associates with each knot its Seifert matrix is well-defined and bijective.
For $n=2, \Phi_{2}$ is still well-defined. (For example, consider the 2 -fold cyclic suspension of knots. For details see [22].) However, we shall see in $\S 3$ that Φ_{2} is not injective. We do not know whether Φ_{2} is surjective or not.

§3. Constructing simple fibered 3-knots

We first describe how to construct simple fibered knots. Our method is the open book construction.

Let $F^{2 n}$ be an $(n-1)$-connected compact smooth $2 n$-manifold with boundary $\partial F=K^{2 n-1}(n-2)$-connected ($n \geqq 2$). Let $h: F \rightarrow F$ be a diffeomorphism which is the identity map on the boundary. Then we define $N_{h}=\left(K \times D^{2}\right) \bigcup_{\varphi} E$ where

$$
E=F \times I /(h(x), 0) \sim(x, 1)
$$

and

$$
\varphi: \partial E=\partial F \times I /(x, 0) \sim(x, 1) \rightarrow \partial\left(K \times D^{2}\right)=K \times S^{1}
$$

is the map defined by $\varphi(x, t)=\left(x, e^{2 \pi i t}\right)$. It is easy to check that N_{h} is a smooth closed 1-connected ($2 n+1$)-manifold. If $N_{h} \approx S^{2 n+1}$, then of course ($N_{h}, K \times\{0\}$) is a simple fibered knot.

DEFINITION 3.1. The variation map of h is the homomorphism $\Delta_{h}: H_{n}(F, \partial F) \rightarrow H_{n}(F)$ induced by $\left(i d_{F}\right)_{*}-h_{*}$. (Note that $h \mid \partial F=i d_{\partial F}$.)

We recall the following lemma of L. Kauffman ([11]).
LEMMA B. If $n \geqq 2$, then N_{h} is a homotopy sphere if and only if Δ_{h} is an isomorphism.

From now on we shall confine ourselves to simple fibered 3-knots in S^{5}. Our aim in this section is to realize certain Seifert forms by simple fibered 3-knots.

Let

$$
E_{8}=\left(\begin{array}{llllllll}
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 2
\end{array}\right) \text { and } U=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

both of which are integral unimodular symmetric matrices. Our first result is the following.

THEOREM 3.2. Let L be an integral unimodular matrix such that $L+{ }^{t} L \simeq$ $\alpha E_{8} \oplus \beta U$ where α is even and $\beta \geqq \frac{3}{2}|\alpha|+1$. (' L is the transposed matrix of L.) Then there exists a simple fibered 3-knot $\left(S^{5}, K\right)$ such that its Seifert matrix is L and $K \approx S^{3}$.

Proof. Let $\alpha^{\prime}=\alpha / 2, \beta^{\prime}=\beta-3\left|\alpha^{\prime}\right|$ and $Y=-\alpha^{\prime} V_{4} \# \beta^{\prime}\left(S^{2} \times S^{2}\right)$ where V_{4} is diffeomorphic to a non-singular hypersurface of degree 4 in $\mathbb{C} P_{3}$ (see [18, pp. 23-24 and p. 33]). Let $F=Y^{\circ}\left(=Y-\operatorname{Int} D^{4}\right)$. It is well-known that V_{4} and $S^{2} \times S^{2}$ have intersection matrices $-2 E_{8} \oplus 3 U$ and U respectively. Therefore F has $\alpha E_{8} \oplus \beta U\left(\simeq L+{ }^{t} L\right)$ as its intersection matrix.

Now set $H=-L^{-1} \cdot{ }^{t} L$, then H is unimodular and ${ }^{t} H\left(L+{ }^{t} L\right) H$ is equal to $L+{ }^{t} L$. Thus H is the matrix of an isometry of $H_{2}(F)$. The hypothesis on α and β implies that at least one $S^{2} \times S^{2}$ is present. Thus, by [29] there exists a self-diffeomorphism h of F which induces H. Furthermore we may assume that $h \dagger \partial F=i d_{\partial F}$.

