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Imbeddings and homology cobordisms of lens spaces

Sylvain Cappell1 and Daniel Ruberman1

In this paper we consider the existence of smooth or PL imbeddings of
manifolds in Euclidean space with codimension one. The manifolds we treat are
made from lens spaces (or homotopy lens spaces) by removing a dise or by taking
a connected sum. (It is easy to see [R2] that a homotopy lens space must be

punctured in order to imbed in Euclidean space of one higher dimension.) The
results of [GL, R2] show that this problem reduces to the problem of finding a

homology cobordism (i.e. one with the homology of a product) between two
homotopy lens spaces. It is shown in [R2] that for (linear) lens spaces L with
Jï\{L) of prime power order, the existence of such a homology cobordism implies
the existence of an s-cobordism, and hence that a lens space L imbeds punctured
if and only if L admits an automorphism satisfying certain conditions. It is

straightforward to explicitly describe ail such iens spaces. Further, the connected

sum of two such lens spaces imbeds if and only if they are diffeomorphic. Hence
in both problems, the homology cobordism may be taken to be a product.

The présent paper will demonstrate that the situation changes when the order
of jï](L) is divisible by more than one prime and when L is allowed to be a

homotopy lens space. The invariants used in [R2] as obstructions to imbedding
were equivariant signatures associated to coverings of prime-power degree; in the

gênerai case considered hère they do not characterise a homotopy lens space,
even up to ^-cobordism. Nevertheless, we show that in dimensions greater than
three, the signature invariants used in [R2] do détermine a homotopy lens space

up to homology cobordism within its normal cobordism class. Hence only a small

portion of the invariants used in [Wl] to classify homotopy lens spaces cornes into
play; in particular Reidemeister torsion plays no rôle. This classification up to
homology cobordism leads to necessary and sufficient conditions for punctured
imbeddings and imbeddings of connected sums.

The fact that only the invariants associated to prime-power coverings corne
into play has an analog in other parts of topology, most notably in the theory of
transformation groups. In that context, Smith theory [Bl] provides restrictions on
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76 SYLVAIN CAPPELL AND DANIEL RUBERMAN

the homology of fixed-point sets of actions of finite groups. Thèse homological
restrictions often turn out to be (with some additional conditions) sufficient to
construct actions with specified fixed-point set [J, W2). So, as in Jones&apos; converse
to Smith theory [J], only prime-power restrictions arise.

1. Définitions and notation

The quotient of S2k~l by a [PL] free action of a cyclic group will be called a

homotopy lens space \ if the action is the restriction of a représentation L is simply
a lens space. For each L, fix a generator g of jtj(L) and an orientation of L. Let
\p : JTi(L)-^ Zd be a homomorphism taking g to 1; this gives an action of Zd on L.
Some multiple (say s) of this action bounds a free action of Zd on some manifold
W2k\ examining the Zd action on Hk(W) gives the multisignature pd [Wl]. We
follow [Wl] in regarding pd(L) as an élément of the ring Q[x]/2 where
Z Ef=T() X\ a°d X is a generator of Hom (Zd, S1). We can thus view pd(L) as a

fonction from tïx{L) — {e}, or as a polynomial £f=To o,x&apos; well-defined up to
addition of multiples of Z. The numbers o, are 1/s times the eigenspace signatures
of the action of Zd on Hk(W). If jïx{L) Zd then pd(L) is denoted p{L) in [Wl].

If d | n and the homomorphism tp factors through the obvious surjection
Zn—&gt;Z&lt;,, then the invariants pd and pn are related by a formula due to
Hirzebruch: If n md and pn is written as E£=ô OkXkn&gt; then according to [H], pd
will be given as m Eitlo OkmXd- For M a closed manifold, M() will dénote the

punctured manifold M-(open bail).

