The maximum principle at infinity for minimal surfaces in flat three manifolds.

Autor(en): Meeks III, William H. / Rosenberg, H.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 65 (1990)

PDF erstellt am:
17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-49724

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

The maximum principle at infinity for minimal surfaces in flat three manifolds

William H. Meeks III* and Harold Rosenberg

1. Introduction

Maximum principles are used as basic analytic tools for studying properties of functions defined on domains in \mathbb{R}^{n} and satisfying certain equations (e.g. elliptic). In general these maximum principles play a fundamental role in analysis on complete Riemannian manifolds, especially in the study of variational problems. For example, the well-known maximum principle for harmonic functions has had both a simplifying and unifying effect on the fields of harmonic and complex analysis.
H. Hopf [18] gave an important general maximum principle for second order linear elliptic partial differential equations. The Hopf maximum principle easily yields a maximum principle for solutions of the minimal surface equation. In this context the principle states that if $D \subset \mathbb{R}^{2}$ is a smooth connected domain and f_{1}, f_{2} are two smooth functions on D that satisfy the minimal surface equation, then the difference $f_{1}-f_{2}$ cannot have an interior maximum or minimum unless the difference is constant.

The maximum principle for minimal graphs gives rise to the following geometric result for minimal surfaces in Riemannian three-manifolds: If M_{1} and M_{2} are minimal surfaces in a Riemannian three-manifold that intersect at a common interior point p and M_{1} is on one side of M_{2} near p, then M_{1} intersects M_{2} in an open surface containing p. In particular it follows that two differential minimal surfaces cannot intersect in their interiors at an isolated point. This geometric version of the maximum principle has many important applications to the general theory of minimal surfaces and, in its higher dimensional formulation, to the study of minimal hypersurfaces in n-dimensional Riemannian manifolds.

Recently Hoffman and Meeks [7] proved a theorem, called the Strong Halfspace Theorem, that is related to the maximum principle for minimal surfaces. Their

[^0]theorem can be interpreted as a kind of maximum principle at infinity for minimal surfaces. This theorem is based on the next fundamental result.

HALFSPACE THEOREM. If $: M \rightarrow \mathbb{R}^{3}$ is a proper connected minimal immersion that is contained in a halfspace, then $f(M)$ is a flat plane.

The Halfspace Theorem fails for minimal hypersurfaces in $\mathbb{R}^{n}, n \geq 4$. In fact the n-dimensional $S O(n)$-invariant version of the catenoid, $C^{n} \subset \mathbb{R}^{n+1}$, is a properly embedded minimal surface with bounded x_{n+1}-coordinates.

Earlier using the work of do Carmo and Peng [2] and of Fischer-Colbrie and Schoen [4] on the geometry of stable minimal surfaces in \mathbb{R}^{3}, Meeks, Simon and Yau [14] showed that two properly immersed minimal surfaces in \mathbb{R}^{3} either intersect at some point or each is contained in a halfspace. This result together with the Halfspace Theorem yielded the following [7].

STRONG HALFSPACE THEOREM. Suppose M_{1}, M_{2} are connected properly immersed minimal surfaces in \mathbb{R}^{3}. If M_{1} and M_{2} are disjoint, then M_{1} and M_{2} are parallel planes.

It is the above generalized version of the Halfspace Theorem that has had many applications in recent years to global questions in the classical theory of minimal surfaces. However, for some applications of this type of result, there was a need to reformulate the Strong Halfspace Theorem to a more applicable form. Langevin and Rosenberg [9] gave a maximum principle at infinity for minimal surfaces of finite total curvature in \mathbb{R}^{3}. Their theorem stated that if M_{1} and M_{2} are disjoint, connected, properly embedded, minimal surfaces of finite total curvature and the boundaries of M_{1} and of M_{2} are compact (possibly empty), then dist ($\left.M_{1}, M_{2}\right)>0$. They also found interesting applications of their maximum principle at infinity to the study of the uniqueness of solutions to the minimal surface equation on the exterior of the unit disk in \mathbb{R}^{2}. Choi, Meeks and White [1] gave a generalization that they needed in their study of the isometry group of a properly embedded minimal surface in \mathbb{R}^{3}. What they found is the following: If M_{1} and M_{2} are two disjoint, connected, properly immersed, minimal surfaces that have compact boundary (possibly empty) and M_{1} is asymptotic to a plane, then dist $\left(M_{1}, M_{2}\right)>0$.

These maximum principles at infinity for minimal surfaces now play a fundamental role in virtually every aspect of the classical theory of minimal surfaces. In this paper we shall prove the following maximum principle at infinity for minimal surfaces in flat three-manifolds.

THEOREM 2 (Strong Maximum Principle at Infinity). Suppose N is a complete flat three-dimensional manifold and M_{1} and M_{2} are disjoint, connected, properly
immersed minimal surfaces in N with compact boundary (possibly empty). Then:

1. If ∂M_{1} or ∂M_{2} is nonempty, then, after possibly reindexing, there exists a point $x \in \partial M_{1}$ and a point $y \in M_{2}$, such that $\operatorname{dist}(x, y)=\operatorname{dist}\left(M_{1}, M_{2}\right)$.
2. If ∂M_{1} and ∂M_{2} are empty, then M_{1} and M_{2} are flat.

When $N=\mathbb{R}^{3}$, the strong maximum principle at infinity is a simple consequence of the following weaker version (see the proof of Theorem 3 in Section 2.)

THEOREM 1 (Weak Maximum Principle at Infinity). Suppose N is a complete flat three-dimensional manifold and M_{1} and M_{2} are connected properly immersed minimal surfaces in N with compact boundary (possibly empty). If M_{1} and M_{2} are disjoint, then dist $\left(M_{1}, M_{2}\right)>0$.

The proofs of the above maximum principles at infinity are informative and give some insight into the asymptotic behavior of minimal surfaces. Also their proofs introduce new constructions that are themselves useful in making nontrivial applications of the maximum principle at infinity. We refer the reader to [5], [8], [12], [13] for such applications.

The paper is arranged as follows. In Section 2 we prove the strong maximum principle at infinity for embedded minimal surfaces in \mathbb{R}^{3}. In Section 3 we reduce the weak maximum principle at infinity to the case where M_{1} and M_{2} are stable embedded minimal annuli of finite total curvature in $\mathbb{R}^{3} / S_{\theta}$ where S_{θ} is a screwmotion which is a nontrivial vertical translation composed with a rotation around the x_{3}-axis by $\theta, 0 \leq \theta<\pi$. In Section 4 we complete the proof of the weak maximum principle at infinity. Finally in Section 5 we show that the weak maximum principle at infinity implies the strong one.

2. The Strong Maximum Principle at Infinity for minimal surfaces in $\mathbb{R}^{\mathbf{3}}$

LEMMA 1. Suppose M_{1} and M_{2} are two disjoint connected minimally immersed hypersurfaces in a complete flat n-manifold. If the distance between the surfaces is realizable by a point in $\operatorname{Int}\left(M_{1}\right)$ and a point in $\operatorname{Int}\left(M_{2}\right)$, then M_{1} and M_{2} are totally geodesic.