Since $\partial F \approx S^{3}, i_{*}: H_{2}(F) \rightarrow H_{2}(F, \partial F)$ is an isomorphism where i is the inclusion map. Hence, the variation map $\Delta_{h}: H_{2}(F, \partial F) \rightarrow H_{2}(F)$ is an isomorphism. By Lemma B, $N_{h}=\left(\partial F \times D^{2}\right) \cup E$ is a homotopy 5 -sphere, so that $N_{h} \approx S^{5}$. Therefore ($N_{h}, \partial F \times\{0\}$) is a simple fibered knot.

If we let L_{1} be the Seifert matrix of ($N_{h}, \partial F \times\{0\}$), then $L+{ }^{t} L=L_{1}(I-H)$ by [5, p. 52], where I is the unit matrix. This implies that $L_{1}=L$. This completes the proof.

Before stating the next theorem, we introduce some notations concerning framed links in S^{3} (see [13]). Let λ be a framed link in S^{3}, then M_{λ} denotes the 4 -manifold obtained by adding 2-handles to the 4 -ball D^{4} along the components of λ using their framings, and ∂M_{λ} denotes the boundary 3 -manifold of M_{λ}.

By the argument given in the proof of Theorem 3.2, we can prove the following theorem.

THEOREM 3.3. Let L be an integral unimodular matrix such that $L+{ }^{t} L \simeq$ $\alpha E_{8} \oplus \beta U$ where α and β satisfy one of the following conditions:

1) $\alpha=0$
2) $|\alpha|=1$ and $\beta \geqq 1$
3) $|\alpha| \geqq 2$ and $\beta \geqq 2$.

Furthermore suppose that there exists a framed link λ in S^{3} such that the linking matrix of λ is congruent to $L+{ }^{t} L$ over \mathbb{Z} and such that λ has at least one ${ }^{0}()^{0}$ separated from other components by an embedded 2 -sphere. Then there exists a simple fibered 3-knot $\left(S^{5}, K\right)$ whose Seifert matrix is L and such that $K \approx \partial M_{\lambda}$.

Remark 3.4. Our method can be used to give another proof of the 4-dimensional embedding theorem of Cappell-Shaneson ([4, Theorems 1 and 2]) in the simply connected case.

We now give an example showing that the map Φ_{2} defined in Theorem A is not injective. Let $L=2 L_{1} \oplus 2 L_{2}$ where

$$
L_{1}=\left(\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \text { and } L_{2}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right),
$$

then L satisfies the condition of Theorem 3.2. Thus there exists a simple fibered 3-knot (S^{5}, K_{1}) whose Seifert matrix is L and such that $K_{1} \approx S^{3}$. Furthermore define the framed link λ in S^{3} as in Figure 1. $\left(\partial M_{\lambda} \approx 2 \Sigma(2,3,5)\right.$ where $\Sigma(2,3,5)$ is the dodecahedral space.) Then L and λ satisfy the condition of Theorem 3.3.

$\lambda:$

Fig. 1
Thus there exists a simple fibered 3-knot (S^{5}, K_{2}) whose Seifert matrix is L and such that $\pi_{1}\left(K_{2}\right) \neq 1$. The 3 -manifolds K_{1} and K_{2} do not have the same homotopy type; hence the corresponding knots cannot be isotopic. Therefore the map Φ_{2} in $\S 2$ is not injective.

Remember that in higher dimensions the diffeomorphism type of a simple fibered knot is determined by its Seifert matrix; in fact the isotopy type is determined.

84. When are two simple fibered 3-knots isotopic?

In this section we consider simple fibered 3-knots which are homology 3 -spheres. For these knots diffeomorphism types and Seifert matrices are complete invariants. More precisely we can prove the following theorem.