1.1. DEFINITION. Suppose M and M&apos; are oriented manifolds. A homology
cobordism from M to Mf is an oriented cobordism (W; M, Mf) with

The obstructions to homology cobordism and imbeddings which we discuss are
equally valid in the three-dimensional case and in high dimensions. However our
positive results are valid (so far as we know) only in dimensions greater than
three, so that ail lens spaces considered from now on will hâve dimension &gt;5. We
hâve phrased our results in terms of PL manifolds and imbeddings; we will
indicate at appropriate places the modifications necessary for the smooth case.

2. Homology cobordisms and imbeddings

2.1. LEMMA. // (W2k, L, L&apos;) is a homology cobordism between the homotopy

lens space L and L&apos;, there is a retraction r:W-*L whose restriction to L&apos; is a

homotopy équivalence.
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Proof. View L as the (2k - l)-skeleton of K(Zn, 1). Using the fact that
H}(W, L) 0, it is easy to extend the inclusion of L in K(Zn, 1) to a map of W to
K(Zny 1). But W L U cells of dimension &lt; 2&amp; — 1 so this map compresses (rel L)
into the (2k — l)-skeleton of K(Zn, 1), i.e. into L. Since r is a retraction, it
induces a surjection on homology, so that the restriction of r to L&apos; is a surjection
on homology and hence on nx as well. Since the lens spaces hâve the same

homology groups, r* is an isomorphism, so r must be a homotopy équivalence.

2.2. PROPOSITION. Suppose L, L&apos; are (2k - \)-dimensional orientée

homotopy lens spaces.
1. If&apos; L# - V imbeds in S2ky then there is a homology cobordism (W; L, L&apos;).

2. // Lo imbeds in S2k then there is a homology cobordism from L to itselfsuch
that the induced homotopy équivalence r:L—&gt;L satisfies r*(g) =ga, where a is a

unit in 7t\(L) Zw satisfying the conditions:

ak^l(modn), (aJ-lyn) \ for j&lt;k. (*)
3. // there is a homology cobordism as in (2) with fundamental group Zn, then

Lo imbeds in S2k.

4. // L() imbeds in S2k and there is a homology cobordism from L to L&apos; with
fundamental group Zn, then L# — L&apos; (and hence L&apos;o) imbeds in S2k.

Proof. (1) and (2) are shown in [R2, theorem 6]; W is essentially a component
of S2k - (L# - L&apos;) or of S2k - Lo x /. Suppose we hâve (W; L, L) as in (2). Glue
L to itself via the identity map, resulting in a homology S1 x S2k~~l by a

Mayer-Vietoris calculation. (The point is that the conditions (*) describe the
induced map on the homology of L.) Surgery on an imbedded circle hitting L
transversally in one point produces a homotopy S2ky hence a PL sphère with Lo
imbedded in it. Finally let (W\LyU) be a homology cobordism with nx(W)
cyclic. Remove an arc from L to L&apos;, and glue two copies along Li to get a

homology cobordism from Lo to itself. If now Lo is imbedded in S2ky split open
S2k along Lo and insert this new homology cobordism. The resuit is again S2* now
with LU - L&apos; imbedded.

From (2) we get an easy restriction on what lens spaces could conceivably
imbed in S2k.

2.3. COROLLARY. // Lo imbeds in S2k and jï^L) Zn then p&gt;k for ail
prime factors p of n. In particular if2\n then Lo does not imbed in S2k.

Proof. The above conditions are clearly necessary for there to be an élément
of order exactly k in Z*.
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Proposition 2.2 reduces the imbedding problem to the question of finding a

homology cobordism whose induced retraction acts in a given way on nx(L). It is

not hard to find obstructions to homology cobordism of homotopy lens spaces;
because we are primarily interested in the application to the imbedding problem
we restrict to the case when nx is of odd order. By Corollary 2.3 this does not lose

any generality.