Proof. This proof appears in [11] but for completeness we repeat the proof here. Suppose $p \in M_{1}$ and $q \in M_{2}$ are points where the distance between M_{1} and M_{2} is realized. Let l be a line segment in N with end points p, q that realizes the distance. Note l is orthogonal to M_{1} and M_{2}. Choose embedded disk neighborhoods $U_{p} \subset M_{1}$ and $V_{q} \subset M_{2}$ that are small enough so that $U_{p} \cup l \cup V_{q}$ is simply connected and lift this set to the universal cover \mathbb{R}^{n}. In \mathbb{R}^{n} let \tilde{U}_{p} denote the translate of U_{p}
along l so that p gets translated to q. Since l minimizes distance between p and q, \tilde{U}_{p} lies on one side of V_{q} at q. The maximum principle implies that a smaller neighborhood $\hat{U}_{p} \subset \tilde{U}_{p}$ actually is contained in V_{q}. In particular any small parallel translate l^{\prime} near p of l with one end point on U_{p} has its other end point on V_{q}. Since l^{\prime} minimize the length between U_{p} and V_{q}, it is orthogonal to both surfaces. Hence the unit normal to U_{p} and V_{q} is parallel near p and q. This implies that U_{p} and V_{q} are totally geodesic and hence by analyticity M_{1} and M_{2} are also.

COROLLARY 1. Suppose M_{1} and M_{2} are disjoint proper minimally immersed hypersurfaces in a complete flat n-manifold. If M_{1} is compact, then $\operatorname{dist}\left(M_{1}, M_{2}\right)=\min \left\{\operatorname{dist}\left(\partial M_{1}, M_{2}\right), \operatorname{dist}\left(\partial M_{2}, M_{1}\right)\right\}$.

Proof. Since M_{1} is compact and M_{2} is proper, there exists points $p \in M_{1}$ and $q \in M_{2}$ such that $\operatorname{dist}\left(M_{1}, M_{2}\right)=\operatorname{dist}(p, q)$. If $p \in \partial M_{1}$ or $q \in \partial M_{2}$, then we are finished. If $p \in \operatorname{Int}\left(M_{1}\right)$ and $q \in \operatorname{Int}\left(M_{2}\right)$, then Lemma 1 states that M_{1} and M_{2} are totally geodesic. In this case the proof of the corrollary is immediate.

LEMMA 2. The weak maximum principle at infinity holds for properly embedded minimal surfaces of finite total curvature and compact boundary in \mathbb{R}^{3}. In other words, if M_{1} and M_{2} are two such disjoint surfaces, then $\operatorname{dist}\left(M_{1}, M_{2}\right)>0$.

Proof. Suppose M_{1} and M_{2} are two disjoint properly embedded minimal surfaces of finite total curvature in \mathbb{R}^{3} with compact boundary. In this case $M_{1} \cup M_{2}$ has a finite number of annular ends, each of which is asymptotic to a catenoid or to a plane [20]. Suppose dist $\left(M_{1}, M_{2}\right)=0$. This implies there exist annular ends E_{1} of M_{1} and E_{2} of M_{2}, each asymptotic to a half-catenoid which we may assume is $C=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}=\left(\cosh x_{3}\right), x_{3} \geq 0\right\}$, or to a plane, that we may assume is \mathbb{R}^{2}. Clearly we could choose E_{1} and E_{2} to be graphs over the exterior of a large disk D in \mathbb{R}^{2}. Since $E_{1} \cap E_{2}=\varnothing$, we may assume without loss of generality that E_{1} lies above E_{2}. After a small vertical downward translation E_{1}^{\prime} of $E_{1}, \partial E_{1}^{\prime}$ still lies above E_{2} but outside of a large ball, E_{1}^{\prime} lies below E_{2}. It follows that $E_{1}^{\prime} \cap E_{2}$ is a compact nonempty one-dimensional analytic subset of both E_{1}^{\prime} and E_{2}.

We now show that $E_{1}^{\prime} \cap E_{2}$ is a simple closed curve γ and E_{1}^{\prime} is transverse to E along γ. Since E_{1}^{\prime} is a graph over $\mathbb{R}^{2}-D$, the projection $\Pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ of $E_{1}^{\prime} \cap E_{2}$ is a compact nonempty one-dimensional analytic variety in \mathbb{R}^{2}. If $\Pi\left(E_{1}^{\prime} \cap E_{2}\right)$ is not a connected homotopically nontrivial simple closed curve in $\mathbb{R}^{2}-D$, then $\mathbb{R}^{2}-\Pi\left(E_{1}^{\prime} \cap E_{2}\right)$ contains a compact component disjoint from D. This is impossible since the lifts of this component to E_{2} and E_{1}^{\prime} correspond to different solutions to the minimal surface equation with the same boundary values. Hence, E_{1}^{\prime} intersects E_{2} transversely in a single curve γ that is homotopically nontrivial on both E_{1}^{\prime} and E_{2}. Let \tilde{E}_{1} and \tilde{E}_{2} denote the ends of E_{1}^{\prime}, E_{2}, respectively with boundary γ.

The surfaces \tilde{E}_{1} and \tilde{E}_{2} represents distinct solutions to the minimal surface equation over the unbounded region Δ of \mathbb{R}^{2} with boundary curve $\Pi(\gamma)$ and they have the same boundary values along $\Pi(\gamma)$. Since \tilde{E}_{1} and \tilde{E}_{2} are asymptotic to translates of a fixed vertical catenoid, they have the same signed logarithmic growth in terms of $|\mathbf{x}|, \mathbf{x} \in \Delta$. (By the logarithmic growth rate of such an end \tilde{E} we mean the following: \tilde{E} is the graph of a function F on the exterior domain $|\mathbf{x}|>R$. The fact that F satisfies the minimal surface equation implies that F has an asymptotic expansion at infinity of the form: $F(\mathbf{x})=a \log (|\mathbf{x}|)+\mathcal{O}(1), a$ is the logarithmic growth rate of $\tilde{E}[17]$. Notice that the catenoid C to which we are assuming E_{1} and E_{2} are asymptotic, has logarithmic growth one.)

We will now give a simple geometric flux calculation to show that $\tilde{E}_{1}=\tilde{E}_{2}$. (This proof easily generalizes to deal with similar uniqueness questions that arise in the proof of Theorem 1.)

First consider a simple closed homotopically nontrivial curve α on the halfcatenoid C defined above. Suppose X is the gradient of the third coordinate function on C. Let η be the conormal of the unbounded component of $C-\alpha$. This means the unit vector field normal to α, tangent to C and pointing into the unbounded component of $C-\alpha$. The flux of X across α is

$$
F(\alpha, X)=\int_{\alpha} X \cdot \eta=2 \pi
$$

This is clear if $\alpha=\partial C$ and follows for any α by the divergence theorem applied to the harmonic function x_{3} on C. Similarly if \tilde{C} is a minimal annulus that is a graph asymptotic to C, then the associated flux across the boundary of \tilde{C} is also 2π. This follows from the Weierstrass Representation (see [20]).

