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Power séries with integer coefficients in several variables916

E. J. Straube

Abstract A dassical theorem of Borel-Pôlya, which concerns rationahty of an analytic function
whose Taylor expansion at a point has integer coefficients, îs generalized to several variables

1. Introduction and main results

A classical theorem of Pôlya ([7], [8], see also [3], chapter VII), which
generalizes an earlier resuit of Borel ([1]), may be stated as follows. A function/,
analytic in the domain C*\E, whose Taylor coefficients at &lt;» are integers, must be

rational if the tebySev constant of E is less than 1. Hère, E is a compact subset of
C (such that C\£ is connected) and C* is the Riemann sphère. It is the purpose of
this paper to generalize this resuit to power séries in several variables. As we
discuss the main results, we will also point out earlier work dealing with this
problem ([5], [6]). Besides their intrinsic interest, results concerning power séries
with integer coefficients play a rôle in the theory of arithmetic functions as well
(see for example [12]).

We first introduce some notation. For z (zif..., zn) e C&quot; and &lt;x

(alf..., an) € Zn, we set z&quot; z?1 • • • z£&quot;, and |&lt;y| := E,n=i a} (so \&lt;x\ may be

négative). We order the set Nn as follows: a&lt;p if |&lt;*|&lt;|j8| or |&lt;*| |0| and

(ai,..., ocn) cornes before (f}1,..., fin) in the lexicographie order.
A polynomial in n (complex) variables will be called monic, if has the form

P{z) z«+ S atz&quot;, (1)
(0, ,0)=£/3&lt;&lt;*

that is, if the leading coefficient is 1.

Let K tae a compact subset of C&quot;. Following [5], [11], we consider a particular
CebySev constant associated to K, namely

)v^ (2)

* This research partially supported by an Indiana University Summer Faculty Fellowship
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Power séries in several variables 603

Hère, oc1 dénotes the/-th élément of Hn (in the order defined above), and for y € Nn

MY inf fsup {|P(z)|}/p(z) z* + S a,z&apos;\ (3)
^zeK I (0, ,O):s0&lt;y J(0,

Remarks. (1) It can be seen from simple examples that in contrast to the
one-dimensional case, the limsup in (2) is not a limit. However, if certain
restrictions are imposed on the séquence {a7}, the limit will exist ([11]).

(2) If K Ktx • • • xKn, where the K, are compact sets in C, then x*(K)
x+{Kxx • • • xKn) maxlss/sil {t(Kj)}. Hère, t(jK,) is the classical CebySev constant
of the compact set K; in C. If we dénote by FI, the projection of Cn onto the y-th
coordinate axis, we hâve therefore in particular the estimate

max{T(n7(X))} (4)

(since K c iT^A:)^ • • - xIIn{K)).
Finally, we make the convention that the homological condition which

appears in the theorems below is to be understood in the sensé of (C°°~)
differentiable homology.

THEOREM 1. Let Q* be a domain in (C*)n which contains the point
(oo, oo). Let £2:= £2* nC*. Suppose there is an n-cycle W in Q with
t+(W) &lt; 1, and such that for ail k, 1 &lt; fc &lt; n, W is homologous in £2\U?;j {z, 0}
to tori {\Zj\ =Rj 11&lt;/&lt;«} contained in arbitrarily small neighborhoods of
(oo,..., oo). Then any function analytic in fi, with integer Taylor coefficients at

(oo,..., oo), is a rational function

&quot;V

moreover, the polynomials P and Q can be taken to hâve integer coefficients, with
Q monic.

Remarks. (1) &quot;Taylor coefficients at (»,..., oo)&quot; refers to the coefficients of
the expansion of / in powers of (l/zu l/zM). Though formally a Laurent
expansion, it is a Taylor expansion in terms of the standard local coordinates at
(°°, • • • °°).