2.4. PROPOSITION. Suppose (W\LyL&apos;) is a homology cobordism with

r:V-* L the induced homotopy équivalence.
1. r is normally cobordant [B2] to idL.
2. For ail prime powers d dividing the order of 7ix(L), pd(L&apos;){x) pd(L)(xr)-

Proof. The first part is shown in ([CS],p. 307); the point is that a homology
équivalence between two spaces induces a bijection between their sets of stable
bundles, hence the stable normal bundle of L x / cornes from a bundle on W. So

W itself provides the normal cobordism. Part (2) is shown in [R2] and dépends on
a Smith-theory argument of Gilmer [Gl].

Our main theorem is the converse of this proposition.

2.5. THEOREM. Suppose k&gt;2,r:L-&gt;L&apos; is a homotopy équivalence, and
that

1. r is (PL) normally cobordant to idL.
2. For ail prime powers d dividing n, pd(L&apos;)(x) — pd(L)(xr).

Then there is a PL homology cobordism W from L to L&apos; whose induced homotopy
équivalence is r, and with nx(W) Zn.

As an immédiate conséquence of Theorem 2.5 and Proposition 2.4 we get
necessary and sufficient conditions for L0aS2k and for L# — L&apos;aS2k. For the
rest of this section we assume that k &gt; 2.

2.6. THEOREM. Let L, L&apos; be homotopy lens spaces with jtl Zn.
1. L0c:S2k if and only if there is an aeZn such that ak 1 (mod/i),

(aJ — 1, n) 1 (/ &lt; k) for which the following hold:
(a) p(L)(Xa)^p(L)(x) (modZ).
(b) pd(L)(xa) - pd(L)(x) for ail prime-powers d dividing n.
2. // L0c:S2kt then L#-L&apos;czS2k if and only if there is an orientation

preserving homotopy équivalence r.L-^U with:

(b) pd(L)(x&quot;) - pd(L&apos;)(x) for ail prime-powers d dividing n.
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Proof This follows directly from parts 3 and 4 of Proposition 2 2 and the
above theorem

To prove Theorem 2 5, we use the homology surgery of Cappell-Shaneson
[CS] Suppose / W2k -^Lx/isa normal map such that dW L&apos; U L, / | L&apos; r,
and / | L idi Then an élément a(f) e r2k(Z[Zn]-^&gt; Z) îs defined which îs the
obstruction to doing surgery on W to make / into a homology équivalence The
obstruction group îs not even finitely generated, what makes o(f) computable îs

the fact that / | dW îs a homotopy équivalence This implies that o(f) îs in the

image of the natural map from L^(Z[ZW]) So to prove Theorem 2 5 we need to
compute (enough of) r2k{Z[Zn)-^Z) to detect the image of L2k(Z[Zn]) For the

computation of F2k we use the work of J Smith [S2] which interprets F2k as the

L-group of a certain locahzation of Z[Zn] (Smith&apos;s work holds in more
generahty, m the case stated below, the resuit îs due to Capell and Shaneson

(unpubhshed) See [V] for related results

2 7 DEFINITION Let e Z[ZJ-»Z be the augmentation, and set S

1} i + ker (e) Define the locahzed ring A S~lZ[Zn]

2 8 THEOREM [S2] Fh2k(Z[Zn]-*Z) Lh2k(A) The map Lh2k(Z[Zn])-+

r$k(Z[Zn]-*Z)-» L^k{A) is induced by the locahzation map s Z[Zn]-^A

The computation of L!lk{A) reduces, via the Ranicki-Rothenberg séquence
[RI]

to understanding L^k(A)y K{)(A), and the maps from L^k(Z[Zn]) and K0(Z[Zn])
We summanse the computations in

2 9 THEOREM 1 For ail n,K()(A) 0 In particular, L*(A) L%(A)
2 If x e L^k{Z[Zn\) has pd(x) 0 for ail pnme-powers d dwiding n, and has