THEOREM 4.1. Let $\left(S^{5}, K_{i}\right)$ be two simple fibered 3-knots with Seifert matrices L_{i} respectively $(i=1,2)$. Suppose that K_{i} are homology 3-spheres, $K_{1} \approx K_{2}$, and $L_{1} \simeq L_{2}$. Then $\left(S^{5}, K_{1}\right)$ is isotopic to $\left(S^{5}, K_{2}\right)$ as a knot.

Remark 4.2. In higher dimensions, isotopic simple fibered knots have the same fibering structure ([5]). However we do not know whether this is also true for simple fibered 3-knots.

To prove Theorem 4.1, we need the following lemmas.
LEMMA C. Let $F_{i}(i=1,2)$ be compact 1-connected oriented spin 4-manifolds with boundaries $\partial F_{1} \approx \partial F_{2}$. Suppose that $\partial F_{1} \approx \partial F_{2}$ is connected, that $H^{1}\left(\partial F_{i}\right.$;
$\mathbb{Z} / 2 \mathbb{Z})=0(i=1,2)$, and that the signature of F_{1} is equal to that of F_{2}. Then $F_{1} \# k\left(S^{2} \times S^{2}\right) \approx F_{2} \# k^{\prime}\left(S^{2} \times S^{2}\right)$ for some non-negative integers k and k^{\prime}.

Lemma C was essentially proved by R. Kirby. See [13, Remark 3].
LEMMA 4.3. Let F be a compact 1-connected spin 4-manifold with boundary $\partial F a$ (connected) homology 3-sphere. Then $F \# k\left(S^{2} \times S^{2}\right)$ has a special handlebody decomposition for some non-negative integer k.

Proof. By [9] there exists a framed link λ in S^{3} with $\partial M_{\lambda} \approx \partial F$ such that all the framings of λ are even. Set $W=F \cup\left(-M_{\lambda}\right)$ identified along $\partial F \approx \partial M_{\lambda}$. Then W is a closed oriented 1-connected spin 4-manifold, so that the signature of W is a multiple of 16 by Rohlin's theorem. Since $\sigma(W)=\sigma(F)-\sigma\left(M_{\lambda}\right)(\sigma$ denotes the signature), we can change λ so that $\sigma(F)=\sigma\left(M_{\lambda}\right)$ and that $\partial M_{\lambda} \approx \partial F$ by adding a number of copies of λ_{1} or λ_{2} where λ_{i} are framed links in S^{3} with $\partial M_{\lambda_{i}} \approx S^{3}$ such that $\sigma\left(M_{\lambda_{1}}\right)=16$ and $\sigma\left(M_{\lambda_{2}}\right)=-16$ (see [9, Th 3.3], [18, p. 66]). Then by Lemma C, $F \# k\left(S^{2} \times S^{2}\right) \approx M_{\lambda} \# k^{\prime}\left(S^{2} \times S^{2}\right)$ for some k and k^{\prime}. Clearly $M_{\lambda} \# k^{\prime}\left(S^{2} \times S^{2}\right)$ has a special handlebody decomposition. This completes the proof of Lemma 4.3.

Using these lemmas, one can prove Theorem 4.1 by the same argument as in [17, pp. 192-194].

Remark 4.4. By Theorem 4.1, simple fibered 3-knots in S^{5}, diffeomorphic to a given homology 3 -sphere, are isotopic if and only if their Seifert matrices are congruent. If the homology 3 -sphere is S^{3}, this result goes back to J. Levine [17].

§5. Proof of the main result

Let $g(x, y)$ be the same polynomial $y^{4}-2 x^{3} y^{2}-4 x^{5} y+x^{6}-x^{7}$ as in $\S 4$ of [19]. We define the polynomial $f_{r}(x, y, z)$ by $f_{r}(x, y, z)=g(x, y)+z^{r}$, where $r \geqq 2$ is an integer. The purpose of this section is to prove the following theorem.

THEOREM 5.1. The algebraic 3-knot associated with f_{r} is decomposable for $r \equiv 5(\bmod 78)$. In fact it is the connected sum of two non-trivial simple fibered 3-knots.