(2) It should be noted that in the one-dimensional case, the condition in
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Theorem 1 is just the one in the classical Borel-Pôlya Theorem: in this case the

homological condition just says that W must be homologous to circles {\z\ R}
(for arbitrarily large R) in Q. The existence of such a W is easily seen to be

équivalent to the singular set of the functions having Ceby§ev constant
transfinite diameter ([3])) less than one.

In [5], the problem of finding sufficient conditions on a domain which

guarantee that functions which are analytic in the domain and whose Taylor
coefficients at a point are integers, must be rational, was formulated for domains
in Cn. Via the inversion (zly zn)*-*(l/zi, l/zn), this reduces to the
situation considered in Theorem 1 (assuming that the point where the Taylor
expansion is considered is (0,. 0)). However, the situation is more spécial:
since the domain is in Cn (rather than (C*)n), its image under the inversion does

not intersect the coordinate hyperplanes at (0, ...,0), so that they are

automatically excluded. An immédiate corollary of Theorem 1 is therefore:

THEOREM T. LetQbea domain in Cn containing (0, 0). Suppose there
is an n-cycle W with r+({(l/z1, l/zn) | (z,, zn) e W}) &lt; 1 and such that
W is homologous in Q\(Jf=l {z; =0} to tori {|z;| r711 &lt;/ &lt;«} contained in
arbitrarily small neighborhoods of (0,. 0). Then any function f analytic in Q,
with integer Taylor coefficients at (0, 0), is rational

; Q,

moreover, the polynomials P and Q can be taken to hâve integer coefficients.

Remark. The cycle W, together with the condition on the Cebygev constant of
the inverted cycle, first appears in Lelong&apos;s paper [5]. In that paper, a weaker
version of Theorem V was proved for the case of C2; somewhat restrictive
additional conditions were imposed on W (condition c) in Théorème 1 in [5]). But
it was indicated that the theorem might be true without thèse restrictions.

It is instructive to elaborate a little on the conditions on W. First note that
both the conditions t+(W)&lt;1 and the homological condition taken by them-
selves are trivial; it is only their combination that restricts Q*. In some sensé, Q*
must be big enough. The requirement that W be homologous in £2\LJ/;j {z; 0}
to big tori (for ail k) precisely serves the purpose to make the topology of the
domain where homology takes place sufficiently non-trivial (at the level of «-th
homology), so that the combination of conditions on W becomes effective. For
illustration, consider the following simple
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EXAMPLE. Let û*:={z € (C*)2/\zt\ &gt;2}. Then fi= {z eC2/\zt\ &gt;2}. The
tori {\z}\ i?y} are null-homologous in £2, if i?j &gt; 2. Thus any 2-torus W, centered
at some point of Q, and with small 2-radius, satisfies r+(W) &lt; 1 and is

homologous to {|z;| /?;} in £2 Q\{zi 0} (since W is also null-homologous).
Thus ail conditions are satisfied except the one requiring homology in Q\{z2 - 0}
(i.e. k 2). This suffices to make the theorem fail: the conclusion of Theorem 1

does not hold for £?*, compare Proposition 3 below (take as counterexample a

lacunary power séries in 1/zi).

When verifying the condition t+(W)&lt;1, one can sometimes verify more,
namely max!&lt;;&lt;n {t(IJj(W))} &lt; 1. In this case, a stronger conclusion is available:

THEOREM 2. Assumptions as in Theorem 1, but with the condition

r+(W) &lt; 1 replaced by maxls/asn {t(/I;(W))} &lt; 1. Then f is rational of the form

P(zlf...,zn)

the Qj (1 &lt;/ &lt; n) are monic polynomials of one variable only and Q} as well as P
hâve integer coefficients.

Remarks. (1) Theorem 2 was proved in [6] in the case where / is analytic in

(C^KJx - - x(C*\Kn), and t(AT;)&lt;1, l&lt;y&lt;n. This is a spécial case of our
resuit: if r(K,)&lt;l, then t(/C;U{0})&lt;1. Thus there are 1-cycles WJf with
r(Wj) &lt; 1 and such that W, is homologous in C\(K, U {0}) to circles {\z\ /?} for
arbitrarily large R. The assumptions of Theorem 2 are satisfied with W:
Wtx • • • jcWw, in view of (4).