Arf (x) 0 if k is oddy or signature (x) 0 if k is even, then s*(x) 0 in L

We will prove this m the next section, but first we deduce Theorem 2 5 from
ît

Proof of Theorem 2 5 Let / W—? L x / be a normal cobordism of the given
homotopy équivalence r to idL Smce r (and idL) is a homotopy équivalence,
there is an obstruction a(f) e L2k(Z[Zn]) to domg surgery on W (rel d) to make ît
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into an /i-cobordism; we would like to know that s*(o(f)) e L2k(A) is trivial.
Note that in the PL case we can kill the simply connected surgery obstruction
(the signature of Arf invariant, depending on the dimension) by taking the
connected sum with a standard surgery problem. This is the only part of the

argument where the PL case differs from the smooth one. The localization map
Z[Zrt]—» A induces a map between Ranicki-Rothenberg séquences:

&gt;Hl(Z2;K0(Z[Zn])). &gt; Lh2k{Z[Zn)) &gt; Lp2k(Z[Zn]) &gt;

i i
&gt; Lh2k{A) &gt; Lp2k(A)

By assumption, pd(a(f)) 0 for ail prime-powers dy so by 2.9(2) s*(a(/)) 0

in L^k{A). Since K0(A) is trivial, L%(A) is isomorphic to LP*(A). Hence

s*(°(f)) 0 and ^e theory of [CS] provides a homology cobordism from L&apos; to
L.

2.10. COROLLARY. // L&apos; is homology-cobordant to L2k~l there is a

(k — îyconnected homology cobordism from L&apos; to L.

Proof. If L&apos; is homology cobordant to L the prime-power multisignatures pd
are ail equal. The homology cobordism provided by Theorem 2.5 can be taken to
be (k — l)-connected, by performing preliminary low-dimensional surgeries.

3. Algebraic computations

The idea behind our computation is that (roughly speaking) the ring
splits up as a product of rings according to the various factors of n. Upon passing

to the localized ring A, the rings associated to composite factors of n become

trivial, while those associated to prime-powers remain. The tools which are used

in carrying out this idea are the Mayer-Vietoris séquences in K- and L-theory
due to Milnor [M2] and Ranicki [Ri] respectively. We remind the reader that a

diagram of rings

Rx &gt; R2

¦ i i
R3 * R4
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is cartesian if the associated séquence of the additive groups

0-» /?, -&gt; R2 0 R3~+ R*-+ 0

is exact

By définition the multiplicative set which we invert to obtain A is 5
1 + ker (e) 1 + (71 - l)Z[Zn] Any other ring we will locahze will be a quotient
of Z[ZW], and the multiplicative set will be simply the image of 5 It is a standard

exercise [A] to show that the locahzations of the rings in a cartesian square still
form a cartesian square

NOTATION We will dénote the dth cyclotomic polynomial by &lt;Pd, so that
Htm &amp;d(T) Tn -1 If ôd is a primitive dth-root of unity, then Z(£rf)
Z[T, T~l]/&lt;Pd(T) We call d composite if d is divisible by more than one prime
Finally, we will wnte n as a product n II d, where the d&apos;s are powers of distinct
primes

The key algebraic facts which distinguish pnme-powers from composite
numbers is the following well-known lemma (cf [L]) and îts corollary, which
shows how (for n composite) a large portion of Z[ZM] gets killed upon
locahzation

LEMMA Pd(l) \ (flp (d =p p a prime)

3 2 COROLLARY Let R Z[T, T~l]/I where I is an idéal containing an
élément of the form f(T) U&lt;Pd(T) where ail of the d&apos;s are composite Let
S 1 + (T - 1)/?, then S~lR is trivial

Proof /(l) n^(l) l by the lemma, hence (T - 1) | (f(T) - 1), îe
f(T)eS But f(T) e /, so 0 e 5 This forces S~lR to be trivial [A]

The first step is to spht up the ring Z[Zn] into pièces corresponding to the

factonzation of Tn - 1 into a product of cyclotomic factors, where we group
separately the polynomials corresponding to composite and pnme-power factors
of n The resuit is summanzed m the following lemma, whose proof we omit
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3.3. LEMMA. Let $comp be the polynomial

n *,.
r\n

r composite

// d dénotes the power of a prime d in n, then there is a cartesian square:

Z[Z_] —- Z[T, T~l]/&lt;I&gt;comp

The map from Z[Zn] to II Z[Zrf] is given by the obvious projections, and the map
from II Z[Z&lt;/] to II Z is given by the product of the augmentations.

