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Parametrized Borsuk-UIam theorems

Albrecht Dold

Introduction

Let ;r:£—» B «—£&apos; \n&apos; be vector bundles over the same base B and

/ : S£—» £&apos; a fibre-preserving (jr&apos;f jï) odd (/(-*) —f(x)) map, where SE a E
is the sphere-bundle of E. The parametrized Borsuk-UIam problem asks for the

totality Z of solutions of the équation f(x) 0; thus Z {x e SE | f(x) 0}. If we
identify antipodal points in SE we obtain the projective bundle jt:SE-*B of E
and 2-sheeted coverings SE—&gt;SE resp. Z-+Z; the latter are characterized by
their characteristic classes u e H1 SE resp. (u | Z) e HXZ.

Cohomology //* is understood in the Cech sensé with coefficients mod2. Let
H*B[t] be the polynomial ring over //*(#) in one indeterminate t. Since H*Z is

an //*#-algebras (via ft*) we can substitute u | Z for the indeterminate t\ every
polynomial g(f) then defines an élément of H*Z which we dénote by q{t) \ Z
g(u | Z). We contribute to the Borsuk-UIam problem by showing that q{t) \ Z ^
0 in many cases - giving lower bounds for the &quot;size&quot; of Z and hence of Z. We use

Stiefel-Whitney classes w}E, w}E&apos; e HJB for this purpose, and the Stiefel-
Whitney poiynomials w(E; f), w(£&apos;; t) e H*B[i\\ w{E\ t) Eym=(, (w;E)tm~\ where
m fibre-dimension of E. For every polynomial q(t) e H*B[t] we prove that

q(t) \Z*Q or w(E; t) divides q(t)w(E&apos;; t)

in the situation described above, and under more gênerai circumstances (theorems

1.3, 1.14, 2.2). For readers who prefer singular to Cech cohomology the
same proof shows:

y ^=0 for ail neighborhoods V of Z in SE

or
w(£; t) divides q(t)w(E&apos;; t)

in singular cohomology. - Further comments can be found after theorem 1.3, and
in §3.
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276 ALBRECHT DOLD

§1. Parametrized Borsuk-Ulam theorems for sphere-bundles with free
involution

1.1. We take up and partly repeat the notation from the introduction. Thus
n:E-~*B, n&apos;:E&apos;-*B&apos; are vector-bundles of fibre-dimensions m, n over a

paracompact space B, with Stiefel-Whitney classes h&gt;;(£), w}(E&apos;)eHJB, and
Stiefel-Whitney polynomials w(E; t), w{E&apos;,t) e H*B[t],

(1.2)

Cohomology HJ resp. //* is understood to be Cech cohomology with coefficients

Z/2, and H*B[t] is the polynomial ring over H*B in one indeterminate t of
degree 1. Thus w(t) has degree m, both with respect to t and as an élément of the

graded ring H*B[t].
We consider maps /:SE-&gt; Ef such that n&apos;f n \ SE and f(-x) —/(je), and

we put Z {jc e SE | f(x) — 0}. The antipodal action r : jc »-&gt; —x is fixed point free
in 5£ and in Z so that the projection maps SE-+SE resp. Z-*Z onto the orbit
spaces of r are 2-sheeted covering maps. Their characteristic classes are denoted

by ueHl(SE) resp. {u\Z)eHlZ. We can substitute thèse classes for the

indeterminate t and obtain homomorphisms of //*#-algebras

o:H*B[t]-+H*(SE)-*H*Z, t++u resp.

We find it convenient to write p(t) | SE resp. p(t) | Z for the images p(w) resp.
/?(u | Z) e //*Z of p{t) e H*B[t].

1.3. THEOREM. //#(0 e //*£[/] w ,sw^ that q{t) | Z 0

(1.4) 9(0iK£&apos;;0 H&gt;(fî;0?&apos;(0

/or some polynomial q&apos;(i) e H*B[t].

1.5. COROLLARY. //m, n are the fibre-dimensions of E, E&apos; then q(t) \ Z ±
0 for ail polynomials q(t) whose degree with respect to t is smaller than m — n. In
other words, the H*B-homomorphism

(1.6) © (H*B)t&apos;-&gt;H*Z, tl-^tl\Z
i=0



Parametrized Borsuk-Ulam theorems 277

is monomorphic. In particular, if m&gt;n then the cohomological dimension (in
terms of H * H{-\ Z/2)) satisfies

(1.7) cohom dim (Z) &gt; cohom dim (B) + m-n + l.

Further conséquences, examples and illustrations are discussed in section 3.