(2) As for Theorem 1, there is a version (i.e. Theorem 2&apos;) of Theorem 2 for
domains in Cn, which is analogous to Theorem 1&apos;. As in Theorem 2 the
conclusion is that the denominator is a product of polynomials in one variable.

By making suitable coordinate changes, or by scrutinizing the proofs
(especially for Theorem 2), one may obtain theorems when unions of hyperplanes
passing through certain other points than (0,..., 0) are removed in the
formulation of the homological condition on W. More generally, it might be

interesting to know what sets could serve the same purpose. We do not pursue
this hère. Rather, we would now like to point out some generalizations of the

previous theorems along the classical Unes. Just as in the classical case ([7] p. 27,

[8]), the assumption that the Taylor coefficients of/are integers may be relaxed.

Let 6 be a solution of z2 + pz + q 0, p and q 6 Z, p2 - 4q &lt;0, and dénote by
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Z(0) the subring of C generated by Z and 0. Then it suffices to assume that the
coefficients are in 1.(8). The polynomials involved will then also hâve coefficients

in Z(0). This generalization follows by inspection of the proofs below (sections 2

and 3). Martineau ([6]) has pointed out that the classical proofs actually yield a

stronger resuit than is commonly stated: instead of one function /, one may
consider a normal family {fa}. Then there exist Pa and Q, ail with Z(0)
coefficients, such that fa POIQ. This generalization also holds for Theorems
l(l&apos;), and 2(2&apos;): in both cases the denominator has the indicated form, but may
be taken independent of a. Note that since all/a are analytic near (°°,..., °°), the

degree of Pa is less than that of Q (or Qx • • • Qn)\ this gives in particular a bound

on the degree of Po which is independent of a. Again, the proof is by inspection
of the proofs below; if (/a) is a normal family, ail the estimâtes in the proofs will
be uniform in a.

In the case of one variable, Pôlya ([7]) has shown that the conditions in
Theorem 1 are not only sufficient, but also necessary, at least for simply
connected (in C*) Q. Let Q* Q^x • • • x£2*y oo€fl*cC*, Q* simply con-
nected, for 1 &lt;/ ^ n. Then, by Pôlya&apos;s resuit, for the conclusion of Theorem 1 to
hold, it is necessary that r(C*\fî*) &lt; 1, 1 &lt;y &lt; n (otherwise consider a function of
the variable z} only to get a contradiction). Since then also r((C*\C2*) U {0}) &lt; 1,

there are cycles W, with r(Wj) &lt; 1, Wj homologous in £?;*\{°°, 0} to circles

{\z\ =/?}, for arbitrarily large R. Thus Q* must indeed contain a cycle W as in
Theorem 1: W:= WYx • • -xWn. Hence in this case the conditions in Theorem 1

are also necessary. Another class of domains where Theorem 1 is sharp is

provided by the following proposition, proved in [5] (for C2, but the arguments
carry over to Crt).

PROPOSITION 3 ([5]). Let Q be a Reinhardt domain of holomorphy
containing (°°,..., °°) in (C*)n. // Q contains the n-torus {z e Cn\ \z,\ 1, 1 ^j ^
n}, then every function analytic in Q, with integer Taylor coefficients at
(oo,..., oo) is a polynomial in (l/zx,..., l/zn). // Q does not contain this n-torus,
there exist functions analytic in Q, with integer coefficients at (&lt;*&gt;,..., &lt;»), which
are not rational

Remarks. (1) In the question of necessity it is reasonable to assume that the
domain is a domain of holomorphy.