Hence to localize Z[Zn], we must détermine the localization of each pièce in
the above cartesian square. According to Lemma 3.2, the &apos;composite pièce&apos;

becomes zéro when we invert the éléments in 5, so it suffices to understand what
happens to the ring

3.4. LEMMA. For d a power of the prime pt there is a cartesian square

S~lZ[Zd] Z

i i

Proof. First we need to construct the left-hand vertical map; the horizontal
maps are given by augmentations and the map Z—»Z(/?) is the obvious inclusion.
To construct the map S^ZfZd]-» Z(p)[Zd], we need to show that if g e Z\Ld\ has

e(g) 0, then 1 + g is invertible in Z{p)[Zd]. (Hère e dénotes the augmentation.)
To see this, note first that a polynomial in Z[Ld] is invertible in Z(p)[Z^] if and

only if it is invertible in ZP[Z&lt;/]. But it is easy to verify that if e(g) 0, then
g^ 0(mod/?), so that 1+g is invertible (modp). Hence we can define the
desired map as//g-*/ • g&quot;1.

To prove that the square is cartesian, we must verify that any h e Z(^)[Zc/]
with intégral augmentation e(h) may be written as a quotient//g for/, g e Z[Z,/]
with e(g) 1. We may write such an h in the form E {ajm)xly where
£ tf, s=0(modm), and m and p are relatively prime. Choose an integer u with
d • u 1 (mod m), then working modulo intégral terms:

- S a&lt;x&apos;)(u 2xl + l-d&apos;u)^w e(h) e Z.

Since eCEfJo1 xl) dy the second term has 6 1, and so the proof of the lemma is

completed.
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Putting together Lemmas 3 2 and 3 4, we obtam the desired sphtting of the
locahzed ring A

3 5 LEMMA There is a cartesian square

A &gt; Z

i i
nP zazA —» nP z(p)

We are now able to venfy the first part of Theorem 2 9

Proofof 2 9(1) According to Milnor [M2], the square in Lemma 3 5 yields an
exact séquence m (reduced) &amp;-theory

Since Z{p) is a local ring, K](Zip)) units of Z(p), and so the

map K^Ylp Z(p)[Zd])—&gt; Kx(llp Z(p)) is a surjection Therefore ît suffices to show

p

But Z{p)[Ld] fits into îts Rim diagram [M2]

Z{p)[Ld) &gt; Z(p

i

Both Z(^} and Z(A,}(Çj) are local rings (for the latter, see e g [SI]), and so hâve

vanishing £()-groups K^{Z{p)) evidently surjects onto Kx{Zp)y so the Mayer-
Vietons séquence shows the vanishing of K{)(Z{p)[Zd]) as well

The second part of 2 9 follows in a similar manner

Proof of 2 9(2) Since ail the #o-groups vanish, the square in Lemma 3 5

yields a Mayer-Vietons séquence [RI, §6 3 1] in //-theory (remember that

» Lp2k(A) &gt; L&apos;UZ) 0 © L&apos;ik(Z{p)[Zd]) &gt; © L&apos;ik(Z{p))

p p

î î

Lp2k(Z[Zn]) °-~^ Lp2k(Z) 0 © L
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The bottom square commutes, where a represents the simply-connected surgery
obstruction, either signature or Arf-invariant. Hence if an élément x e L%k(Z[Zn])
has ail the signatures pd{x) 0 and a(x) 0, it will go to zéro in L%k(A).

4. Compilations and applications

The criteria of Theorem 2.6 for existence of homology cobordisms lead to new
examples of imbeddings of punctured lens spaces.

