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Some examples of higher rank manifolds of nonnegative curvature

R. J. Spatzier* and M. StrakeI

1. Introduction

Let Mbea complète Riemannian manifold. We recall the notion of rank from
[2] (cf. also [3]). It measures the amount of flatness in a manifold.

DEFINITION 1.1. If y is a (complète) géodésie in M we define the rank of
y, rk y, as the dimension of the space of parallel Jacobi fields along y. Let the rank
of M, rk M, be the minimum of the ranks of ail geodesics in M. Also, we call a

géodésie y regular if rk y rk M.

Recall that a metric on M is locally irreducible if the universal cover of M does

not split isometrically as a product. In nonpositive (sectional) curvature and higher
rank, ail locally irreducible finite volume manifolds (with bounded curvature) are
locally symmetric spaces [1], [8], [12]. This resuit uses the spécial properties of
nonpositive curvature in an essential way. In fact, Heintze found examples of
normally homogeneous nonsymmetric spaces of nonnegative curvature and higher
rank [16]. In this note, we will obtain more examples of higher rank and nonnegative

curvature with some new features. Indeed, the whole point of this paper is to
show that higher rank metrics in nonnegative curvature can be very complicated.

One should compare our situation with the pinching theorems. There there is a

duality between positive and négative curvature. In fact, if M is any rank 1 compact
locally symmetric space with nonconstant curvature then any other 1/4-pinched
metric on M must be symmetric. For positive curvature, this is a conséquence of
Berger&apos;s famous rigidity theorem [10]. For négative curvature, this was proved by
Hamenstâdt [15]. Notice though that there really is no theorem dual to the sphère
theorem in négative curvature, due to the Gromov-Thurston examples of compact
manifolds with arbitrarily pinched sectional curvatures which are not homotopy
équivalent to a space with constant curvature. Similarly, our examples show that
duality fails for the higher-rank rigidity theorems.

*Partially supportée by the NSF, Sloan Foundation Fellow.

tPartially supported by the Heinrich-Hertz-Stiftung.
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300 R J SPATZIER AND M STRAKE

The construction of our examples is based on a simple lower estimate of the

rank of certain submersion metrics.

THEOREM 1.2. Suppose M is a compact Riemannian manifold and H a compact

group of isometries of M which acts on M with only principal orbits. Let
dcf

n : M -&gt; B M/H be the associated Riemannian submersion. Then rk 2* ^ rk Af —

dim F where F is the fiber of the submersion.

As Remark 2.4 shows, one cannot in gênerai improve the estimate of the rank
by rk M — rk F. Also note that the compactness of M is essential. For a noncom-
pact counterexample see Example 2.2. We do not know whether the theorem holds
true for a gênerai submersion with compact total space. If the submersion has

totally géodésie fibers it follows quite easily. Also one can always estimate the rank
of geodesics in the base space that are covered by a closed horizontal géodésie.

The rank of a manifold really is an infinitésimal measure of the amount of
flatness in a manifold. More globally, let us make the

DEFINITION 1.3. A fc-flat Fin a Riemannian manifold is a totally géodésie
isometric immersion of R* into M.

One can then ask whether every géodésie lies in a fc-flat. Let us call the largest
such k the global rank of M. Of course, the rank of M is always at least as big as

the global rank. Whether a converse holds, that is whether one can integrate the

parallel Jacobi fields to flats is only known in nonpositive curvature [2]. In ail of
our examples however, the two ranks are in fact equal (cf. Corollary 2.5).

In Section 3 we use Theorem 1.2 to détermine the rank of various standard
submersion metrics. In particular, we see in 3.3.1 that higher-rank metrics of
nonnegative curvature are not infinitesimally rigid, even for the standard symmetric
spaces.

COROLLARY 1.4. Let M be a rank k globally symmetric space of the compact
type with the standard symmetric metric g0. Then there is a l-parameter variation of
metrics gt of g0 of constant (global) rank k and nonnegative curvature such that none

of the metrics gt for t &gt; 0 is symmetric.

Let M be a manifold of global rank at least 2. One can study the &quot;intersection

pattern&quot; of the flats at a point p e M. More precisely, choose a sphère S centered

at p of radius less than the injectivity radius of p. Since the global rank is at least

2, the intersections of the k -flats through p with S define a (singular) foliation of S.

Call a point x e S regular ir the géodésie through p and x is regular. We define Weyl
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chambers as the connectée components of the regular points of the leaves of this
foliation. Note that the Weyl chambers are convex subsets of S (possibly empty).
Call this tesselation of the regular points of S by the Weyl chambers the building
germ Ap of the metric at p. Note that Ap is independent of 5. The building germ is

a cell complex where the cells are convex subsets of S.