Let X_{1} and X_{2} denote the gradient of the third coordinate functions of \tilde{E}_{1} and \tilde{E}_{2}, respectively. From the above discussion we conclude that the flux of these vectors fields across their common boundary curve γ are equal. But since \widetilde{E}_{1} lies below \tilde{E}_{2} along $\gamma, X_{1} \cdot \eta_{1}<X_{2} \cdot \eta_{2}$ at every point of γ. Integrating this inequality along γ contradicts the fact that the flux of \tilde{E}_{1} equals that of \tilde{E}_{2}. This contradiction proves Lemma 2.

The following corollary to Lemma 2 was first proved by Langevin and Rosenberg [9] using a different method.

COROLLARY 2. Suppose E_{1} and E_{2} are graphical solutions to the exterior Plateau problem for a compact domain in \mathbb{R}^{2}. If E_{1} and E_{2} each have the same limiting vertical normal vector, the same logarithmic growth and the same boundary, then $E_{1}=E_{2}$.

Proof. Suppose E_{1} and E_{2} satisfy the hypotheses of the corollary and $E_{1} \neq E_{2}$. In this case E_{i} is asymptotic to an end-representative C_{i} of a catenoid or a horizontal plane. Note that C_{1} and C_{2} have the same logarithmic growth and limiting vertical normal vector. Hence, C_{1} and C_{2} can be chosen to be translates of each other.

By the flux argument in the proof of Lemma 2, E_{1} does not lie above E_{2} near their common boundary. Hence any small upward vertical translation of E_{1} yields a E_{1}^{\prime} such that E_{1}^{\prime} intersects E_{2} near ∂E_{2}. Since a large vertical upward translation of C_{1} produces a surface that is a positive distance from C_{2}, a large upward translation of E_{1} produces a surface that is disjoint from E_{2}. The maximum principle for minimal surfaces implies there exists a smallest $T>0$ such that $\left(E_{1}+(0,0, T)\right) \cap E_{2}=\varnothing$. Clearly dist $\left(E_{1}+(0,0, T), E_{2}\right)=0$, which contradicts Lemma 2.

Recall that a noncompact surface in a Riemannian manifold is said to have least-area if compact subdomains have least-area with respect to their boundaries.

LEMMA 3. The weak maximum principle at infinity holds for properly embedded minimal surfaces with compact boundary in \mathbb{R}^{3}.

Proof. Suppose M_{1} and M_{2} are properly embedded disjoint minimal surfaces in \mathbb{R}^{3} with compact boundary and suppose that dist $\left(M_{1}, M_{2}\right)=0$. Suppose B is a large ball that contains $\partial M_{1} \cup \partial M_{2}$ in its interior and such that ∂B is transverse to $M_{1} \cup M_{2}$. In this case $M_{i}-B$ consists of a finite number of components for $i=1,2$. Since dist $\left(M_{1}, M_{2}\right)=0$, it follows that a component of $M_{1}-\operatorname{Int}(B)$ is a distance zero from a component of $M_{2}-\operatorname{Int}(B)$. Hence, replacing M_{1} and M_{2} by these components we may assume that $\partial M_{i}=M_{i} \cap B \subset \partial B$ for $i=1$, 2. By Corollary 1 we may assume that M_{1} and M_{2} are noncompact.

Our basic approach to proving the lemma will be to show that M_{1} and M_{2} can be separated by a pair of disjoint complete embedded minimal surfaces with compact boundary on ∂B and of finite total curvature. By Lemma 2 these finite total curvature surfaces are separated by a distance $\varepsilon>0$, which gives a lower bound on the distance between M_{1} and M_{2}. We now construct these finite total curvature surfaces.

The curves $\partial M_{1} \cup \partial M_{2}$ bound a subdomain Δ of ∂B with at least one component having boundary in both ∂M_{1} and ∂M_{2}. It follows that $M_{1} \cup M_{2} \cup \Delta$ is a connected properly embedded piecewise smooth surface in \mathbb{R}^{3}. This surface disconnects \mathbb{R}^{3} into two components C, D where D is the closure of the component that contains Int (B). Note that $\partial M_{1} \subset \partial D$ is homologous to zero in $B \subset D$. Since M_{1} and M_{2} are both noncompact and proper, there exists a proper $\operatorname{arc} \delta: \mathbb{R} \rightarrow \partial C$ that intersects
∂M_{1} transversely in a single point. If ∂M_{1} bounded a compact surface E_{1} in C, then since ∂M_{1} bounds a compact surface E_{2} in D, δ has odd intersection number with the cycle $E_{1} \cup E_{2}$, which is impossible. Hence ∂M_{1} is not homologous to zero $\bmod 2$ in C.

Notice that C has an analytic triangulation since it is an analytic manifold except along a finite number of compact transverse intersection curves. Change the metric in a compact neighborhood in C of $\Delta \subset \partial C$ in C so that the new metric satisfies (see the proof of Theorem 1 in [16]):

1. The 2 -simplices of ∂C have nonnegative mean curvature and the edges of two adjacent simplices meet in an angle less than or equal to π.
2. If σ_{1} is a 2 -simplex in Δ and σ_{2} is a 2 -simplex in $M_{1} \cup M_{2}, \sigma_{1}$ and σ_{2} adjacent, then the angle between σ_{1} and σ_{2} is less than π along their common boundary.

We make this change of metric so that the least-area Plateau problem can be solved in C, i.e. any smooth 1-cycle in C that is null homologous in C is the boundary of a least-area surface $\Sigma \subset C$ and $\operatorname{Int}(\Sigma)$ is smooth and embedded. Moreover if Σ meets ∂C at a point x, then the maximum principle implies that the connected component of Σ containing x is contained in ∂C (see Theorem 2 in [16]). Let $\Sigma_{1} \subset \Sigma_{2} \subset \cdots$ be a compact exhaustion of M_{1} by subdomains with smooth boundary and $\partial M_{1} \subset \partial \Sigma_{1}$. Let $\tilde{\Sigma}_{i}$ be a least-area surface in C with $\partial \tilde{\Sigma}_{i}=\partial \Sigma_{i}$ and so that $\tilde{\Sigma}_{i}$ is \mathbb{Z}_{2}-homologous to $\Sigma_{i}\left(\right.$ rel $\left.\left(\partial \Sigma_{i}\right)\right)$. In this case $\tilde{\Sigma_{i}} \cup \Sigma_{i}$ is a boundary in C and hence $\tilde{\Sigma}_{i}$ is orientable.

We will now prove that a subsequence of the $\tilde{\Sigma}_{i}$ converge. This follows by showing that this family of surfaces satisfy uniform area and curvature estimates that we will now describe in detail.