Remark 5.2. By [1, p. 155], each eigenvalue of the monodromy for $g(x, y)$ is a 156 -th root of unity. Since the monodromy for $f_{r}(x, y, z)$ is the tensor product of those for $g(x, y)$ and for z^{r}, its eigenvalues are products of those for $g(x, y)$ and for z^{r}. Thus if r is prime to 156 , each eigenvalue for f_{r} is of composite order. By
results on cyclotomic polynomials, one obtains $\Delta_{f}(1)=1$, where $\Delta_{f}(t)$ is the characteristic polynomial of the monodromy for $f=f_{r}$. This implies that the algebraic knot associated with f_{r} is a homology 3 -sphere.

Remark 5.3. The condition $r \equiv 5(\bmod 78)$ does not seem to be essential. Possibly the algebraic knot associated with f_{r} will be decomposable for any r prime to 156.

Proof of Theorem 5.1. First we calculate the Seifert matrix of the algebraic 1 -knot l associated with g. The Puiseux expansion of g at the origin is $y=x^{3 / 2}+x^{7 / 4}$. Therefore l is the $\{(3,2),(13,2)\}$-iterated torus knot (for example see [1]). If we let A, B_{1} be the Seifert matrices of the (13,2)-torus knot and the (3,2)-torus knot respectively, then A is the 12×12 matrix given by

$$
\left(\begin{array}{rrrrr}
-1 & 1 & & & 0 \\
& -1 & 1 & \ddots & \\
& & -1 & \cdot & 1 \\
0 & & & \ddots & -1
\end{array}\right) \text { and } \quad B_{1}=\left(\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

(for example see [25]).
By [28] the Seifert matrix L_{1} of l is the 16×16 matrix given by

$$
L_{1}=\left(\begin{array}{ccc}
B_{1} & B_{1} & 0 \\
B_{1} & B_{1} & 0 \\
0 & 0 & A
\end{array}\right)
$$

Let

$$
B=\left(\begin{array}{cc}
B_{1} & { }^{t} B_{1} \\
B_{1} & B_{1}
\end{array}\right)
$$

then we have $L_{1}=B \oplus A$.
Now let L be the Seifert matrix of the algebraic knot (S^{5}, K_{f}) associated with $f=f_{r}$. By [25] we have $L=L_{1} \otimes C_{r}=\left(B \otimes C_{r}\right) \oplus\left(A \otimes C_{r}\right)$ where C_{r} is the $(r-1) \times(r-1)$ matrix given by

$$
C_{r}=\left(\begin{array}{rrrr}
1 & -1 & & \\
& 1 & -1 \cdot & 0 \\
& & 1 & \ddots
\end{array}\right)
$$

Let $D=A \otimes C_{r}$ and $E=B \otimes C_{r}$, so that $L=E \oplus D$.

We want to realize D and E as Seifert matrices of simple fibered 3-knots. In order to use Theorems 3.2 and 3.3 , we must calculate the signatures of $D+{ }^{t} D$ and $E+{ }^{t} E$. Note that $L+{ }^{t} L$ is unimodular by Remark 5.2 , so that $D+{ }^{t} D$ and $E+{ }^{t} E$ are also unimodular. Let $r=78 q+5(q \geqq 0)$.
(1) The signature σ_{D} of $D+{ }^{t} D$.