(2) Note that the conclusion that / is a polynomial in (1/zi,..., l/zn) is

compatible with the conclusion of Theorem 2, which in this case applies.
(3) Actually, the non-rational functions constructed in [5] in the case where Q

does not contain the n-torus of polyradius 1 hâve a stronger property: they cannot
be continued beyond the Reinhardt domain of convergence of the séries
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expansion about (°°,. .,°°). This follows from a generalization of Ostrowski&apos;s

gap theorem to several variables, due to Siciak, see [10], in particular the

corollary on p. 573.

We conclude this introduction with some remarks about the proof of
Theorems 1 and 2. The classical proofs of the Borel-Pôlya theorem ([1], [7], [8],
[3]) as well as the proof in [5] are ail based on a characterization of rational
functions by the vanishing of certain Hankel déterminants formed from the

Taylor coefficients of a germ of the function (for détails see [4], §7.5 and [9], part
7, §2). The condition t+(W)&lt;1 is exploited to show that thèse déterminants
must be small; since they must also be integers, they must vanish, whence the
resuit. Our proof of Theorems 1 and 2 proceeds along quite différent Unes. It is

based on the observation that t+(W)&lt;1 implies the existence of monic
polynomials which are not only small on W (this trivially follows from the
définition of t+(W)), but which hâve &quot;integer&quot; coefficients: coefficients in
Z(i) {k + im\kfmeZ}. For the one variable case, the existence of thèse

polynomials was observed in [2], and this one-variable resuit was shown to be
useful in the présent context in [6]. We will use the spécial polynomials in an
inductive procédure: at the A&gt;th step, the function is multiplied by a spécial
polynomial, chosen so that the product contains only terms za in its expansion at

(°°,..., °°) with at least k of the a; non-negative. At the n-th step, we arrive at a

polynomial. For n 1, this gives a new, direct proof of Pôlya&apos;s classical resuit.
The remainder of the paper is organized as follows: section 2 contains the

resuit concerning small polynomials with &quot;integer&quot; coefficients on sets K with

t+(K) &lt; 1. Section 3 contains the proof of Theorems 1 and 2.

2. On the condition r+(K) &lt; 1

Dénote by Z{ï) the subring of C generated by Z and i (as in section 1). K will
be a compact subset of Cn throughout this section.

PROPOSITION 4. Assume r+(K)&lt;l. For each j (l&lt;/&lt;n) there exists a

monic polynomial of the spécial form

* (1)
0&lt;(O, ,h, ,0)

;-th position
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with coefficients in Z(i), such that

(2)

Proof. The proof consists of an adaption of the arguments in §2 of [2].
Choose p such that r+(K) &lt; p &lt; 1. Then there is a0 e Nn such that for ail y&gt;a°

(in the order defined in section 1) there exists a monic polynomial Py with leading
power zy and with

H/&gt;rlk&lt;Plyl (3)

For oc, P e Nn, fi&lt; oc&gt; consider now linear combinations of the polynomials Py of
the form

(4)

Starting with the biggest y between j8 and a, one can choose spécial coefficients
Âytfi recursively in such a way that

|A^|&lt;1 (5)

and such that in S^ the coefficients of the powers of zY for j8 ^ y ^ a are ail in

Z(i) (since every complex number has a distance less than one from the lattice
formed by the éléments of Z(0)- Therefore, with this choice of the coefficients in

(4), we hâve

Sa,p Ta&gt;p + Rafp, (6)

where the coefficients of Ta^ are in Z(i) and Ra^ contains only powers zY with

y &lt; j8; moreover, the coefficients of Ra^ are ail less than one in modulus. If now
P &gt; ar°, Sa&gt;p will satisfy the estimate

S |A^|||Py|U

^ i bsP&apos; :cfi (7)
|3
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Hère, bs is the number of y eNn with |y|=5. Note that the last estimate is

independent of a; also, since

Cp can be made arbitrarily small, provided only |/J| is big enough.
Choose now an integer j8x such that /?: (/?!, 0,..., 0)&gt; a0 and such that

Cp &lt; 1/3. Let a5 : (fi1 + s, 0,..., 0) and consider the séquence

Sas,p=Tas&gt;p^-Ras,p (9)