We do not know how complicated thèse building germs can be. When M is a

symmetric space, the building germ at any point is just a spherical building in the
sensé of Tits [23]. This follows from the fact that flats in M correspond to flats in
the symmetric space of noncompact type dual to M [17]. For the déformations in
Corollary 1.4 the building germs are &quot;combinatorically isomorphic&quot; to those of the

symmetric space (in the sensé that there is a bijection of the flats through a point
p in the déformation to the flats through p in the symmetric space that préserves
intersections).

Thus not even the full intersection structure of the flats détermines the metric.
However, we can define a finer invariant, the Tits metric dT on S. If x and y are two
points on S, let dT(x, y) be the length (in the round metric on S) of the shortest

path Connecting x to y that is piecewise contained in a fc-flat through p. If there is

no such path, we set dT(x, y) oo. It is easy to see that the Tits metric is finite in
ail of our examples. Note that dT makes the building germ into a metric space. We
will see that the building germs of the déformations in Corollary 1.4 are not
isometric to that of the symmetric space. We do not know whether the Tits metric
détermines the metric in gênerai.

Let us call a manifold strongly inhomogeneous if it does not hâve the homotopy
type of a compact homogeneous space. Eschenburg constructed strongly inhomogeneous

compact 7-manifolds of positive curvature [13]. In Section 4 we use his

examples to show

THEOREM 1.5. There are strongly inhomogeneous compact 9-manifolds with

locally irreducible metrics of nonnegative curvature and {global) rank 2.

In fact, thèse manifolds are 2-sphere bundles over the Eschenburg examples. It
is much easier to find inhomogeneous metrics of higher rank and nonnegative
curvature. In fact, one can construct such metrics on 5(7(3) x si S2, starting from
an S ^invariant metric on S2.

Finally, in Section 5, we generalize Berger&apos;s theorem on the nonexistence of
variations positive of first order of the product metric on S2 x S2 to metrics of
nonnegative curvature with a 2-flat.

We are grateful to T. Farrell for showing us Proposition 4.2. Our proof is a

variation on his argument. Also we would like to thank C. H. Sah for several

helpful conversations.
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2. The rank of submersion metrics

Hère we discuss Theorem 1.2 and a variant of it. We will adopt the notations of
[5] and [20].

First we prove Theorem 1.2. Recall that M is a compact manifold and H a
closed group of isometries of M with only principal orbits. Give B MjH the
submersion metric induced by n : M -&gt; B. Consider a géodésie y in B with initial
vector jc. Since n is a Riemannian submersion we can define diffeomorphisms k&apos;

between the fibres F0 7i&quot;1(y(0)) and Ft n ~ \y(i)) in the following way: Let
k&apos;{p) yp{t\ where yp is the (unique) horizontal lift of y which starts at p e Fo.

Fix p € Fo and consider a vertical curve c through p with initial vector v c(0).
The diffeomorphism k&apos; gives rise to a géodésie variation a of yp:

a(s,t)=k&apos;(c(s)).

The corresponding Jacobi field Jv(t) along yp with Jv(0) v is vertical and

Set m:=rkM- dim Fo. As rk B is always at least 1, we may assume that m ^ 2.

Then we can find (m — 1) orthonormal parallel Jacobi fields Ex(t)9..., Em_x(i)
along yp which are orthogonal to yp and horizontal for t 0. By Lemma 2.1 below,
the inner product (EnJv}(t) is identically zéro for ail v e TPFO. By (*) we hâve

Typ(t)Ft {/„(*) |r € TpF0}. Thus every parallel field Et is horizontal for ail t s R.

Hence we get m — 1 vectorfields Èl n+El along y such that

£; (1)

^£I5 (2)

where A is the O&apos;Neill tensor of n (cf. [20]). By [5, 9.28f, p. 241] équation (2)
implies that Â(Èn y)y 0. Together with (1) this shows that Ëx is a parallel Jacobi
field along y. Therefore we hâve rk (B) ^ m.

To finish the proof of Theorem 1.2 we need the following generalization of the

Clairaut intégral.

LEMMA 2.1. Consider the Riemannian submersion n : M-+M/H, where M is a

compact Riemannian manifold and H is a closed subgroup of isometries such that ail
orbits of the H-action on M are principal orbits, Let y : R -? M be a horizontal
géodésie and E a parallel Jacobi field along y. If Jv(t) k\v dénotes the vertical
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Jacobi field along y defined by then

is constant in t.

Proof. As E is parallel we get

Since E is a parallel Jacobi field we deduce that/£ 0. Thus fv(t) at + b for some

a, b € R. Let / dim Fo dim H — dim Hp where Hp is the isotropy group of p.
Choose a basis vï9..., vt of T^Fq such that vt JT^/?), where Jff is a Killing field
gênerated by the action of H on M. Since k* commutes with ail éléments h e H, we

get

fc&apos;*«^(/0 ^i ° 7(0 (1 £ ï £ m - 1).