EXAMPLE. Let L2k~x be a lens space with an imbedding of Lo in S2k, for
example one of the fibered imbeddings constructed in [R2]. Let x e L^(Z[Zn])
with multisignature p(x) 4(# + (~ 1)*X *)&gt; and let V be the homotopy lens

space obtained as the boundary of a normal cobordism from L whose surgery
obstruction is the élément x [Wl]. p(L&apos;) p(L) + p(jt), and it follows that L&apos;

cannot be ft-cobordant to L. Likewise, pd(L&apos;) pd(L) + pd(x), and we compute:

4.1. LEMMA. pd(x) 0foralld\n,d*n.

Proof. In gênerai, from [H], we hâve that if p(x) E?=d &lt;*rXr&gt; ^en pd(x)
m £*=i dkmXd (m — nid). In our case, then, pd(x) is evidently 0 for ail d i=- n.

4.2. THEOREM. There is a homotopy lens space L&apos; for which L(&apos;, imbeds in
S2k, but does not imbed as the fiber of a fibered knot.

Proof. Take L in the example above to be L(n; 1, c, ck~l), where c

satisfies the condition (*) of [R2], and where n is composite. Perform the
construction indicated to get the homotopy lens space L&apos;. By construction, L&apos; is

normally cobordant to L, so by the calculation above and Theorem 2.5, L&apos; is

homology cobordant to L and hence it too imbeds in S2k. However it cannot
imbed punctured in a fibered manner. For let/:L&apos;-^L&apos; be the monodromy of
the fibration; it induces a homotopy équivalence g from L to itself whose mapping
torus is a homology S1 x S2k~l. But it is easy to see that this implies that g* must
be multiplication by d for some j &lt; k. Since / is a homeomorphism,

p{L)(X) + p(x) p(L)(g.{x))
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since g is in fact realized by a homeomorphism. Therefore, Jt =/*(*), which is

clearly not so.

Similar examples presumably arise from 2-torsion éléments of L^(Z[Zn]).
Such éléments abound, e.g. the torsion subgroup of L2*(Z[Z15]) has an extra Z2

coming from KQ [KM]. To get examples of lens spaces which do not imbed
punctured in this way we need such éléments which are not invariant under
appropriate automorphisms of kx.

Our criteria for homology cobordism and imbeddings, while complète in
principle, hâve two unfortunate aspects. One concerns our original motivation for
this work - the imbedding question for linear lens spaces. The homotopy lens

space constructed in Theorem 4.2 is not a linear lens space, and it is not clear how
to carry out such a construction to get a linear lens space. In fact, extensive

computer calculations done on the CYBER computer at Courant hâve found that
for lens linear spaces of dimension 5 or 7, and n product of ^4 primes from the
list 7,13,19,31 (respectively 5,13,17, 37), Lo c S6 (cS8, respectively) if and only
if Lo imbeds fibered, and that the connected sum of two such lens spaces imbeds
if and only if the two are diffeomorphic. On the other hand there are examples
[GL] of non-diffeomorphic 3-dimensional lens spaces which satisfy the criteria for
L#L&apos; to imbed in S4. However, récent work of Fintushel-Stern [FS] on
Yang-Mills theory indicates that L is smoothly homology cobordant to L&apos; if and

only if L L&apos;. (This has been extended to more gênerai 3-manifolds [Ml, R3].) It
is not clear whether or not our theorem extends to give topological imbeddings,
because homology surgery does not work in gênerai in dimension 4 [CG], even
topologically.

The other aspect is that the criteria for homology cobordism are not
completely independent. It is known [Wl] that the class of p(L) modZ is a

normal cobordism invariant, and it is easy to verify that the same is true for ail
the pd(L). So the condition that pd(L) pd(L&apos;) for d=pr already places some
restriction on the normal cobordism class of L&apos;. In fact in low dimensions, the
condition about normal cobordism in Theorem 2.5 is superfluous.

4.3. THEOREM. // r:L&apos;-*L is homotopy équivalence of 5-dimensional

homotopy lens spaces, and pd{L){%r) pd(L&apos;)(x) for ail prime-powers d dividing
n, then r is normally cobordant to idL.