Let B be a ball in C and W a least-area surface embedded in $C, \partial W$ disjoint from B and W transverse to ∂B. (If $B \cap \partial C \neq \varnothing$, then assume $\partial B \cap \partial C$ is a disk.) Then $W \cap \partial B$ is the boundary of a region in ∂B of area at most half the area of ∂B. Consequently, there is a uniform local area bound for the $\tilde{\Sigma}_{i}$ (since $\tilde{\Sigma}_{i}$ minimizes in its \mathbb{Z}_{2}-homology class as a relative class.) Curvature estimates of Schoen [19] state that there exists a universal constant c such that for any stable orientable minimal surface T in a flat orientable three-manifold and $p \in T$ of distance d from ∂T, the Gaussian curvature is estimated by $|K(p)| \leq c / d^{2}$. This estimate leads to uniform curvature estimates for the family $\tilde{\Sigma}_{i}$ away from ∂M_{1}.

The above uniform area and curvature estimates for $\left\{\tilde{\Sigma}_{i}\right\}$ imply the family is compact, i.e., a subsequence of the surfaces $\tilde{\Sigma}_{i}$ converges to a proper least-area orientable minimal surface $\Gamma_{1} \subset G$ with $\partial \Gamma_{1}=\partial M_{1}$. (See the end of the proof of Theorem 3.1 in [15] for the proof that the smooth limit of least-area surfaces is
again least-area.) This compactness property for $\left\{\tilde{\Sigma}_{i}\right\}$ is standard and for completeness we outline its proof.

Consider a small ball $B(r) \subset C-\partial M_{1}$ of radius r. By Schoen's curvature estimates, after choosing a possibly smaller r, every component of $\tilde{\Sigma}_{i} \cap B(r)$ that intersects $B(r / 2)$ can be expressed as a graph of small gradient over a plane P_{i} in $B(r)$ passing through the center of the ball and P_{i} does not depend on the component. By the uniform area estimates, $B(r / 2) \cap \tilde{\Sigma_{i}}$ contains a bounded number of components independent of i and hence there are a bounded number of associated graphs. Suppose for the moment that for every $i, \tilde{\Sigma}_{i} \cap B(r / 2)$ contains one component and corresponding graph $G(i)$. Since a subsequence P_{i}, converge to a plane P in $B(r)$, the usual compactness theorems for minimal graphs imply that a subsequence $G\left(i_{j}\right)$ converges to a graph G over its projection to P. In the general case a subsequence of the corresponding graphs in $\tilde{\Sigma}_{i} \cap B(r)$ converge to a finite number of graphs. Note that $C-\partial M_{1}$ has a countable basis of balls $\left\{B_{j}\right\}$, where for each j and for every subsequence i_{k} the associated graphs $G\left(i_{k}, j\right)$ in $\tilde{\Sigma}_{i_{k}} \cap B_{j}$ have a convergent subsequence in B_{j}. Suppose that the subsequence $G\left(i_{k}, 1\right)$ converges in B_{1}. Then the associated subsequence of graphs in $\tilde{\Sigma}_{i_{k}} \cap B_{2}$ have a convergent subsequence in B_{2} as well as B_{1}. Continuing in this manner ad infinitum from B_{i} to B_{i+1} and taking a diagonal sequence, yields a subsequence of the $\tilde{\Sigma}_{i}$ that converges in each B_{j}. The limit Γ_{1} of this subsequence is a smooth properly embedded minimal surface in $C-\partial M_{1}$, has least area and has boundary ∂M_{1}. The boundary regularity theorem in [6] implies Γ_{1} is smooth along ∂M_{1}. This completes our outline of the proof of compactness for the family $\left\{\tilde{\Sigma}_{i}\right\}$.

Suppose now that a subsequence of the $\tilde{\Sigma}_{i}$ converges to a properly embedded least-area surface Γ_{1}. Since Γ_{1} is orientable and stable, it has finite total curvature (see [3] or Theorem 2.1 in [15]). Since $C-M_{1}$ is not smooth, the boundary maximum principle (see Theorem 2 in [16]) implies that either $\Gamma_{1}=M_{1}$ or Int $\left(\Gamma_{1}\right) \subset \operatorname{Int}(C)$. If $\Gamma_{1}=M_{1}$, then M_{1} has finite total curvature. If M_{2} also has finite total curvature, then the lemma follows from Lemma 2. Thus, after possibly interchanging M_{1} with M_{2} we may assume that $\operatorname{Int}\left(\Gamma_{1}\right) \subset \operatorname{Int}(C)$.

The surface Γ_{1} separates C into two components where one component contains M_{1} and the other contains M_{2}. Let H denote the closure of the component containing M_{2}. Arguing as above for $M_{2} \subset \partial H$ in place of $M_{1} \subset \partial C$, we obtain a proper orientable smooth stable minimal surface $\Gamma_{2} \subset H$ with $\Gamma_{2} \cap \partial H=\partial M_{2}$. Note Γ_{2} separates H into two components, one of which contains Γ_{1} and the other that contains M_{2}.

It follows from Lemma 2 that dist $\left(\Gamma_{1}, \Gamma_{2}\right)>0$ since these surfaces have finite total curvature and are minimal in \mathbb{R}^{3} outside of some compact neighborhood of their boundary curves. On the other hand, since $\operatorname{dist}\left(M_{1}, M_{2}\right)=0$, there exist points $p \in M_{1}, q \in M_{2}$ far from the origin such that $\operatorname{dist}(p, q)<\operatorname{dist}\left(\Gamma_{1}, \Gamma_{2}\right)$. But

Fig. 1.
any arc joining p to q must contain a subarc in C joining a point of Γ_{1} to a point of Γ_{2}. Hence dist $(p, q)>\operatorname{dist}\left(\Gamma_{1}, \Gamma_{2}\right)$. This contradiction proves Lemma 3.

THEOREM 3. Suppose M_{1} and M_{2} are disjoint properly embedded minimal surfaces in \mathbb{R}^{3} with compact boundary and M_{1} and M_{2} are not parallel planes. Then
$\operatorname{dist}\left(M_{1}, M_{2}\right)=\min \left\{\operatorname{dist}\left(\partial M_{1}, M_{2}\right), \operatorname{dist}\left(\partial M_{2}, M_{1}\right)\right\}$.
Proof. By the Strong Halfspace Theorem we may assume that ∂M_{1} or ∂M_{2} is nonempty. Let $\left(p_{i}, q_{i}\right) \in M_{1} \times M_{2}$ be a sequence of points such that $\lim \left(\operatorname{dist}\left(p_{i}, q_{i}\right)\right)=\operatorname{dist}\left(M_{1}, M_{2}\right)$. Then a subsequence of the vectors $v_{i}=q_{i}-p_{i}$ converges to a point v on the sphere of radius $\operatorname{dist}\left(M_{1}, M_{2}\right)$. Let M_{3} be the surface obtained by translating M_{1} by the vector v. By Lemma 3 we know that $M_{3} \cap M_{2} \neq \varnothing$. There are two cases to consider:

1. $\partial M_{3} \cap M_{2} \neq \varnothing$ or $\partial M_{2} \cap M_{3} \neq \varnothing$.
2. $\operatorname{Int}\left(M_{3}\right) \cap \operatorname{Int}\left(M_{2}\right) \neq \varnothing$.