By [25] we see that $D=A \otimes C_{r}$ is the Seifert matrix of the algebraic 3-knot associated with $x^{2}+y^{13}+z^{r}$. By [3], $\sigma_{D}=\sigma_{D+}-\sigma_{D-}$, where

$$
\begin{aligned}
\sigma_{D+}= & \text { number of triples }(i, j, k) \text { of integers, } 0<i<2,0<j<13,0<k<r \\
& \text { such that } 0<i / 2+j / 13+k / r<1 \bmod 2
\end{aligned}
$$

and
$\sigma_{D-}=$ number of triples such that $-1<i / 2+j / 13+k / r<0 \bmod 2$.
By a direct computation, we see that the number of integers k with $0<k<r$ and $0<\frac{1}{2}+j / 13+k / r<1 \bmod 2$ is $[(|13-2 j| / 26) \cdot r]$ for each $j(j=1,2, \ldots, 12)$. Hence,

$$
\sigma_{D+}=\sum_{j=1}^{12}\left[\frac{|13-2 j|}{26} \cdot r\right]=216 q+8 .
$$

Thus,

$$
\sigma_{D}=\sigma_{D+}-\sigma_{D-}=\sigma_{D+}-\left(12(r-1)-\sigma_{D+}\right)=-504 q-32 .
$$

Since $D+{ }^{t} D$ is a symmetric unimodular matrix of type II and of rank $12(78 q+4), D+{ }^{t} D \simeq-(63 q+4) E_{8} \oplus(216 q+8) U$ by Serre's theorem ([27, p. 93]).
(2) The signature σ_{L} of $L+{ }^{t} L$.

We compute the signature σ_{L} of $L+{ }^{t} L$ using the formula of A. Durfee [7].
Let $V=f^{-1}(0) \cap D_{\varepsilon}^{6}$ for $\varepsilon>0$ sufficiently small. There exists a minimal good resolution $\pi: \tilde{V} \rightarrow V$ of V at the origin $0 \in V$. (As a general reference for this see [14].) Let $E=\pi^{-1}(0)$ be the exceptional locus, which is described by the dual graph as in Figure $2(q \geqq 2)$. Each vertex represents a non-singular rational curve, the number attached is the Chern class of the normal bundle to that curve, and two vertices are joined if the corresponding curves intersect. Thus the number of vertices $s=4 q+16$ and $h=\operatorname{rank} H_{1}(E)=0$. Next let $K \in H_{2}(\tilde{V} ; \mathbb{Q})$ be the canonical class (for the definition see [7]). Using the adjunction formula [7, Lemma 1.4], we see that the self-intersection number K^{2} of K is $-676 q-24$. Since the Milnor number μ of V at the origin is $16(78 q+4)$, we obtain $\sigma_{L}=-\frac{1}{3} \cdot\left(2 \mu+K^{2}+s+2 h\right)=-608 q-40$ by the formula of [7]. By similar arguments we see that this equality is also valid for $q=0,1$.

Fig. 2
(3) The signature σ_{E} of $E+{ }^{t} E$.

Since $L=E \oplus D, \sigma_{L}=\sigma_{E}+\sigma_{D}$. Thus $\sigma_{E}=\sigma_{L}-\sigma_{D}=-104 q-8$. By Serre's theorem $E+{ }^{t} E \simeq-(13 q+1) E_{8} \oplus(104 q+4) U$.

Next we find a framed link λ_{1} in S^{3} such that every framing of λ_{1} is even and $\partial M_{\lambda_{1}} \approx K_{f}$.

LEMMA 5.4. There exists a framed link λ_{1} in S^{3} which has the following properties.
(1) $\partial M_{\lambda_{1}} \approx K_{f}$.
(2) Let Q be the linking matrix of λ_{1}. Then,

$$
Q \simeq\left\{\begin{array}{r}
-E_{8} \oplus(4 q+7) U \text { if } q \text { is even }(q \geqq 2) \\
E_{8} \oplus(4 q+15) U \text { if } q \text { is odd }(q \geqq 3) .
\end{array}\right.
$$

Proof. We consider the case of q even. The case of q odd can be handled similarly:

Let λ_{1}^{\prime} be the framed link in S^{3} induced by the resolution diagrm (Figure 2). The characteristic sublink of λ_{1}^{\prime} (for the definition see [9, p. 240]) is described in Figure 3.