Acknowledgements

If B is a single point then 1.3, or 1.5, is the classical Borsuk-Ulam theorem (if
m n + 1), resp. a generalization of it by Bourgin [B] and Yang [Y]. The first to
study the zéros of SE—&gt; E&apos; in the same spirit was Jaworowski [J] (The gênerai

program of parametrizing homotopy theory had been developed before by several

authors, especially I. M. James in his papers around 1969). Jaworowski showed
that btm~n~l | Z^O for every non-zero beH*B assuming w}E&apos; 0 for ail j&gt;0.

Nakaoka [N] proved that the assumption w;E&apos;=0 is redundant. E. Fadell
lectured on the problem in Heidelberg in summer 1986; cf. [FH2] for the subject
of his lecture, and [FH1], [F] for earlier work. He advocated the use of the map a
and its kernel index of Z in his terminology). He did not use characteristic
classes but had obtained (with S. Husseini) the resuit of the corollary 1.5. His
lecture prompted the présent work.

The proof of theorem 1.3 will apply to more gênerai situations, as follows.

1.8. DEFINITION. A G-sphere-bundle (of fibre-dimension m -1) is a

map jï.S^B together with a free fibre-wise G-action r on S such that (i) (jz, t)
is G-locally trivial, i.e. B is covered by open sets U such that jt~l(U) « U x Y as

G-spaces over U, r(w, y) (u, xy). (ii) The fibre is G-homotopy équivalent to a

compact finite-dimensional G-space, and (iii) H*Y^H*Sm~\ 5m~1 (m-l)-
sphere. Moreover, ail spaces involved are assumed to be paracompact.

For our purposes, G Z/2 and //* //(—; Z/2), but other subgroups GcS1
and other coefficients are also of interest (cf. 3.8). Examples for 1.8 are, of
course, the unit sphere-bundles of vector-bundles with the antipodal action. Or, t
could be any (linear or not) fibre-wise action on a vector bundle, or sphère
bundle £, and S E - Fix (t). One has to make sure that local triviality includes
the action in the sensé of (i). For proper n\S-*B, local triviality of Jt alone

implies (i) by a resuit of Edmonds [E], but in gênerai one has to assume (i) as it
stands.
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1.9. DEFINITION. Since Y, the fibre of 7t;:S~*B, is a chohomology sphère
and dim(Y)&lt;oo, the orbit space Y=Y/G, with G Z/2y is a cohomology
projective space

where ueHlY is the characteristic class of the action. (This follows from the

Gysin séquence of the 5°-bundle Y—» Y because HJY 0 for large /.) Since u is

also defined on 5 S/G we can apply the Leray-Hirsch theorem to the
fibre-bundle ir : S—» B and find that

(1.11) H*S is freely generated, as an H*J3-module, by 1, m, um~\

(This is familiar for singular cohomology. In Cech cohomology one can prove it
with J. D. Lawson&apos;s method [L, §3] because Y is essentially compact. If Y were
not compact but B locally contractible, or locally compact, one could still prove it
using [L, §3].) We can express um in terms of the basis 1.11, i.e. there are unique
éléments w} e HJB, / 1, 2,. m, such that

(1.12) um + wxum~l + • • • + wm 0,

and (following Grothendieck) we call thèse éléments the Stiefel-Whitney classes

of (jt, r)-putting wo=l, wt 0 for i&gt;m. As before, we define the Stiefel-
Whitney polynomial w(t) E7&quot;L0 w}tm~J, and hâve that

(1.13) H*B[t]/(w(t))^H*S, t*-*u,

as H*B-algebras.
We can now formulate the cohomological généralisation of theorem 1.3 as

follows.

1.14. THEOREM. Let tï.S-^B be a G-sphere bundle and let Ef be a space
with a G-action r&apos; and a map jt&apos; :(E&apos; - Z&apos;)-*B, Z&apos; Fix (r&apos;), such that (7tf, t&apos;)

is a G-sphere bundle, G Z/2. Let f:S—&gt;E&apos; be a G-map which is fibre-
preserving (jt7 jt) in S-f~\Z&apos;). Put Z=f~l(Zf), Z Z/t(cz5/t). Now, if
q(t) € H*B[t] is a polynomial such that q(t) \ Z - 0 then

for some polynomial q\i) e H*B[t]. - The unexplained notation is as in theorem
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1.3

where m, n are the respective cohomological fibre-dimensions. To obtain

(q(t) | Z) e //*Z one substitutes t^u \ Z in q(t).

As an example of a Z/2-space E&apos; where jt&apos; is not defined on ail of Ef one
might take the Thom-space (or the cône) of a vector-bundle.