Lemma 1 shows possibility 2 occurs only when M_{2} and M_{3} are contained in a plane. Hence we are in case 1 . But case 1 implies

$$
\operatorname{dist}\left(M_{1}, M_{2}\right)=\min \left\{\operatorname{dist}\left(\partial M_{1}, M_{2}\right), \operatorname{dist}\left(\partial M_{2}, M_{1}\right)\right\},
$$

which completes the proof of the theorem.

3. Reduction to the case of finite total curvature

In this section we reduce the proof of the weak maximum principle at infinity (Theorem 1 in the Introduction) to the case when the surfaces M_{1} and M_{2} are embedded stable minimal annuli with finite total curvature. We will call a noncompact surface an annulus if it is homeomorphic to $S^{1} \times[0,1)$.

LEMMA 4. Suppose that the weak maximum principle at infinity holds in all flat manifolds of the form $\mathbb{R}^{3} / S_{\theta}$ for the special case of embedded stable minimal annuli of finite total curvature. Then the weak maximum principle at infinity holds in all complete flat three-manifolds.

Proof. By Corollary 1 the weak maximum principle at infinity holds if M_{1} or M_{2} is compact. We will now assume they are both noncompact. Let N be an arbitrary flat three-manifold and suppose $M_{1}, M_{2} \subset N$ are two properly immersed noncompact disjoint minimal surfaces with compact boundary (possibly empty). In particular, N is noncompact. By the classification of complete flat noncompact three-manifolds [22], we know that N is finitely covered by \mathbb{R}^{3}, by $\mathbb{R}^{3} / S_{\theta}$ or by $\mathbb{T} \times \mathbb{R}$ where \mathbb{T} is a flat torus. After taking possibly a finite sheeted covering space of N and lifting the surfaces M_{1}, M_{2}, we may assume that N is $\mathbb{R}^{3}, \mathbb{R}^{3} / S_{\theta}$ or $\mathbb{T} \times \mathbb{R}$.

Choose a smooth compact analytic subdomain D of N such that ∂D intersects $M_{1} \cup M_{2}$ transversely, $\partial M_{1} \cup \partial M_{2} \subset D$ and D has nonempty intersection with M_{1} and with M_{2}. Without loss of generality we will replace M_{1} and M_{2} by their intersection with $N-\operatorname{Int}(D)$ and assume they are connected. Let C be a component of $N-\left(M_{1} \cup M_{2} \cup D\right)$ that contains points of M_{1} and of M_{2} in its boundary. We consider C with its induced metric (the distance between two points is the infimum of the lengths of paths in C joining the points). The metric completion of C, denoted \bar{C}, is a desingularization of \bar{C} which is the closure of C.

Notice that \tilde{C} is an analytic manifold whose boundary is defined by analytic inequalities, hence by [10] the boundary of \tilde{C} has an analytic triangulation. We denote by $M_{1}(C), M_{2}(C), D(C)$ the points of \mathcal{C} that project to M_{1}, M_{2}, D, respectively.

If $N=\mathbb{R}^{3} / S_{\theta}$ where S_{θ} is a screw motion, then choose the domain D to be a solid torus which is a regular neighborhood of the image of the axis of S_{θ}. If $N=\mathbb{T} \times \mathbb{R}$, then choose D to be of the form $\mathbb{T} \times\left[-t_{0}, t_{0}\right]$ for some t_{0} and in the case $N=\mathbb{R}^{3}$ choose D to be a ball. In all cases, the fundamental group of each component Δ of $N-D$ is generated by the fundamental group of the boundary of the component. It then follows from separation theorems that a properly embedded surface Σ in Δ, separates Δ into two components. This separation property has the useful consequence in our constructions that if Σ is a properly embedded surface in \tilde{C} with
$\partial \Sigma=\partial M_{1}(C)$ or $\partial \Sigma=\partial M_{2}(C)$ or $\partial \Sigma=\varnothing$, then Σ separates \tilde{C} into two components.
We next check that $\partial \tilde{C}$ is connected. If $\partial \tilde{C}$ is not connected, then \tilde{C} contains a properly embedded connected surface $\Sigma \subset \operatorname{Int}(\tilde{C})$ that separates one component of $\partial \tilde{C}$ from another such component. The surface Σ can be considered to lie in N and Σ is disjoint from D. By our previous discussion Σ separates N into a component that contains D and another component that contains some point of M_{1} or M_{2}. But since Σ is disjoint from $M_{1} \cup M_{2}$ it is clear that either M_{1} or M_{2} is disjoint from D, which is contrary to our choice of D. Thus $\partial \tilde{C}$ is connected.

Change the metric in a compact neighborhood of $D(C)$ in \tilde{C} so that the new metric satisfies:

1. The 2 -simplices of $\partial \tilde{C}$ have nonnegative mean curvature and the edges of two adjacent simplices meet at an angle less than or equal to π.
2. If σ_{1} is 2 -simplex in $D(C)$ and σ_{2} a 2 -simplex in $M_{1}(C) \cup M_{2}(C)$ that are adjacent, then the angle between σ_{1}, σ_{2} is less than or equal to π and different from π at some point.
We make this change of metric so that the least-area Plateau problem can be solved in \tilde{C}, i.e. if δ is a smooth cycle in \tilde{C}, that is null homologous in $\tilde{C} \bmod 2$, then δ bounds a least-area surface Σ and $\operatorname{Int}(\Sigma)$ is smooth and embedded (see [16] and [21]). Moreover if $\operatorname{Int}(\Sigma)$ meets $\partial \tilde{C}$ at a point x, then the maximum principle implies that the connected component of Σ containing x is contained in $\partial \tilde{C}$.

Since dist $\left(M_{1}, M_{2}\right)=0$ and $\partial M_{1} \cup \partial M_{2}$ is compact, we can choose the component C so that $\operatorname{dist}\left(M_{1}(C), M_{2}(C)\right)=0$ in the metric induced by the Riemannian metric on \tilde{C}. Notice that the boundary of $M_{1}(C) \cup M_{2}(C)$ is contained in the boundary of $D(C)$. Let $\Sigma_{1} \subset \Sigma_{2} \subset \cdots$ be a compact exhaustion of $M_{1}(C)$ by piecewise smooth subdomains where $\partial M_{1}(C) \subset \partial \Sigma_{1}$. Let $\tilde{\Sigma}_{i}$ be a least-area surface in \tilde{C} with $\partial \tilde{\Sigma}_{i}=\partial \Sigma_{i}$, and that is \mathbb{Z}_{2}-homologous to $\Sigma_{i}\left(\operatorname{rel}\left(\partial \Sigma_{i}\right)\right)$. The cycle $\tilde{\Sigma}_{i} \cup \Sigma_{i}$ bounds in \tilde{C}. In particular $\tilde{\Sigma}_{i}$ is orientable. (See Figure 1 where an analogous situation is described.) As in the proof of Lemma 3, a subsequence of the $\tilde{\Sigma}_{i}$ converge to a least-area surface Γ_{1}.