Therefore équation (*) yields

7(0=

Hence 7t7j is the restriction of a globally defined vector field on M. Since M is

compact we get

In particular, /y/ is bounded for ail i. By (*), fv is bounded. Thus a 0 and /„ is

constant. D

EXAMPLE 2.2. Theorem 1.2 and Lemma 2.1 do not hold in gênerai if M is not
compact. As an example, consider M S1 x R2 and let S1 act diagonally on M by
rotation. It is not difficult to verify that the rank of M/S1 is 1.

Consider a Riemannian submersion n : M ^&gt;B. Recall that a A&gt;flat in M is an
isometric totally géodésie immersion F : R* -? M. The next proposition summarizes

the relation between fc-flats of M and B,



304 R J SPATZIER AND M STRAKE

PROPOSITION 2.3. Letn:M-^B be a Riemannian submersion, y a horizontal
géodésie, y n © y and E a parallel Jacobi field along y.

1. If E is horizontal for ail t then Ë n+E is a parallel Jacobi field along y.

Conversely, ifÈ is a parallel Jacobifield and M has nonnegative curvature then
the same holds for the horizontal lift E of Ë along y.

2. Let F be a k-flat in M. If F is horizontal then Pd=n(F) is a k-flat in B.

Conversely, suppose M has nonnegative curvature. Then, given a k-flat f in B
there is a (uniquely determined) horizontal k-flat F through every point
pen~\F) with n{F) P.

Proof The first claim is a straightforward application of O&apos;Neill&apos;s formulas (cf.
[20] and the proof of Theorem 1.2). Indeed, we hâve

0 (R(Ë, M £&gt; &lt;R(E, y)y, E&gt; + \\AyE\\2.

Since M is nonnegatively curved, this shows that (R(E, y)y, E} 0, and therefore

R(E,y)y=0.
The second claim follows from the fact that the distribution defined by lifting

the tangent spaces of F is integrable. Indeed, as above, the O&apos;Neill tensor vanishes

for this distribution. D

REMARK 2.4. The inequality rk M/H £ rk M - rk H does not hold in
gênerai: Let S3 be the round 3-sphere. Set M=f S3 x S3 x S3 and let Hd= S3 s SU(2)
act diagonally on M. Then MjH with the submersion metric is diffeomorphic to
S3 x S3 and has rank 1, as is straightforward to show.

We can apply Theorem 1.2 to the case where M is a compact symmetric space
of nonnegative curvature and higher rank. Since a Riemannian submersion is

curvature non-decreasing, we obtain manifolds B M jH of nonnegative curvature
and higher rank which are in gênerai neither symmetric nor products. We will study
this class in the next section in more détail. The spécial case of a normal
homogeneous space B G/H is due to E. Heintze [16].

COROLLARY 2.5. Let M be a compact Riemannian manifold of curvature
K ^ 0 and H a Lie group acting freely on M by isometries. Then the space of orbits
B M\H inherits a metric of non-négative curvature &amp; and rk B ^ rk M — dim H.
Furthermore, if M is a symmetric space, à a 2-plane in TB with Ë(â) 0 then there

exists a complète 2-flat Ë such that â is tangent to Ë.

Proof The first part of this corollary follows directly from Theorem 1.2. Let a
be a horizontal lift of a through a point p s M. Since K(â) 0 we obtain by [20]
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that K(a) 0. Since M is a symmetric space there is a 2-flat F with a TPF. Let x
and y be a basis of cr and let E be the parallel field along yx with £(0) y, where

yx is the géodésie with initial vector x. Then E is tangent to F and horizontal by
Lemma 2.1. This shows that F is horizontal. By Proposition 2.3, Ft=n(F) is the
desired flat in B.

3. Simple applications

3.1. Normal homogeneous spaces (£. Heintzé)

Let M G be a compact Lie group with a biinvariant metric, H a closed

subgroup with dim H + 2 ^ rk G. By Corollary 2.5, the normal homogeneous space
5 G/H cames a metric of nonnegative curvature and rk ^ 2.

3.2. Biquotients

(cf. [13, p. 496] and [14]) Let G be a compact Lie group, H a closed subgroup
of G x G. We dénote the projection from G x G to the second factor by pr and

assume that the metric on G is left-invariant under G and right invariant under

pr (H). Then h {hu h2) e H acts on G by an isometry via

h hh;\
If the metric on G has non-negative curvature (which of course holds for the

biinvariant metric on G) and if H acts freely on G (or, more generally, if ail
isotropy groups are principal) then B -G/H with the submersion metric has

nonnegative curvature and rk B ^ rk M - dim H. As an explicit example, take

M SU(4) and H a SU(4) x 5(7(4). Let H be the circle generated by the tangent
vector (DUD2) e TXH, where the Dt are the diagonal matrices with coefficients

1,0, —1,0 and 2, 2, —4, 0 respectively. It is easy to check that H acts freely (cf.
[13] for the corresponding statement for SU(3)).