Proof We follow the détermination of normal cobordism classes of maps into
L as given in [Wl]. By the computation on p. 208, there are n normal cobordism
classes in [L5,G/PL] for each homotopy type. Hence it suffices to find, for each

lens space L3, n homotopy lens spaces Lf, with L, =* Lp but with pd(Lt) - pd(L})
not intégral for some prime-power d dividing n.
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CLAIM. (See below for proof.) Let L3 be a 3-dimensional lens space, and
&lt;y&lt;n. Then there is a 5-dimensional homotopy lens space Lf with p(L}) -

1

(Ly is constructed as a sort of suspension of L.

Using the formula of Hirzebruch [H], we compute that for n md,

pd{L}) - pd{Lt) 16(m//i)(; - i) Ë fri-

If y -=£ i (mod n), then we can choose a prime p with (y — i, p) 1, and let d the

largest power of p dividing n. It then follows from the above formula that

- p&lt;j(Li) is not intégral. Therefore, {pd} détermines the normal invariant.

Proof of daim. Let x} be a hermitian form with multisignature p(x,)
4j(x + X l)y an(l let (W4&gt; L;, L) be a normal cobordism which realizes xr (L; will
be Z[Zw]-homology équivalent to L.) If L; were S3/Zn, we could suspend the Zn
action on S3 to get a Zn action on S5 with p as desired. It is unlikely that L; is S3,

(in fact it can&apos;t be for n=3k by [R4]), but we can still &apos;suspend&apos; the action as

follows:
Let E-*Lj be the D2-bundle with Euler class Poincare dual to the generator

of ^i(Lj) corresponding to a fixed generator of jzx{L). Note that SE S1 x L, is

Z[Zn]-homology équivalent to S1 x S3. We would like to make 3E the boundary
of a homotopy circle; the only obstruction to doing this is the /a -invariant of Lr
But since n is odd, we can arrange that fi(Lj) be zéro by connected summing L}
with a homology sphère; this evidently doesn&apos;t affect the p-invariant. Hence

dE^dV5, where V-S1.
Let Lf EUV; it follows that L5} is a homotopy lens space. By crossing the

whole construction with CF2, one can show that the p-invariant of L] is exactly
that of a suspension, or in other words

which is équivalent to the claimed formula.

Remark. The proof just given can be used instead of the argument given on

pp. 213-214 of [Wl] to construct ail normal cobordism classes of 5-dimensional

homotopy lens spaces.
A final question raised by thèse investigations is whether a knot constructed as

the boundary of an imbedded punctured homotopy lens space is determined by its
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complément. Recall that there are at most two knots with a given complément,
and that thèse differ by a &apos;Gluck twist&apos; around the knot [G2, K]. AH linear lens

spaces admit 5&apos;-actions with codimension-two fixed point sets. This implies that a

knot which has a punctured lens space for a Seifert surface is determined by its

complément. For one can concentrate the Gluck twist to be non-trivial on
KxIœKxS1 where K dL0 and K x / c Lox / v(L()), and use the circle
action on Lo to extend the twist.

In fact the same is true if the Seifert surface is just a punctured homotopy lens

space. To see this, note that if L is a homotopy lens space, there is a linear lens

space L&apos; and a homotopy équivalence f:L-&gt;L&apos;. Conjugating the self-
diffeomorphism of L{) x / just described by the homotopy équivalence /, we
obtain a self-homotopy inverse F on L{) x / which extends the Gluck twist on
dL() x /. It is easy to see that F will be in fact a simple homotopy équivalence, and
that we can arrange that F be the identity on Lo x dl. If now L() is a Seifert
surface for a knot, F extends by the identity to give a simple homotopy
équivalence of the knot complément to itself which extends the Gluck twist on
the boundary of the tubular neighborhood of the knot. The surgery argument in
[C] now shows that this simple homotopy équivalence may be replaced by a PL
homeomorphism, so that the knot is determined by its complément.
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