Using the framed link calculus of Kirby [13], we can change λ_{1}^{\prime}, without changing $\boldsymbol{M}_{\lambda_{i}^{\prime}}$, so that its characteristic sublink κ consists of one unknotted component with framing $-4 q-8$. Then by [9 , Th 4.2], we can find a framed link λ_{1} with $\partial M_{\lambda_{1}} \approx \partial M_{\lambda_{i}^{\prime}}, \quad \operatorname{rank} H_{2}\left(M_{\lambda_{1}}\right)=\operatorname{rank} H_{2}\left(M_{\lambda_{1}^{\prime}}\right)+||-4 q-8|-1|-1=8 q+$ 22, and $\sigma\left(M_{\lambda_{1}}\right)=\sigma\left(M_{\lambda_{j}}\right)-(-4 q-8)$. (Note that the characteristic sublink κ is an unknotted circle.) Since λ_{1}^{\prime} is induced by the resolution diagram of a normal surface singularity, its linking matrix is negative definite ([21]). Hence, $\sigma\left(M_{\lambda_{1}}\right)=$

The characteristic sublink of X_{1} consists of all the components of the form E.

Fig. 3
-8 . Thus the linking matrix Q of λ_{1} is congruent to $-E_{8} \oplus(4 q+7) U$ by Serre's theorem. This completes the proof of Lemma 5.4.

Next we realize D and E as Seifert matrices.
Case I. q is even ($q \geqq 2$).
By (1) $D+{ }^{t} D \simeq-(63 q+4) E_{8} \oplus(216 q+8) U$. Thus D satisfies the hypothesis of Theorem 3.2. Therefore there exists a simple fibered 3-knot (S^{5}, K_{D}) such that its Seifert matrix is D and $K_{D} \approx S^{3}$.

Next we consider E. By (3) $E+{ }^{t} E \simeq-(13 q+1) E_{8} \oplus(104 q+4) U$. On the other hand, the framed link λ_{1} of Lemma 5.4 has linking matrix congruent to $-E_{8} \oplus(4 q+7) U$. To change this matrix to $-(13 q+1) E_{8} \oplus(104 q+4) U$, we must add $-13 q E_{8} \oplus(100 q-3) U$. Since $100 q-3>\frac{3}{2} \cdot 13 q$, this can be done geometrically by adding to λ_{1} a number of copies of λ_{2} and λ_{3} where λ_{2} is Kaplan's framed link (see [9, Th 3.3], [18, p. 66]) which has 22 components and linking matrix congruent to $-2 E_{8} \oplus 3 U$ and λ_{3} is ${ }^{0}()^{0}$. The resulting framed link λ and the unimodular matrix E satisfy the hypothesis of Theorem 3.3. Thus there exists a simple fibered 3-knot $\left(S^{5}, K_{E}\right)$ such that its Seifert matrix is E and $K_{E} \approx \partial M_{\lambda} \approx \partial M_{\lambda_{1}} \approx K_{f}$.

Case II. q is odd ($q \geqq 3$).
By a similar argument, we can show that there exist simple fibered 3 -knots (S^{5}, K_{D}), (S^{5}, K_{E}) whose Seifert matrices are D and E respectively and such that $K_{D} \approx K_{f}$ and $K_{E} \approx S^{3}$.

Thus the connected sum $\left(S^{5}, K_{D}\right) \#\left(S^{5}, K_{E}\right)$ is a simple fibered 3 -knot whose Seifert matrix is $D \oplus E(\simeq L)$ and such that $K_{D} \# K_{E} \approx K_{f}$. Therefore by Theorem 4.1, the algebraic knot (S^{5}, K_{f}) is isotopic to (S^{5}, K_{D}) \# (S^{5}, K_{E}).

For $q=0,1$, similar arguments can be used. This completes the proof of Theorem 5.1.