Proof of theorem 1.14. If q{t) \ z - 0 then (by continuity of Cech-cohomology)
q{t) vanishes in an open neighborhood KcSofZ; thus q{t) \ V 0. By exactness

of //*(5, V)jL&gt;H*S-+H*V there is v e H*(S, V) such that j*(v) q(t) \ S.

On the other hand, the map f:(S - Z)-+{E&apos; - Z&apos;) induces f*:H*(Ëf-
Z&apos;)^&gt;H*{S - Z) on orbit spaces, and

(1.15) w&apos;{t) \(S-Z) w&apos;(u) w&apos;(f*u&apos;) =f*(w&apos;(u&apos;)) 0,

the lst équation by définition of p(t)\(S - Z), the 2nd because /* is an

//*#-homomorphism (f is a map over B), and the 4th because wf(u&apos;) Q by
définition 1.12/13 of w\

By exactness as above, there is z eH*(S, S - Z) such that j*z w&apos;(t)\S.

Now

(vLjz)e H*(S, VU(S-Z)) H*(S, S) 0,

hence

(1.16) q(t)w&apos;(t) | 5 (j*v) u (y*z) =y*(v u z) 0,

the 2nd equality by naturality of u products [D, VII, 8.6]. But H*S
H*B[t]/(w(t))y by (1.13), hence q(t)w&apos;(t) must be a multiple of w(t). M

§2. A Borsuk-UIam theorem in the présence of fixed points

2.1. We now generalize theorem 1.3 by allowing non-zero fixed points of the
action x but assuming that / relates the (non-zero) fixed point sets by a
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cohomology isomorphism. For simplicity, we shall content ourselves with vector
bundles and linear actions (and not treat the cohomological version which
corresponds to theorem 1.14). The set-up is then as follows: We hâve vector-
bundles E, F, £&apos;, F&apos; over B, and we let G Z/2 act on E © F resp. E&apos; © F&apos; by
t(x, y)~(-x, y); i.e. antipodal action on E, E&apos;, trivial action on F, F&apos;. We
consider a G-map /:S(£©F) —»£&apos;©F&apos; over B and aim for results on the
structure (cohomology, dimension) of Z=/&quot;1(0). The unit sphère bundle
5 5(£©F) coïncides with the fibre-wise join SE*BSF SE*SF for easier

printing). Clearly, / maps SF {z € (SE * SF) | xz z} into F&apos; {2 e (E&apos; ©
F&apos;) | rz z}. We assume, in addition, that f(SF) a (F1 - {0}), and that

f | SF : 5F—» F&apos; — (0) has odd degree (in the fibres). In particular, F, F&apos; must hâve
the same fibre-dimension, say k. As before, we dénote by S(E®F), Z, £, etc.
the corresponding orbit spaces of the G-action, and we use notations p(t) | Z,
w(E; t) etc. as in theorem 1.3. We abbreviate

5 S(E + F) - SF, S S(E@F)- SF,

as thèse will play the rôle of 5, S in theorem 1.14.

2.2. THEOREM. // q(t) e H*B[t] is such that q(t) | Z 0 then

q(t)w(E&apos;;t) w(E;t)q&apos;(t)

for some polynomial q&apos;(t) e H*B[t] - the same wording as in 1.3 but considerably
weaker assumptions! The corollary 1.5 also holds, of course, under the weaker
assumptions. It figured in E. Fadell&apos;s Heidelberg lecture, for bundles / with a

nowhere vanishing section; compare [F, §7].

Proof. We first remark that r resp. r&apos; operate freely in S S(E + F)- SF

resp. (£&apos; - 0) © F&apos; E&apos; © F&apos; - F&apos; so that their characteristic classes u resp. u&apos;

are defined in the orbit spaces 5 5(£©F)-SF resp. {E&apos; -0)©F £&apos; ©
F&apos;Ix1 -F&apos;. We can substitute thèse classes into polynomials p(t)eH*B[t]. For
instance q(t) \ S, or q(t) | Z; the latter because ZczS since /(SF) &lt;= (F&apos; - 0)).

As in the proof of theorem 1.14 we find veH*(S, V) such that j*(v)
q(t) | S, for some open neighborhood V of Z. And we find z e H*(S, S -f~lF&apos;)

such that ;*(z) w&apos;(t) | S, where w&apos;(t) w(E&apos;; t) is the Stiefel-Whitney polynomial

of E&apos; (note that (E&apos; — 0) © F and £&apos; — 0 are homotopy équivalent). We could
now conciude that q{t)w&apos;(t) \ (V U (S -f~lF&apos;) 0, repeating theorem 1.14. But
this is not enough now. What we&apos;ll need is q(t)w&apos;(t) \ S 0, and we shall use the
degree-odd assumption on / | 5F to obtain the sharper resuit.
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Recall that

5(£ © F) (SE) * (5F), 5(£ 0 F) (SE) * (5F),

the fibrewise joins. It follows that 5 S(E © F) - 5F, with its natural retraction
onto 5£, is just the total space of the vector bundle jz*F, where n : SE-* B is the
projection; thus S^n*F. Similarly,

5 (5(£©F)-5F)«ir*F, where n:SE-&gt;B.