3.3. Quotients ofproducts

(cf. [10, p. 79] and [9]) Let G be a compact Lie group, Mo a Riemannian
manifold and H a subgroup of G which acts on Mo by isometries. Assume that G
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carnes a metric right invariant under //. Then H acts isometrically on M G x Mo
by

h (g,p)d=(gh~\hp).

î action is fixed point fr
of the type described in Corollary 2.5.

def
The action is fixed point free and the manifold B M/H GxH Mo is an example

3.3.1. Deforming symmetric metries

Hère we prove Corollary 1.4. By varying the metric on factors, we can restrict
ourselves to the irreducible case. Also, it clearly suffices to consider the case when
the rank is bigger than 1. Thus we let M be an irreducible globally symmetric space
of the compact type with rank k &gt; 1 with the standard symmetric metric g0. In the
construction above, let G H S1 be a subgroup of the isometries of M. Then
B S1 x si M is diffeomorphic to M and the rank of the submersion is at least k
(we will see below that it is actually k). If we multiply the given metric on S1 by \i2
then the metric on (B, g^) ((n2Sl) x sl M) converges to the initial metric on M as

li -* oo. Setting t l//i2, we obtain a déformation t -? gt of the symmetric metric g0

on M in the category of higher rank manifolds of non-negative curvature. If the
Sl -action on M is fixed point free, then this déformation is exactly of the type
described in [5, p. 252]. Fix some f l//*2&gt;0 and suppose from now on that
H S1 acts on M by translations. We will now study the structure of the flats in
(M, gt). We refer to the Introduction for the définition of building germs and the
Tits metrics on them.

Let ((d/dx), k) be the infinitésimal generator of the action of S1 on S1 x M. By
a simple calculation (cf. also Proposition 2.3) we obtain the

LEMMA 3.1. Let p e M, and let F be a k-flat through p in the standard metric.
Then the image P of TpF in S1 x M under the map

dx&apos;J

is horizontal for any s e S1. Conversely, every horizontal k-flat is of this form.

COROLLARY 3.2. The building germ A&apos; of Sxxs\M at any point is (combina-
torially) isomorphic with the Tits building A of M.

Proof The map from the lemma gives the desired isomorphism.



Some examples of higher rank manifolds of nonnegative curvature 307

COROLLARY 3.3. The Tits metrics on A and A&apos; are not isometric.

Proof. Fix a point p e M. Since M is a symmetric space, the building germ A

has some additional structure, namely A is simplicial. We call the unit vectors
corresponding to vertices in A the maximally singular vectors. The idea of the proof
is that some (k — l)-simplex in A becomes &quot;bigger&quot; in A&apos; with respect to the Tits
metrics.

To find this (k — l)-simplex we first claim that there is a maximally singular unit
vector w based at p with w ± k(p). In fact, the vertices of A décompose into finitely
many connected sets (in the Hausdorff topology on S) such that each such set

contains exactly one vertex from each simplex. This follows from the description of
the building of the dual symmetric space of the noncompact type by parabolic
subgroups [23]. The set a vertex belongs to is called the type of the vertex. Now
our claim follows easily. In fact, let w, and w2 be vertices of the same type in
(k — l)-simplices that k(p) and —K{p) belong to. Since the diameter of any
{k — l)-simplex in A is at most tc/2, wx and w2 lie in the northern and southern
hémisphère defined by k(p) respectively. Connect wx to w2 by a path in the vertices

of the same type as wx. The intersection point of this path with the equator defines

a maximally singular vector w perpendicular to k(p).
We may also assume that w is tangent to a flat F which is not perpendicular to

k(p). Indeed, let w&apos; be a unit vector not perpendicular to k(p). Then w and w&apos; are
connected by a fini te chain of flats. The first flat (starting from w) that is not
orthogonal to k(p) contains a maximally singular vector as desired.

For a unit vector v tangent to F, let v dénote the unit vector tangent to S1 x M
in direction of (— v • K(p)(d/dx), v). An easy calculation shows that

w&apos;v

Let # be a (k — 1)-simplex containing w. Since F is not perpendicular to k(p),
# is not perpendicular to k(p). Let {vx,..., v{} be the vertices of # which are not
orthogonal to *(/?), and let {wo w, wl9..., wk_t_x} be the remaining vertices.

Since M and therefore its Tits building are irreducible, not ail vt can be orthogonal
to ail wr Thus there are vertices v and w&apos; of # such that w&apos; is orthogonal to k(p)
and v is neither orthogonal to k(p) nor to w&apos;.