Since the coefficients in R^,p are always less than one in modulus and since the
&quot;degree&quot; of R^.p does not exceed j3, there is a subsequence such that ail
coefficients converge. In particular, this subsequence of R^fp converges uniformly
on K. Thus there exist st and s2, st &gt;s2, such that

Combining this with (9), (7) and the fact that cp &lt; 1/3, we obtain

&lt; 1/3 + 1/3 + 1/3 1 (11)

Thus Bl{z):=TaSXfp{z)-Tas2tp{z) satisfies (2). By construction, Bx has

coefficients in Z(i) and is of the spécial form (1) (for; 1). For; 2,..., n, the

Bj are obtained similarly, and the proof of Proposition 4 is complète.

3, Proof of Theorems 1 and 2

We first prove Theorem 1. Let W be the n-cycle given by the assumption: then
t+(w)&lt;1. Dénote by Bp 1&lt;;&lt;«, the polynomials associated to W by
Proposition 4. Set

(1)
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Hère, h, is the degree of Br For oc e Nn such that (0,..., 0) &lt; a &lt; (hlf. hn)
and non-negative integers mlf..., mn) we hâve

for some C independent of a and mlf..., mn (as long as oc satisfies the
restriction stated above). Since \i &lt; 1, (2) implies that

—— f f{z)BT{z) • • • B^{z)zadzx A---Adzn &lt; 1, (3)
(2lli Jw

provided that m1h1 + • • • + mnhn&gt;NQ for suitably large NoeN. On the other
hand, in view of the closedness of the form fB?1 • • • B™nzadzx a • • • a dzn

(analyticity of the integrand), we may integrate over a suitable torus Tn in a

neighborhood of (&lt;*&gt;,. ») which is homologous to W. Since / has integer
Taylor coefficients at (»,..., »)5 and the B, hâve coefficients in Z(i), this intégral
assumes only values in Z(i). Hence, in order to satisfy (3), it must vanish:

f f(z)BTl(z) • • • B^(z)zadzu ...,dzn 0

1,...,/in) (4)

We will successively multiply / by polynomials formed from the BJf until we

arrive at a polynomial. First consider/fif0. It has an expansion of the form

with ^ € Z(0- We show that

6.^ 0, if j3;&gt;0for l&lt;/&lt;n (6)

(~i8 (-j8i,..., -&amp;)). The proof of (6) is by induction on 0 (in the order
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defined in section 1). We hâve

So for p (1,. 1), (4) yields the desired conclusion. Assume then that (6)
holds up to some j8, and call the next index y (yt,..., yn). The components of
y can be written as

Yj- \ mjhj + oc} 0&lt;o}&lt;/iy, 0&lt;my, (8)

with m, and a, € M. By (4), the induction hypothesis and (7):

0 Q^n j/(z)B?iz)Br(z) • • • /Ç-(z)zf &apos;

• ¦ - zan» dzx a • • • a dzn

{z)B»\z)zV~l • • • z^&quot;1 ^A-&apos;-Adz^ ft_r (9)

This concludes the induction and thus the proof of (6). In view of (6), and after
appropriately collecting terms in (5), we obtain

f(z)B?tz)= 2 1 &lt;(zMy (10)
{ l4

Hère, the outer summation is over ail non-empty subsets A of {1,... n}, \A\ is

the cardinality of A, Af {1,.. n}\A\ if A {/,,..., /|id|} with lx &lt; 12&lt; • • • &lt;

l]A{&gt; then Za Z/7 * * * zïff&apos;* finally z^^ stands for the &quot;remaining&quot; variables, and
terms are grouped in such a way in (10) that ciy(zA&gt;) is a sum of strictly négative

powers of the variables zA&gt;. Thus the inner sum in (10) contains the terms where

precisely the z} with; e A hâve non-negative exponent. (6) is expressed by the fact
that the outer summation is only over the non-empty subsets of {1,...,«}.