And (5, 5 - 5£) is the Thom-space of n*F, and (5, 5 - 5£) is the Thom-space of
ir*F. Let s e Hk(S, S - SE) and s e Hk(Fy F - 0), resp. s&apos; e Hk(F&apos;, F&apos; - 0) be the
Thom-classes of Jt*F, F, F&apos;. Consider the following diagram

(5, 5 -/-*£&apos;) ^-^ (5, f5F) ^-&gt; (5, 5 - SE)

K I&apos;

(2.3) {Ë&apos;@F&apos;,Ë&apos;®F&apos;-É&apos;)

~ proj

(F&apos;,F&apos;-0)

where T5F is an open tubular neighborhood of 5F in 5 which is small enough so
that f(TSF) fl E&apos; 0 (if B is not compact this will usually require a variable
radius p(b) for the fibres Tb). The symbol ~ indicates maps which are isomorphic
in cohomology. The map / (or /) maps the fibres of 5F with odd degree into the
fibres of F&apos; — 0; similarly for the fibres of f5F. Therefore it takes Thom-classes
into Thom-classes, i.e.

(2.4) /*($&apos;) t*s.

(The reader might find it more convincing to use the spaces

(S(E 0 F), 5F) c (5(£ © F), T5F U 5F)-^&gt; (5(£ © F), 5(£ © F) - 5£)

and the map / : (5(£ © F), TSF U 5F)-* (£&apos; © F&apos;, £&apos; © (F&apos; - 0)) to prove 2.4.)
Consider now (/V) e //*(5, 5 -f^Ë&apos;) and

(2.5) (v uz u/V) eH*(S, VU (S -f-&apos;F&apos;)U(5 -J~lÈ&apos;)) H*(S, S) 0.
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We apply /* resp. i* to bring v and z into H*S, resp. f*(s&apos;) and the product into
H*(5, f5F). Using naturality of u-products [D, VIII, 8.6] we obtain

0 {j*v) u (/*2) u (î*/V) (q(t) | S) u (w&apos;(0 | S) u (/V)
(q{t)w\t) | 5) u (i*s) i*(fo(f)iv&apos;(0 | 5) us).

But t* is isomorphic, hence (q(t)w&apos;(t) \ S) us 0. And u5 is isomorphic

(Thom-isomorphism), hence q(t)w&apos;(t)\S 0. Further, 5 5(E0F)-5F is

homotopy équivalent to SE, and H*(SE) H*B[t]/w{t) as in 1.13. Hence

q(t)w&apos;(t) must be a multiple of w(t). ¦
§3. Examples and Comments

3.1. A simple example which illustrâtes well the formula 1.4 is the case of a

linear map &lt;f&gt; :£—&gt;£&apos; with constant rank. In this case, kernel, image, and

cokernel of &lt;j&gt; are vector bundles K&gt; /, K\ and w(t) w(£; /) w(K; t)w(I\ t),
w&apos;(t) w(E&apos;;t) w(/;f)w(tf&apos;;f)&gt; hence

(3.2) w(K; t)w&apos;(t) w(t)w(K&apos;\ t).

Also, Z (SE fl ^&quot;HO) SA:, and w(K; t)\SK 0. Conversely, q(t) \ SK 0 iff
ç(0 is a multiple of w(K;t), q(i) k(t)w(K;t). And then q(t)w&apos;(t) w(t)q&apos;(t)

holds with q&apos;(t) k(t)w(K&apos;;t). - Another (more symmetric) way of putting it is

that, for polynomials q, q&apos; such that q(t)w&apos;(t) w(t)q(t) we hâve

(3.3) q(t)\SK 0&lt;Z&gt;qf(t)\SK&apos; 0

where K&apos; is the kernel of the transposed (linear) map 4&gt;&apos; :E&apos;&apos;-^E (with respect to
some metrics). I don&apos;t know whether (3.3) also holds for linear maps of variable
rank.