By the above calculation (*), the distances between w&apos; and the other vertices of
V orthogonal to k(p) are not decreased and the distances between w&apos; and the
vertices not orthogonal to k(p) definitely become bigger. This shows that there

cannot be a type preserving isometry between the building germs of M and
S1 x si M. Also note that this finishes the proof in rank 2.
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Finally, let &lt;f&gt; be any isometry between the building germs. Identifying the

building germs combinatorially as in Corollary 3.2, &lt;/&gt; defînes a combinatorial
isomorphism. In fact, it suffices to see that &lt;t&gt; maps regular points to regular points.
Regular points in the building germ of M are characterized by the property that
they hâve neighborhoods that are balls. Since the combinatorial isomorphism from
the last corollary is continuous the same characterization holds for A&apos;. An isometry,
of course, préserves this property.

Identifying A and A&apos; combinatorially as in Corollary 3.2, &lt;£ defines a combinatorial

automorphism of A. Then a finite power &lt;f&gt;1 of &lt;f&gt; is type-preserving [23,
Corollary 5.10]. Now interpret &lt;f&gt;l~l as an isometry of A. Then $ o 0&apos;~l defines a

type-preserving isometry between the building germs which is impossible.

Proof of Corollary 1.4. The argument for the last corollary can also be used to
show that the metrics gt are not symmetric. Let / be a maximally singular vector
orthogonal to k(p). Since the building is irreducible, there is a maximally singular
vector/&apos; in the star of/that is not orthogonal to/. Let T be the set of maximally
singular vectors of the same type as/&apos; in the star of/. Again, T is connected, and

as above, we may assume that not every vector in T is perpendicular to k(p). Using
the géodésie symmetry in p we see that there are vectors in T strictly to either side

of the equator defined by k(p). Since T is connected, there are also vectors in T
perpendicular to k(p). Using formula from the proof of Corollary 3.3, we see

that the distance between vertices of fixed type is not constant. Thus gt is not
symmetric.

This finally proves ail our claims about the déformations of the symmetric
metrics made in the Introduction.

4. A strongly inhomogeneous manifold of nonnegative curvature and higher rank

In this section we will construct a compact Riemannian manifold of nonnegative
curvature and higher rank which topologically is not a product and which is not
homotopy équivalent to any compact Riemannian homogeneous space. This will
prove Theorem 1.5.

We combine the constructions from 3.2 and 3.3: Consider G SU(3) and let
H Hkipq be a closed one-parameter subgroup of G x G as in [13]. The numbers k,
/, p and q describe how H S1 is embedded into G x G. Choose fc, /, p and q such
that the action of H on G does not hâve fixed points and such that (cf. [13])

n=\(k2 +12 + kl) - (p2 + q2 + pq)\ 2 mod 3.
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Let H also act on the standard sphère S2 by rotation. Then the space
X SU(3) xHS2 has nonnegative curvature and rank at least 2. Topologically, X
is a 2-sphere bundle over Eschenburg&apos;s strongly inhomogeneous 7-manifold
Y SU(3)/H. Metrically however we just endow 5C/(3) with the biinvariant metric
unlike Eschenburg who strives for positive curvature on the biquotient Y.

Proposition 2.5 implies that every flat 2-plane a (i.e. K(o) 0) tangent to X is

tangent to a complète 2-flat F : R2c» X. Thus the structure of the flat 2-planes in X
is similar to that of symmetric spaces or normal homogeneous spaces. However, X
is strongly inhomogeneous, simply connected and irreducible (topologically, i.e. X
is not a product). We will show this in the next two sections.

4.1. Homotopy and Homology of X

Using standard techniques from algebraic topology, we calculate the homotopy
and intégral cohomology groups of X. For simplicity, we write Hq{) for Hq(-, Z).
Also we dénote the cyclic group of order p by Zp.

PROPOSITION 4.1. Let r be defined as above. Then

(a) X is connected and simply connected and

K4(X)=Z2

(b) Hq(X) is isomorphic to Hq(Y)®Hq-\Y). In particular, we obtain

H\X) 0 H\X) Z2

H\X) Z H\X) Zr

H\X) Z2 H\X) 0.

Proof. The homotopy groups can be calculated easily from the exact homotopy

séquence of the fibration S1-?5(7(3) x S2-+SU(3) xsiS2.
As for the cohomology groups, the 2-sphere bundle S2 -? X^ Y gives rise to the

Gysin séquence
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where /j is multiplication with the Euler class e e H3(Y). In our case, e is 0 since the
fîxed points of the S *-action on S2 generate cross sections s : Y-+X. Thus the

Gysin séquence breaks up into pièces of length 3. Moreover for every a e HP(X) we
hâve a unique décomposition:

a rc*(a1) + an*(a2)

where &lt;x.x e HP(Y), a2 6 HP~2{Y) and a is an élément in H\X) such that ^(a) *

in #°(y) (cf. [19, p. 273]). This shows that Hq(X) is isomorphic to
Hq(Y)(BHg~2(Y). The précise formulas for the cohomology groups now follow
from Proposition 36 of [13].