Remark 5.5. Due to a theorem of N. A'Campo, an algebraic knot cannot be a connected sum of two non-trivial algebraic knots ([2]). In the above example, when q is even, the $\operatorname{knot}\left(S^{5}, K_{E}\right)$ is not algebraic because the trace of its monodromy is zero. (For a non-trivial algebraic knot, the trace of its monodromy is ± 1. See [2].) The $\operatorname{knot}\left(S^{5}, K_{D}\right)$ is not algebraic, either, because it is non-trivial and $K_{D} \approx S^{3}$ (see [21]). When q is odd, we do not know whether the knot (S^{5}, K_{D}) is algebraic or not.

Remark 5.6. Let (S^{5}, K) be an algebraic 3 -knot. Then by W. Neumann, K is always irreducible as a 3-manifold (see [23], [8]). Hence, if an algebraic 3-knot is a non-trivial connected sum, one of the summands must be a spherical knot.

§6. Every 3-manifold is the binding of an open book decomposition of S^{5}

In this section we shall prove the following theorem.
THEOREM 6.1. Let K be a closed orientable (connected) 3-manifold. Then there exists an embedding $\psi: K \rightarrow S^{5}$ such that $\left(S^{5}, \psi(K)\right)$ is a simple fibered 3-knot. (Moreover the fiber of this fibered knot has a special handlebody decomposition.)

This theorem is motivated by the problem of characterizing diffeomorphism types of algebraic 3 -knots (see [6]). In view of the above theorem, we cannot restrict such diffeomorphism types only by the fact that algebraic knots are fibered.

Proof of Theorem 6.1. For K as above, there exists a framed link λ in S^{3} with $\partial M_{\lambda} \approx K$ such that all the framings of λ are even (see [9]). Let Q be the linking matrix of λ. We need the following lemma.

LEMMA 6.2. There exist a non-negative integer k and an integral unimodular matrix L such that $Q \oplus k U \simeq L+{ }^{t} L$.

Proof. Let n be the size of Q. Then

where X_{i} is an $n \times 2$ matrix given by

$$
X_{i}=\left(\begin{array}{cc}
0 & 0 \\
\vdots & \vdots \\
0 & 1 \\
\vdots & \vdots \\
0 & 0
\end{array}\right) \leftarrow i \text {-th row }
$$

and $Y_{i}={ }^{t} X_{i}$ for $i=1,2, \ldots, n$. Set

$$
L=\left(\begin{array}{cccccc}
R & X_{1} & O & X_{2} & O & \cdots X_{n} \\
O & S & & O \\
Y_{1} & S & & & \\
O & & & & \\
Y_{2} & & S & & \\
\vdots & & & \ddots & \\
. & \bigcap & & & \\
O & \ddots & & & S
\end{array}\right) \text { where } S=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and R is an $n \times n$ matrix with $R+{ }^{t} R=Q$. Then $L+{ }^{t} L \simeq Q \oplus 2 n U$ and L is easily seen to be unimodular. This completes the proof of Lemma 6.2.

Adding a number of copies of ${ }^{0} \bigcirc^{0}$ to λ, we may assume that $Q=L+{ }^{t} L$ for some unimodular matrix L and $\partial M_{\lambda} \approx K$. Then using the argument of M. Kervaire ($\left[12\right.$, II.6]), we can embed M_{λ} in S^{5} so that its Seifert matrix is L.

Let T be a tubular neighborhood of ∂M_{λ} in S^{5} and let V be the manifold which is given by S^{5} - Int T cut along M_{λ}. Since L is unimodular, V is an h-cobordism with boundary. By work of F. Quinn [24] and T. Lawson [15], for some non-negative integer k, there exists a diffeomorphism between $V \#_{c} k\left(S^{2} \times S^{2} \times\right.$ $I)$ and $\left(M_{\lambda} \# k\left(S^{2} \times S^{2}\right)\right) \times I$ which extends the product structure on the boundary, where $\#_{c}$ denotes connected sum along the cobordism (see also [18, Th 6.22]).