3.4. The set of polynomials q(t) e H*B[t] such that q(t) | Z 0 is an idéal in

H*B[t] which Fadell-Husseini call the index of the G-space Z (G Z/2). The set

of polynomials q(t) which satisfy q(t)w&apos;(t) w(t)q&apos;(t) for some q&apos;(t) e H*B[t] is

also an idéal which is denoted by [w(f):w&apos;(0]- Our theorems state

(3.5) index (Z)cz[w(t): w&apos;(t)\

A convenient description of [w(t):w&apos;(t)] is in the ring H*B[t, t~l] of finite
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Laurent séries (obtained from H*B[t] by inverting t). If dimB&lt;^, or £&apos; is a

bundle of finite type then (w&apos;(t))~[ e H*B[t, t~l] and

(3.6) [w(t) : w&apos;(t)] (w(t)w&apos;(tylH*B[t]) n H*B[t],

an intersection of two free //*/?[f]-modules (in H*B[t&gt; t~1]) of rank one.
Note that the right side of 3.5 does not dépend on the map /; the idéal

J [w(0 : h&gt;&apos;(01 contains the index (Z(/)) for «// odd maps SE-* E&apos;. Moreover, /
is unchanged (is &quot;stable&quot;) if we replace £, E&apos; by £ © F, E&apos; © F where F is any
vector bundle over B, hence J contains index (Z(0)) for ail odd maps
4&gt;:S(E © F)-» £&apos; © F, ail F. Is it minimal with this property?

3.7. If m dim £&lt;dim E&apos; =n then the corollary 1.5 is void whereas the
theorem 1.3 still provides non-trivial information about Z=/~1(0), in many
cases. In particular, it provides some standard obstructions to immersions.
Immersions correspond to the case Z 0, or/:S£-&gt; (E&apos; - 0). If Z 0 (also for
non-linear / and in the situation of theorem 1.14) then 1 | Z 0, hence w&apos; wqr,
or w&apos;(t)w(t)~leH*B[t]. In other words, [w&apos;(t)w(tyl] e H*B[t, Cx)IH*B[t) is

an obstruction for G-maps SE—»(£&apos;-0) (and every q{t) for which
q(t)w&apos;(t)w{t)~x $ H*B[t) provides a measure of how much every attempt to
immerse will fail). - For m n, G-maps SE—» (E&apos; - 0) can only exist if w(t)
w&apos;(t), and ail such maps hâve odd degree in the fibres.

Also for m &gt; n the theorem gives more information than the corollary. For
instance, if E is the Hopf-bundle (m 2) over B S2 PXC and £&apos; is the trivial
line-bundle (n 1) then the theorem implies 11 Z^O (because w2E^0) which
isn&apos;t contained in the corollary. On the other hand, the theorem does not give any
better dimensional estimâtes on Z than the corollary. Le. every monomial
q(t) btl with b e HrB and r + / &gt; (dim B) + m- n makes q{t)w&apos;{t) divisible by

w(t); thus q(t)w&apos;(t) w{t)q&apos;{t) for some q&apos;(t). To prove this, one can assume

r + / dim B + m — n. Write k dim B - r, l — k -h m — n. Then

(because bw&apos;t=0 for i&gt;k), and one easily solves q(t)wf(t) w(t)q&apos;(t) for

3.8. Instead of real vector bundles and fibre-preserving free Z/2-actions we
can consider complex vector bundles and fibre-preserving free S&apos;-actions,

S1 {z 6 C | ||z|| 1}, replacing #(-; Z/2) by intégral Cech cohomology //* H
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(-;Z). Stiefel-Whitney classes are replacée by Chern-classes CjEH2jB whose
définition à la Grothendieck applies to G-sphere bundles with G 51, as in
1.9-1.13. The main notion is the Chern polynomial c(£) which is entirely
analogous to the Stiefel-Whitney polynomial except for some signs,

(3.9)

whose indeterminate § now has degree 2.

Its crucial property is that c(E; u) e H*SE vanishes and

(3.10) H*BU[Ç]/c(E;t=) H*SE, Ç^u

where u e H2SE now is the characteristic class of the 5l-action, SE SE/S1.
An interesting point is that we can replace //* H(—;Z) by other cohomol-

ogy théories, in particular by complex cobordism £?£,, and use the corresponding
finer (universal) Chern classes (o} e Q% This should provide more information on
Z =/~x(0) than c; e H21. Or we can use /k-theoretic Chern-classes m KCB which
are easier to handle than (or

3.11. Still another possibility is to consider cyclic subgroups G a S1 of order
k&gt;2 and study G-sphere bundles and their &quot;Chern-Grothendieck&quot; classes

gt €H&apos;(B; Z/k). Projective spaces (and bundles) will then be replaced by ail kind
of lens-spaces (and -bundles). It looks interesting but 1 haven&apos;t seriously worked
on it.
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