4.2. Irreducibility

In this section we will show that X is irreducible. This was shown to us by
T. Farrell. Our proof is a variation of his argument.

PROPOSITION 4.2. (T. Farrell) The manifold X is topologically irreducible,
more precisely, X is not homotopy équivalent to any product of closed manifolds.

We begin by reducing to a spécial case.

LEMMA 4.3. Let V be a closed simply connected product manifold,
V Mm x Nn with 1 ^ m dim M ^ n dim N. Suppose V has the same intégral
cohomology groups as X. Then M is homeomorphic to S2 and N is a closed

7-manifold.

Proof Since V is simply connected and closed, we only need to show that
m =2. For the same reason, we see that m =/ 1. Suppose that m &gt;2. Kûnneth&apos;s

exact séquence

0 -&gt; (#*(M) ® H*(N))k -4 Hk(M x N) - ® Tor (HP(M), H%N)) -+ 0

implies H\M) H3(N) 0 since H\X) 0. Therefore, we see that m 4 and

« 5.

Note that H2{N) is torsion by Poincarè duality. Hence the Kûnneth séquence
also shows that H\N) 0 and H2{M) Z2. Since /F(M) is torsion-free for ail /&gt;,

ail the torsion groups in the Kûnneth séquence vanish and we get

\
z e h\n) s h\x) z e zr.
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Therefore we hâve H4(N) Zr. This gives a contradiction to the exactness of the
Kùnneth séquence

0 -H\M) ® H\N) Z2 ® Zr - H6(X) Zr. D

View X as the sphère bundle S{t\®el), where r\ is the complex line bundle
associated with the principal fibration Ç : S1 -+ SU(3) -» Y of Eschenburg&apos;s example
and el is the trivial R-bundle over Y.

LEMMA 4.4. The second Stiefel- Whitney class w2(t] ©c1) is not 0.

Proof. Since 7r,(S£/(3)) =0 for / &lt; 3, £ is 3-universal [21, Theorem 19.4].

Therefore, there exists a map f:S2-&gt;Y such that the pullback of £ is the

Hopf-bundle Ç : S1 -» S3 -&gt; S2 [21]. Let v be the complex line bundle associated to Ç.

By the functoriality of the Stiefel - Whitney classes we get f*w2(rj) w2(/*rç)
w2(v). Since w2(v) générâtes /f2(CP!, Z2), we see that w2(rç) is a generator of
#2(7, Z2) Z2. Thus w2(f/©£1) w2(v) #0. D

LEMMA 4.5. The space X is not homotopy équivalent to S2 x N for any closed

manifold N.

Proof. First recall from the proof of Proposition 4.1(b) that every élément

a g HP(X) has a unique décomposition as

a 7E*(a,) +a7t*(a2)

where a, g Hp(Y\ a2 g Hp\Y) and a is an élément in H2(X) such that ^(a) 1 in
In particular, choose a g H\Y) and j8 g #2(7) such that

The éléments a and Jî détermine the multiplicative structure of H*(X) completely.
By Theorem III of [19] we hâve /? w2(rj ®el) mod 2. Lemma 4.4 then shows that
p s 1 mod 2.

Now suppose that X is homotopy équivalent to S2 x AT. Let &lt;r0 te the generator
of H2(S2)c+H2(X) and h&gt;0 the generator of H2(N) c+H2(X). Note hère that
H2(N) Z by Kùnneth. We hâve the décompositions

o&quot;0 n*cx -f an*a2

wo n*wx + an*w2.
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Therefore we get

0 al 7i*(7? + 2an*(oxo2) + n*{aa\) +an*(aîp).

By Kûnneth we know that H2(N) Z and therefore H\N) Zr. Thus we get

0 rw2Q rfa**2 + n*((xw22) + a(7r*(2w, w2) 4- n*(w22P))]-

Since //2iV Z is torsion-free, we hâve

0 2wx W2 + Wljî 2&lt;X1(72 -h (T^jg.

In particular, we get w2fi g\$ 0 mod 2. As )8 1 mod 2, we see that

w2 a2 0 mod 2.

Notice that /f2(A&quot;) splits in two différent ways as Z © Z using Kùnneth on the

one hand and Proposition 4.1 on the other hand. Viewing ax and w, as integers, the

matrix which transforms one splitting to the other is given by the unimodular
matrix

,def/(7l G2 \
\Wl W2J

On the other hand, det U 0 mod 2 by (*) which yields the final contradiction.