In fact there exists a simple fibered 3-knot $\left(S^{5}, K_{0}\right)$ whose fiber is diffeomorphic to $\left(S^{2} \times S^{2} \# S^{2} \times S^{2}\right)^{\circ}$ and such that $K_{0} \approx S^{3}$ by Theorem 3.2. (For example its Seifert matrix is

$$
\left.\left(\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right) .\right)
$$

Thus for some $k^{\prime},\left(S^{5}, \partial M_{\lambda}\right) \# k^{\prime}\left(S^{5}, K_{0}\right)$ is a simple fibered 3-knot. Since $K_{0} \approx S^{3}, \partial M_{\lambda} \# k^{\prime} K_{0} \approx \partial M_{\lambda} \approx K$. This completes the proof.

REFERENCES

[1] N. A'Campo, Sur la monodromie des singularités isolées d'hypersurfaces complexes, Invent. Math. 20 (1973), 147-169.
[2] - Le nombre de Lefschetz d'une monodromie, Indag. Math. 35 (1973), 113-118.
[3] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966), 1-14.
[4] S. Cappell and J. Shaneson, Embeddings and immersions of four-dimensional manifolds in \mathbb{R}^{6}, Geometric Top. Proc. of the 1977 Georgia Top. Conf., Academic Press, New York (1979), 301-305.
[5] A. Durfee, Fibered knots and algebraic singularities, Topology 13 (1974), 47-59.
[6] -, Knot invariants of singularities, Algebraic Geometry (Arcata, 1974, Proc. Sympos. Pure Math., 29, Amer. Math. Soc., Providence, R.I.) 1975, 441-448.
[7] -, The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978), 85-98.
[8] -, The low dimensional topology of singularities, Singularities (Arcata, 1983, Proc. Sympos. Pure Math., 40-Part 1, Amer. Math. Soc., Providence, R.I.) 1983, 321-326.
[9] S. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979), 237-263.
[10] M. Kato, A classification of simple spinnable structures on a 1-connected Alexander manifold, J. Math. Soc. Japan 26 (1974), 454-463.
[11] L. Kauffman, Branched coverings, open books and knot periodicity, Topology 13 (1974), 143-160.
[12] M. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271.
[13] R. Kirby, A calculus for framed links in S^{3}, Invent. Math. 45 (1978), 35-56.
[14] H. Laufer, Normal two-dimensional singularities, Ann. of Math. Stud. no. 71, Princeton Univ. Press, Princeton, N. J., 1971.
[15] T. Lawson, Trivializing 5-dimensional h-cobordisms by stabilization, Manuscripta Math. 29 (1979), 305-321.
[16] Lê Dũng Tráng and B. Perron, Sur la fibre de Milnor d'une singularité isolée en dimension complexe trois, C.R. Acad. Sci. Paris Sér. A-B 289 (1979), 115-118.
[17] J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198.
[18] R. Mandelbaum, Four dimensional topology: An introduction, Bull. Amer. Math. Soc. (New Series) 2 (1980), 1-159.
[19] F. Michel and C. Weber, Noeuds algébriques décomposables, C.R. Acad. Sci. Paris Sér. A-B 294 (1982), 493-496.
[20] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud. no. 61, Princeton Univ. Press, Princeton, N.J., 1968.
[21] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. I.H.E.S. 9 (1961), 5-22.
[22] W. Neumann, Cyclic suspension of knots and periodicity of signature for singularities, Bull. Amer. Math. Soc. 80 (1974), 977-981.
[23] - A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-344.
[24] F. Quinn, The stable topology of 4-manifolds, Topology Appl. 15 (1983), 71-77.
[25] K. Sakamoto, The Seifert matrices of Milnor fiberings defined by holomorphic functions, J. Math. Soc. Japan 26 (1974), 714-721.
[26] H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286.
[27] J. P. Serre, Cours d'arithmétique, Presses Universitaires de France, Paris, 1970.
[28] Y. Shinohara, On the signature of knots and links, Trans. Amer. Math. Soc. 156 (1971), 273-285.
[29] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140.
Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo (113)
Japan

Received April 1, 1986/November 16, 1986