As in the construction of Γ_{1} at the end of the proof of Lemma 3, we can assume that $\operatorname{Int}\left(\Gamma_{1}\right) \subset \operatorname{Int}(\tilde{C})$. The surface Γ_{1} separates \tilde{C} into two regions, one of which contains $M_{1}(C)$ and the other H that contains $M_{2}(C)$. Arguing as before with $M_{2}(C) \subset \partial H$ in place of $M_{1}(C) \subset \partial \tilde{C}$, we obtain a properly embedded stable minimal surface Γ_{2} with $\partial \Gamma_{2}=\partial M_{2}$. Furthermore, Γ_{2} separates H into two components where one of the components has Γ_{1}, Γ_{2} and part of $D(C)$ on its boundary.

Recall that C was chosen so that $\operatorname{dist}\left(M_{1}(C), M_{2}(C)\right)=0$. Since Γ_{1} and Γ_{2} separate $M_{1}(C)$ and $M_{2}(C)$ in \tilde{C}, we conclude that dist $\left(\Gamma_{1}, \Gamma_{2}\right)=0$. However outside a compact subset of \tilde{C}, the metric on \tilde{C} is flat. Theorem 2.1 in [15] states that a stable orientable properly immersed minimal surface with compact boundary in a flat orientable three-manifold has finite total curvature (also see [3]). Thus, Γ_{1}
and Γ_{2} have a finite number of stable annular ends of finite total curvature. If $N=\mathbb{R}^{3}$, then Lemma 3 shows dist $\left(\Gamma_{1}, \Gamma_{2}\right)>0$, a contradiction. If $N=\mathbf{T} \times \mathbb{R}$, it was shown in Theorem 3 in [13] that the ends of Γ_{1} and Γ_{2} stay a bounded distance from each other, which contradicts dist $\left(\Gamma_{1}, \Gamma_{2}\right)=0$ (proved by a flux calculation similar to the calculation in the proof of Lemma 2). Thus, if the weak maximum principle at infinity holds in $\mathbb{R}^{3} / S_{\theta}$ for a pair of disjoint embedded stable minimal annuli, then the weak maximum principle at infinity holds in all flat three-manifolds.

4. The Proof of the Weak Maximum Principle at Infinity

We now prove Theorem 1 (Weak Maximum Principle at Infinity) stated in the Introduction. By Lemma 4 we need only check the weak maximum principle at infinity for two properly embedded disjoint stable minimal annuli $A_{1}, A_{2} \subset N=$ $\mathbb{R}^{3} / S_{\theta}$ that have finite total curvature and such that dist $\left(A_{1}, A_{2}\right)=0$. Let $\gamma \subset N$ denote the image of the x_{3}-axis. After removing compact subdomains from A_{1}, and A_{2}, we may assume that A_{1} and A_{2} are disjoint from γ. Let D_{R} denote the tubular neighborhood of γ of radius R.

Using the Weierstrass representation when $\theta=0$ and a related analytic representation when $\theta \neq 0$, we derived analytic formulas for a minimal annulus A of finite total curvature in N [12]. When A is embedded, we proved that it is asymptotic to one of the following standard ends (see [12] for precise definitions):

1. A plane or catenoid in N;
2. A flat vertical annulus in N;
3. Helicoid-type ends.

We will now derive a contradiction if $\operatorname{dist}\left(A_{1}, A_{2}\right)=0$. It follows immediately from the description of standard ends in [12] that if A_{1} is asymptotic to one of these standard ends S, then A_{2} is also asymptotic to the same end S. In particular A_{1} is asymptotic to A_{2} and, after removing compact subdomains of A_{1} and A_{2}, we may assume that A_{1} is a small graph over A_{2}.

Suppose that the limiting unit normal vector to S is v. Note v is vertical when $N=\mathbb{R}^{3} / S_{\theta}$ and $\theta \neq 0$. It follows that N has a parallel Killing vector field V that is generated by translation in the direction v in \mathbb{R}^{3}. Without loss of generality, we may assume A_{1} and A_{2} are chosen so that the normals to A_{1} and A_{2} make a small angle with v. Thus, after a small translation of A_{1} along the direction v, we obtain a new annulus A_{3} whose boundary is above A_{2} and that eventually lies below A_{2}. Standard ends do not intersect themselves after a small translation in the v or $-v$ directions. Thus, as in the proof of Lemma $2, A_{3}$ intersects A_{2} transversely in a simple closed curve α that is homotopically nontrivial on both A_{2} and A_{3}.

Let E_{2}, E_{3} denote the ends of A_{2}, A_{3}, respectively, with boundary curve α. Let V_{2}, V_{3} denote the orthogonal projection of V onto E_{2} and E_{3}. Let η_{2}, η_{3} denote the conormals to E_{2}, E_{3}, respectively. Since V_{2} and V_{3} are divergence free, the fluxes

$$
F_{2}=\int_{\alpha} V_{2} \cdot \eta_{2}, \quad F_{3}=\int_{\alpha} V_{3} \cdot \eta_{3}
$$

are geometric invariants of E_{2} and E_{3}. However, as shown in [12], F_{2} and F_{3} only depend on the corresponding flux of S. We conclude that $F_{2}=F_{3}$. However, since \tilde{E}_{3} lies below \tilde{E}_{2} along $\alpha, V_{2} \cdot \eta_{2}<V_{3} \cdot \eta_{3}$ along α and so $F_{2}<F_{3}$. This contradiction completes the proof of the weak maximum principle at infinity.

5. The Proof of the Strong Maximum Principle at Infinity

We are now in a position to prove Theorem 2 (Strong Maximum Princple at Infinity) stated in the Introduction. After possibly taking a finite sheeted cover of N and lifting the surfaces to this cover, we may assume that N is $\mathbb{R}^{3}, S^{1} \times \mathbb{R}^{2}, \mathbb{T} \times \mathbb{R}$ or $\mathbb{R}^{3} / S_{\theta}$ where θ is not a rational multiple of π. First suppose that $N \neq \mathbb{R}^{3} / S_{\theta}$.

Suppose $\operatorname{dist}\left(\partial M_{1}, M_{2}\right) \leq \operatorname{dist}\left(\partial M_{2}, M_{1}\right)$ and that dist $\left(\partial M_{1}, M_{2}\right)>\operatorname{dist}\left(M_{1}\right.$, $\left.M_{2}\right)>0$. Consider a sequence of points $\left(p_{i}, q_{i}\right) \in M_{1} \times M_{2}$ such that $\lim \left(\operatorname{dist}\left(p_{i}, q_{i}\right)\right)=\operatorname{dist}\left(M_{1}, M_{2}\right)$. Consider the isometry I_{i} of N taking p_{i} to q_{i} that lifts to a translation in \mathbb{R}^{3}. We may assume after picking a subsequence that I_{i} converges to an isometry $I: N \rightarrow N$. If $I\left(M_{1}\right) \cap M_{2} \neq \varnothing$, then there exist interior points $p \in M_{1}$, and $q \in M_{2}$ with $\operatorname{dist}(p, q)=\operatorname{dist}\left(M_{1}, M_{2}\right)$, which is impossible by Lemma 1. On the other hand, dist $\left(I\left(M_{1}\right), M_{2}\right)=0$ so the weak maximum principle at infinity shows $I\left(M_{1}\right) \cap M_{2} \neq \varnothing$. This proves the strong maximum principle at infinity in the case $N \neq \mathbb{R}^{3} / S_{\theta}$. Assume now that $N=\mathbb{R}^{3} / S_{\theta}, \theta$ an irrational multiple of π.