4.3. Strong Inhomogeneity

The proof of the next claim is a fairly routine matter. We should say however
that our efforts were facilitated by several lucky accidents.

PROPOSITION 4.6. The manifold X is strongly inhomogeneous.

Proof. Step 1: Assume to the contrary that X is homotopy équivalent to some

compact homogeneous space X G/H where G is a transitive subgroup of the

isometry group of X and H is the isotropy group of some point x e X. In this first
step, we will restrict the possibilities for G by fairly gênerai arguments.

Since dim X dim X 9, H is a subgroup of 0(9). By Proposition 4.1 and the

exact homotopy séquence for H~+G-+%&gt; we obtain:
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1. no(G)=no(H)
2. the séquence 0 -* Z2 -? tt, (H) -&gt; 7r, (G) -? 0 is exact
3. the séquence 0 -&gt; n3 (H) -&gt; n3 (G) -&gt; Z2 -&gt; 0 is exact since n4 (X)

7C4(X) Z2).
As in [13, 4.2 and 4.3] we see that we may assume without loss of generality
(possibly replacing G by a finite cover) that

• H and G are connected
• G is compact, semisimple and simply connected
• H H&apos; x T2 where //&apos; is semisimple and simply connected, and T2 is the

2-torus.
Notice that by (3), G has p + 2 simple factors if //&apos; has /? such factors.

Fortunately, there are further restrictions on the Lie group G. For any compact
Lie group G define

m(G) min {dim M | M is a manifold on which G acts almost effectively}

(cf. [18, Chapter 4]). Assume that G is simply connected. Décompose
G Gx x • • • x Gs such that each G, is either simple or Spin (4) and there is at most
one SU(2). Thus each pair of S£/(2)&apos;s has been combined into a Spin (4). A
theorem due to L. N. Mann says that

(cf. [18, p. 68]).
In our case, G is a subgroup of the isometry group of X (up to a finite cover).

Therefore G acts almost effectively on X. In particular, we see that
m(G) ^ dim X 9. As the number of simple factors of G is at least 2, we obtain the

following list of possible factors Go of G (cf. [18, p. 68]):

Go rank dim Go

SU(2)
SU(3)
SU(4)
Spin (5)
Spin (7)
Spin (8)
Grt\

l
2

3

2

3

4

2

3

8

15

10

21

28

14

2

4

6

4

6

7

6



314 R J SPATZIERANDM STRAKE

Step 2: Hère we complète the proof of the proposition by checking ail possible
candidates for Go from the table above. We argue using the number p of simple
factors of H&apos;. We will dénote the Lie algebra of a Lie group G by G.

Case I: p=0
In this case H =T2 and G has two simple factors: G x G2. Moreover,

we get dimG =dim X + dimH= 11. Thus (up to permutation) we see that
G, SU(2) and G2 SU(3). Let px and p2 dénote the projections onto SU(2) and

SU(3) respectively. If dimp^r2)^ or dimp2(r2)=0 then 2 is a product
manifold, in contradiction to Proposition 4.2. Thus dimp^J2) 1. If
dim/?2(r2) 1 ^en again X would be a product manifold.

Finally, we get to the most critical case of ail, namely that dim p2(T2) 2. We

may arrange the projection in such a way that one of the S1&apos;s projects to 0 in
SU(2). Then

X (SU(2) x (SU(3)/Sl))/Sl

is a fiber bundle n :X-*S2 whose fiber is the homogeneous space W SU(3)/S\
the so-called Wallach example. Let D+ and D_ be the closed northern and southern

hémisphère in S2 respectively. Then the triad

(X, X+, Jf_
d= (Jf, 7T ~ 1(/)+ n ~ \D_

is exact. Set A X+nX_. Then the Mayer-Vietoris séquence

is exact. By [13], the Wallach examples hâve #3 W s #4W Z5 for some integer 5.

Also note that X+, Jf_ and A are trivial bundles and that H2A Z. Thus the

Mayer-Vietoris séquence above gives the exact séquence

Note that the map \j/ : H3A =H3W®H2W®Z^&gt;H3X+ @H2X_ is 0 on
H2 W (g) Z and consists of inclusions on /f3 ff Therefore

is exact. This implies that s r s 2mod 3 by our choice of r. However, 5=0 or
1 mod 3 since W is a Wallach example (cf. [13]).
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Case //:/? 1

In this case, H Hx x T2 where Hx is simple and G GX x G2x G3 with simple
factors G,. Since m(G) ^ 9, we conclude from the table that at least one Gn say Gl9
must be isomorphic to 5(7(2). Up to a covering, H is a subgroup of 0(9) so that
rk H £ 4 and therefore rk H, ^ 2. Thus we hâve the following possibilities:

G(2) (1)

Spin(5) (2)

SU(3) (3)

(4)

Let us first make the

OBSERVATION 4.7. Suppose that (in addition to Gx) G2 is isomorphic
with 517(2) and that /^ projects trivially into Gj^ + G^. Then n4(X) contains
n4SU(2) ®n4SU{2) Z2©Z2. In particular, Xis not homotopy équivalent with X
as n4X Z2.