We assume now inductively that there is a monic polynomial Pk(z) with
coefficients in Z(i), such that fPk has a Laurent expansion of the form

- S 2 afcM; (H)
^{1 ,n) W^

that is, the outer summation is only over subsets of cardinality at least k.
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Let k &lt; n, and let A {n - k + 1,..., n}. Note that W and Tn (Tn as in the

theorem, suitably close to (°°,...,°°)) are homologous in £2\U^=2{Zj 0}. In
that domain the function/(z)PA:(z)/zn_fc+1 • • • zn is analytic. Also, the coefficients
of the expansion at (&lt;*&gt;,... o°) are in Z(i). Therefore, the same arguments that
lead to (4) yield, when applied to this function, that there exists an integer A^,
such that

f
JT

Now we plug (11) into (12) and observe that no proper subsets of A appear in the
summation (since no sets of cardinality less than k appear). Therefore, any
contribution coming from a A =£ A is annihilated by intégration with respect to dz;
for a suitable / € A n {1, n - k}. For A A, ail contributions coming from
y =£ (0,..., 0) vanish, since then at least one of the zn-k+u zn would hâve

non-negative exponent. If for the remaining contribution (i.e. A A, y
(0,..., 0)) we perforai the intégration with respect to dzn-k+1 a • • • a dznf we
find similarly

i, ¦ • • zn.k)BTl(zlf zn_k, 0,. 0) • • -

u zn_*, 0,..., 0)zf*- • -zfcfife! a • • ¦ a dzn.k

&lt;£&lt;(/*!,...,/*„_*)
mxhx + • • • + mn^khn.k &gt; Nx

&apos;

In the same way (4) was used to show (6), (13) implies that

&lt;4, t0)(zlf..., zn-k)B?{zu zn.ky 0,. 0)

E C^-&quot;Z^ (14)

not ail 0;

The important point in (14) is that not ail j8;&lt;0. To obtain the analogous
conclusion for a* with y^=(0,... 0), we replace fPk by
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• • 9zlk){fPk) and apply the preceding discussion. Finally, by
symmetry, the conclusion holds for ail A of cardinality k:

^(0,z^)= X C$*z%, |4| *; (15)
not ail

jA is an élément of A&apos;. Let

»p9ZA.) (16)
\A\y=k

Then Pk+\ is monic, has coefficients in Z(î), and, as follows fiom (11) and (15),
fP/c+i has an expansion like the one in (11), but with only sets of cardinality at
least k +1 appearing. This complètes the inductive step. We therefore find a

monic polynomial Pn, with coefficients in Z(i), such that

2 aYz^:P(z) (17)
|y|&lt;deg(Pn)

llO
The right side of (17) is thus also a polynomial (also with Z(i) coefficients).
Observe now that/has integer (i.e. real) Taylor coefficients at &lt;». It follows from
(17) that

(18)

where P and Pn are the polynomials obtained from P and Pn respectively by
taking the real parts of the coefficients. Thus/has the desired form, and the proof
of Theorem 1 is complète.

Essentially the same proof works for Theorem 2. We only hâve to observe
that from the stronger assumption

max {t(JI;(W)} &lt; 1 (19)

it follows that the polynomials B; from proposition 4 can be chosen to be

polynomials of one variable only:

B,{z) z*+ 2 *.**, (20)
0^5 &lt;h
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Then, with the induction hypothesis (11) modifiée to the effect that Pk is a

product of polynomials in one variable, the above induction yields

f{z)Qi{zù-~Q»{*n) nz), (21)

where the Q, are monic, and ail Qs as well as P hâve coefficients in Z(i). Dénote

by Qj the polynomial obtained from Q; by conjugating the coefficients. Then QjQ
has integer coefficients, and (21) yields

• • Qn(Zn)Qn(Zn) P(z)&amp;(*l) • &apos; &apos; Qn(zn) (22)

This establishes Theorem 2, because the coefficients of the polynomial on the

right side of (22) are automatically integers (since / and QjQ, hâve integer
coefficients).
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