The proof of the strong maximum principle at infinity that we just gave for $N \neq \mathbb{R}^{3} / S_{\theta}, \theta$ an irrational multiple of π, fails to work when $N=\mathbb{R}^{3} / S_{\theta}$ because for $p \in M_{1}$ and $q \in M_{2}$ there does not always exist an isometry of N taking p to q. Let $\left(p_{i}, q_{i}\right) \in M_{1} \times M_{2}$ with $\lim \left(\operatorname{dist}\left(p_{i}, q_{i}\right)\right)=\operatorname{dist}\left(M_{1}, M_{2}\right)$ and consider lifts $M_{1}(i)$ and $M_{2}(i)$ to \mathbb{R}^{3} so the lifted points $\tilde{p}_{i}, \tilde{q}_{i}$ have the same distance in \mathbb{R}^{3}. If the vectors ($\tilde{q}_{i}-\tilde{p}_{i}$) converge to a vertical vector v, then translation in \mathbb{R}^{3} by v induces an isometry $I: N \rightarrow N$ that moves points a distance dist $\left(M_{1}, M_{2}\right)$ and such that $\operatorname{dist}\left(I\left(M_{1}\right), M_{2}\right)=0$. In this case the argument in the previous paragraph shows that the strong maximum principle at infinity holds for M_{1} and M_{2}.

When M_{1} and M_{2} are embedded in N with finite total curvature, then the vector v is always vertical. To see this first note that the ends of M_{1} and M_{2} are asymptotic
to standard ends and hence have vertical normal vectors at infinity (see Proposition 5.1 in [12]). Since the Gaussian curvature of M_{1} and M_{2} is asymptotic to zero, and the surfaces are a positive distance apart, it is clear that the sequence of points ($\tilde{q}_{i}-\tilde{p}_{i}$) converges to a vertical vector. We will now reduce the proof of the general case to the case of embedded surfaces of finite total curvature (where the principle is true by the previous discussion).

For the moment assume that M_{1} and M_{2} are embedded in N. Also assume that dist $\left(M_{1}, M_{2}\right)<\min \left\{\operatorname{dist}\left(\partial M_{1}, M_{2}\right)\right.$, dist $\left.\left(\partial M_{2}, M_{1}\right)\right\}$. Let γ denote the image of the x_{3}-axis in \mathbb{R}^{3} and let D_{R} denote the tubular neighborhood of γ of radius R. The failure of the strong maximum principle at infinity to hold for M_{1} and M_{2} means that distance between M_{1} and M_{2} is never obtained by points on the surfaces. This property also holds if we remove a bounded subset from each of the surfaces. There exists a $T>0$ such that after removing $M_{i} \cap D_{T}$ from $M_{i}, i=1,2$, the new surfaces (which we also call M_{1} and M_{2}) have their boundary in ∂D_{T}. $M_{1} \cup M_{2}$ separates $N-D_{T}$ into a finite number of components where 1 or 2 of these components have both M_{1} and M_{2} on their boundary. Let C be one of these components where the distance from M_{1} to M_{2} in C equals the distance from M_{1} to M_{2} in N.

Change the metric in a compact neighborhood of ∂C so that ∂C is a good barrier (see the proof of Lemma 4) for solving Plateau problems in C. Suppose M_{1} does not have finite total curvature. By the argument in Lemma 4, ∂M_{1} is the boundary of an embedded stable minimal surface Γ of finite total curvature and such that $\Gamma \subset \operatorname{Int}(C)$ and Γ separates C into a component containing M_{1} and a component containing M_{2}. Furthermore, the ends of Γ consist of a finite number of annuli. These annuli are asymptotic to either a finite number of parallel flat planes or catenoids in N or they are asymptotic to a finite number of parallel helicoid-type ends in N.

In the case the ends of Γ are asymptotic to parallel planes or catenoids, then outside of some large D_{R}, Γ disconnects $N-D_{R}$ into regions in which $M_{i} \cap\left(N-D_{R}\right)$ lift with compact boundary to \mathbb{R}^{3}. Replace M_{1} and M_{2} by components of $M_{i} \cap\left(N-D_{R}\right), i=1,2$, respectively, such that the new M_{1} and M_{2} are also closer at infinity than along their boundaries.

Let \tilde{M}_{1} be a lift of M_{1} to \mathbb{R}^{3}. First note that there are only a finite number of lifts $N_{1}, N_{2}, \ldots, N_{k}$ of M_{2} to \mathbb{R}^{3} such that the distance of the lift from \tilde{M}_{1} is less than $2 \cdot \operatorname{dist}\left(M_{1}, M_{2}\right)$. This is because the lifts of M_{2} to \mathbb{R}^{3} are separated by parallel catenoid or planar type ends all essentially a constant distance apart. Clearly one of the surfaces N_{i} in $\left\{N_{1}, \ldots, N_{k}\right\}$ has distance dist $\left(M_{1}, M_{2}\right)$ from \tilde{M}_{i}. However $\min \left\{\operatorname{dist}\left(\partial \tilde{M}_{1}, N_{i}\right), \operatorname{dist}\left(\partial N_{i}, \tilde{M}_{1}\right)\right\}>\operatorname{dist}\left(\tilde{M}_{1}, N_{i}\right)$. This contradicts the strong maximum principle at infinity in \mathbb{R}^{3} (Theorem 3). We are left with the possibility that the ends of Γ are asymptotic to parallel helicoid-type ends.

Now choose R much larger than T. In particular we choose R large enough so that the ends of Γ intersect $\partial D_{R^{\prime}}$ almost orthogonally in almost helices for $R^{\prime} \geq R$. Let $\beta=M_{1} \cap \partial D_{R}$ and note that β is homologous to ∂M_{1} in the component H of $C-\Gamma$ that contains M_{1}. Applying the argument in the proof of Lemma 3 to β in H, we see that β is the boundary of a least-area orientable surface Γ_{2} of finite total curvature and Int $\left(\Gamma_{2}\right) \subset \operatorname{Int}(H)$.