Now we will exclude ail the possibilities for Hx :

//1==G(2): From the table we find that G2 SU(3) and G3 G(2) (up to
permutation). Thus X ^SU(2) x SU(3)/T2 since //\ G(2) must project trivially
onto SU(2) x SU(3). This however is our Case I.

Hx Spin (5): By the observation above we may assume that only Gx 5(7(2).
From the table we see that G2 5(7(3) and G3 Spin(5). Again #,=Spin(5)
projects trivially onto SU(2) x SU(3).

Hx SU(3): Then we see that G2 G3 SU(3). Therefore we hâve again that
X^SU(2) xSU(3)/T2.

Hx SU(2): Then dim G dim X + dim H 14. Therefore we get G2 SU(2),
G3 SU(3) and JT 5f/(2) x 5f/(2) x SU(3)/SU(2) x T2. If ^ projects trivially
into Gj^ + Ç2 then we are done by our observation. Otherwise, X is again homeo-

morphic to SU(2) x SU(3)/T2.

Case III: p 2

In this case, H Hxx H2x T2 and G GX x G2x G3x G4 with simple factors
Ht and Gf. Since rk H £ 4, ^ and #2 must hâve rank 1. Thus HX H2 SU(2).
Since m(G) ^9, at least 3 factors, say Gu G2 and G3 equal 5f/(2). Therefore
(j4 5(7(3) since dim G 17. By the observation, ^ or ^ must project nontriv-
ially into Gj + G^. Therefore X s 5t/(2) x 5£/(3) x 5C/(3)/5t/(2) x T2 and we are
back to the previous case.

Clearly p £ 2 as rk H £ 4, and we hâve checked ail the possibilities.
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5. First order rigidity

A famous problem of Hopf asks whether there is a metric of strictly positive
curvature on S2 x S2. More generally, one can ask whether there are metrics of
positive curvature on any manifold M admitting a metric g of nonnegative
curvature and rank at least 2. Let us consider a differentiable variation t h-&gt; g, of the

metric g =g0. We call g, positive if (M9gt) is complète and has strictly positive
curvature Kt for ail t &gt; 0. We call g, positive offirst order if the derivative

is strictly positive for ail 2-planes &lt;x € Kôl(0) [4].

If a metric variation is positive of first order and M is compact then the

variation is positive. If Mx and M2 are compact Riemannian manifolds without
Killing fields, then the Riemannian product does not admit any positive variations
which dépend analytically on / [6]. Much less is known if there are Killing fields [7].
Notice Remark 2.4 where one can deform the product metric on S3 x S3 to a metric
of rank 1.

Let us now consider variations g, positive of first order. Riemannian products
and symmetric spaces of higher rank do not admit such variations [4], [22].
The obstruction to their existence are the embedded flat k-ton i \Tk&lt;+M. More
precisely, if g, is a variation positive of first order, then the pulled back metric

gt t*gt on Tk is also positive of first order. Thus g, is positive. This is impossible
since Tk does not admit a metric of positive curvature. By a similar argument we
hâve

PROPOSITION 5.1. Let M be a compact manifold of nonnegative curvature.

Suppose there exists an immersed totally géodésie k-flat i : R*c»M with k&gt;\. Then

M does not admit a variation positive offirst order.

Proof Let g0 be the metric of M. Suppose g, is a

g0. Then the pulled back variation g, i*gt is als

t variation positive of first order
of g0. Then the pulled back variation g,&quot;= i*gt is also positive of first order. Now
we can estimate the curvature functions Kt of g, from below. Let à be a 2-plane in
7*R*. Using the formulas in [6, Section 3] and the compaetness of M it is

straightforward to check that the coefficients of the Taylor expansion around t 0

of t\-*Rt{S) are bounded from above by a constant independent of â. Since

R&apos;t(d) K&apos;(i+8) by [22, Lemma 4.1], we obtain

Kt{d) t{K&apos;{i+8) + tD{c)) &gt; t(ô + /(-C))
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where D is the remainder term in the Taylor expansion and à and C are positive
constants independent of d. Since M is compact, we hâve \i*gQ &lt;&gt; i*gt ^ 2/*g0 for ail
small t. Therefore gt is a complète metric on R* with positive curvature bounded
from below. This is clearly a contradiction to the theorem of Myers [10].
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