Recall that the metric in H agrees with the induced metric as a subset of N except in some compact neighborhood Δ of $\partial D_{T} \cap C$. We claim that by choosing R sufficiently large, the surface Γ_{2} will be disjoint from Δ and, hence, can be considered to be a minimal surface in N. First suppose that R is large enough so that $\Delta \subset D_{(1 / 10) R}$ and Γ intersects $\partial D_{R^{\prime}}$ almost orthogonally in almost helices for $R^{\prime} \geq \frac{1}{10} R$. In particular, the components of $\Gamma \cap\left(N-D_{\frac{1}{10} R}\right)$ are very flat multisheeted graphs over their projection onto the (x_{1}, x_{2})-plane. Consider a surface component E_{R} of $\Gamma_{2} \cap\left(D_{R}-D_{\frac{1}{10} R}\right)$. Since Γ_{2} is a stable orientable minimal surface in a flat three-manifold, the curvature estimates of Schoen [19] imply that the Gaussian curvature of $x \in E_{R}$ is at most κ / d^{2} where κ is a universal constant and d is the minimum of the distances of x to the boundary of D_{R} or $D_{\frac{1}{10} R}$. Hence, when R is large, the surface E_{R} is very flat near points in $\partial D_{\frac{1}{2} R} \cap E_{R}$. Since E_{R} is caught between the flat helicoid-type ends $\Gamma \cap\left(N-D_{\frac{1}{10} R}\right)$, these curvature estimates imply the existence of an $\varepsilon, 0<\varepsilon<\frac{1}{10} R$, such that the projection of $E_{R} \cap\left(D_{\frac{1}{2} R}-D_{\left(\frac{1}{2}-\varepsilon\right) R}\right)$ onto the $\left(x_{1}, x_{2}\right)$-plane is a submersion. It follows that if $E_{R} \cap D_{\frac{1}{10} R} \neq \varnothing$ for R large, then Area (E_{R}) grows quadratically in R. Assume that the translational part of S_{θ} is $(0,0,1)$. Since E_{R} is disjoint from $D_{T}, \partial E_{R}$ bounds a surface in $H \cap \partial D_{R}$ of area less than πR. Since Γ_{2} is a surface of least area, the area of E_{R} grows linearly in R, a contradiction. This proves that $\operatorname{Int}\left(\Gamma_{2}\right) \cap \Delta=\varnothing$ for R large, and hence, Γ_{2} is a minimal surface in N.

Since Γ_{2} separates $M_{1}-D_{R}$ from M_{2} and the surfaces M_{1} and M_{2} are asymptotically closer at infinity, dist $\left(\Gamma_{2}, M_{2}\right) \leq \operatorname{dist}\left(M_{1}, M_{2}\right)$. Since M_{1} and M_{2} are asymptotically closer at infinity, it is clear that we can choose some large value R so that dist $\left(\partial \Gamma_{2}, M_{2}\right)<2 \cdot \operatorname{dist}\left(M_{1}, M_{2}\right)$ and dist $\left(\partial M_{2}, \Gamma_{2}\right)>\frac{1}{2} R$. Since $\partial \Gamma_{2} \subset M_{1}$ is compact, dist $\left(\partial \Gamma_{2}, M_{2}\right)>\operatorname{dist}\left(M_{1}, M_{2}\right)$. Hence, Γ_{2} and M_{2} violate the strong maximum principle at infinity in N. If M_{2} also has infinite total curvature, then repeating the above argument with Γ_{2} and M_{2}, we can replace M_{2} by a properly embedded minimal surface Γ_{3} of finite total curvature such that Γ_{2} and Γ_{3} violate the strong maximum principle at infinity in N. As remarked earlier, the strong maximum principle at infinity holds for embedded surfaces of finite total curvature in N. This contradiction completes the proof in the case M_{1} and M_{2} are embedded.

If M_{1} and M_{2} are not embedded, the modification given in the proof of Lemma 4 by metrically completing components of $N-\left(M_{1} \cup M_{2} \cup D_{T}\right)$, reduces the argument to the embedded case. This completes the proof of Theorem 2.

REFERENCES

[1] T. Choi, W. H. Meeks III and B. White, A rigidity theorem for properly embedded minimal surfaces in \mathbb{R}^{3}. Journal of Differential Geometry, March, 1990.
[2] M. do Carmo and C. K. Peng, Stable minimal surfaces in \mathbb{R}^{3} are planes. Bulletin of the AMS 1, 903-906 (1979).
[3] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in 3-manifolds. Inventiones Math. 82, 121-132 (1985).
[4] D. Fischer-Colbrie and R. SChoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33, 199-211 (1980).
[5] C. Frohman and W. H. Meeks III, The topological uniqueness of complete one-ended minimal surfaces and Heegaard surfaces in \mathbb{R}^{3} (preprint).
[6] R. HARDt and L. Simon, Boundary regularity and embedded minimal solutions for the oriented Plateau problem. Annals of Math. 110, 439-486 (1979).
[7] D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces. Inventiones Math. (to appear).
[8] D. Hoffman and W. H. Meeks III, The asymptotic behavior of properly embedded minimal surfaces of finite topology. Journal of the AMS 2, 667-681 (1989).
[9] R. Langevin and H. Rosenberg, A maximum principle at infinity for minimal surfaces and applications. Duke Math. Journal 57, 819-828, (1988).
[10] S. Lojasiewicz, Triangulation of semianalytic sets. Ann. Scuola Norm. Sup. Pisa 18, 449-474 (1964).
[11] W. H. Meeks III, The topological uniqueness of minimal surfaces in three-dimensional Euclidean space. Topology 20, 389-410 (1981).
[12] W. H. Meeks III and H. Rosenberg, The geometry of periodic minimal surfaces (preprint).
[13] W. H. Meeks III and H. Rosenberg, The global theory of doubly periodic minimal surfaces. Inventiones Math. 97, 351-379 (1989).
[14] W. H. Meeks III, L. Simon and S. T. Yau, The existence of embedded minimal surfaces, exotic spheres and positive Ricci curvature. Annals of Math. 116, 221-259 (1982).
[15] W. H. Meeks III and S. T. Yau, The topological uniqueness theorem of complete minimal surfaces of finite topological type (preprint).
[16] W. H. Meeks III and S. T. Yau, The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z. 179, 151-168 (1982).
[17] R. Osserman, A Survey of Minimal Surfaces, 2nd edition. Dover Publications, New York, 1986.
[18] M. Protter and H. Weinberger, Maximum Principles in Differential Equations. Prentice-Hall, Englewood 1967.
[19] R. Schoen, Estimates for Stable Minimal Surfaces in Three Dimensional Manifolds, volume 103 of Annals of Math. Studies. Princeton University Press, 1983.
[20] R. SChoen, Uniqueness, symmetry, and embeddedness of minimal surfaces. Journal of Differential Geometry 18, 791-809 (1983).
[21] L. Simon, Lectures on geometric measure theory. In proceedings of the Center for Mathematical Analysis, volume 3. Australian National University. Canberra 1983.
[22] J. A. Wolf, Spaces of Constant Curvature. McGraw-Hill, New York 1967.
Mathematics Department
University of Massachusetts
Amherst, MA 01003, USA
and
Department de Mathématique
Université de Paris 7
75251 Paris, France
Received May 9, 1989/December 13, 1989

[^0]: *The research described in this paper was supported by research grant DE-FG02-86ER250125 of the Applied Mathematical Science subprogram of Office of Energy Research, U.S. Department of Energy, and National Science Foundation grant DMS-8611574.

