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Locally flat 2-spheres in simply connected 4-manifolds

Ronnie Lee and Dariusz M. Wilczynski

Introduction

Let N2k be a closed (k — 1)-connected manifold. It is known that for k ^ 3, each

intégral homology class x e Hk(N) can be presented by a locally flat (differentiable,
piecewise linear, or topological) embedding /: Sk-&gt;N,f+[S*] x, and that for
k ^ 4, any two such embeddings are isotopic (see [H], [K-S]). Both of thèse facts
hâve important conséquences for the classification of closed manifolds (for the
classification of (k — l)-connected 2k-manifolds see [W,]). It is also known that
both statements fail to be true when k 2. Knot theory in dimension 4 provides of
course counterexamples to the isotopy statement. First examples of homology
classes that cannot be represented by locally flat 2-spheres were found by Kervaire
and Milnor [K-M], Tristram [T], Rochlin [R], and Hsiang and Szczarba [H-S].
Several authors investigated the embedding problem in the case of some spécifie
manifolds like S2 x S2 and CP2 # CP2. In thèse cases it was possible to détermine

precisely which classes can be represented by embedded 2-spheres and a complète
analysis was carried out by Freedman [FJ, Kuga [K], Suciu [S], Fintushel and
Stern [F-S], Lawson [L], and Luo [Lu]. In particular, it follows from their results
that différent classes are representable in the differentiable and topological
catégories. Among results showing a particular method of embedding a 2-sphere in a

simply connected 4-manifold we should also mention papers by Wall [W3], Board-
man [B], and Freedman and Kirby [F-K]. Some aspects of the embedding problem
in relation to 4-dimensional surgery hâve also been considered by Cappell and
Shaneson [C-S], Quinn [Q,], and Freedman [F2].

The purpose of the présent paper is to discuss both questions of existence and

uniqueness up to isotopy for locally flat 2-spheres topologically embedded in a

simply connected 4-manifold. Concerning the existence, we shall show that two well
known obstructions for embedding 2-spheres in 4-manifolds (op. cit.) are essentially
the only obstructions for this problem in the topological category. (In the differentiable

category, Donaldson theory provides additional obstructions.) The embeddings

f:S2-+N4 that we are going to construct in the process of proving this
statement (Theorem 1.1) will hâve one additional property: they hâve an abelian
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fundamental group of the complément We shall refer to them as &quot;simple&quot;

embeddings
The significance of this additional condition on the fundamental group becomes

clear in the context of the isotopy classification of embedded 2-spheres representing
the same homology class Indeed, given a locally flat embedding / S2^N4 and a

knotted, locally flat 2-sphere K ç S4, we can vary the fundamental group
n^N-fiS2)) by means of the connected sum opération (N,f(S2)) #(S4, K)
(N,f&apos;(S2)) Many nonisotopic embeddings /&apos;, representing the same homology
class, can be created m this way Simple embeddings, however, often enjoy the

following ngidity property they are topologically ambient isotopic îff they represent
the same homology class This îs roughly the contents of our Theorem 1 2

The paper îs organized in four sections Our main results are stated in Section
1, there we also introduce some notation and terminology In Section 2, as a

préparation for the results of the next two sections, we prove stable versions of
Theorems 1 1 and 1 2 In Section 3, we reformulate our problems in tenus of certain
finite group actions on 4-manifolds Working in this equivanant context, we make

a réduction of our topological statements to questions about certain hermitian

painngs It îs then a purely algebraic task to décide when a simple embedding

representing given homology class exists or whether it îs unique up to isotopy The

remaining algebra îs carned out m Section 4, where we also prove Theorems 1 1

and 1 2

Though in pnnciple the methods of this paper apply to ail homology classes,

our results hère concern mainly homology classes of odd divisibihty There are

some additional complications in the case of even divisibihty, thèse classes must be

given spécial considération and we plan to address this issue in a subséquent paper
It îs a pleasure to acknowledge our debts to Sylvain Cappell, Jim Davis, John

Ewing, Ian Hambleton and Shmuel Weinberger Conversations with them were

important at vanous stages of this work

1. Main results

Let N be a closed, onented, simply connected, topological 4-mamfold, and let

à H2(N, Z) x H2(N, Z) -&gt; Z dénote the unimodular, symmetnc painng defined by
the algebraic intersection number of 2-cycles, A(x, y) x y It îs a well known
resuit of J H C Whitehead that the onented homotopy type of N îs completely
determined by this intersection painng A Moreover, by the work of Freedman [F,],
each unimodular form A on a free abehan group of finite rank occurs as the

intersection painng of exactly one or two simply connected 4-manifolds N, depend-

îng on whether À îs even or odd In the case of an odd intersection painng A, the



390 R LEE AND D M WILCZYNSKI

two nonhomeomorphic 4-manifolds are distinguished by their Kirby-Siebenmann
invariants. Recall that the Kirby-Siebenmann invariant of N,

is the stable obstruction to a differentiable structure on N (cf. [K-S]).
As already observed by Wall [W3], for the purpose of representing homology

classes in H2(N) by embedded 2-spheres, one has to make a distinction between
characteristic and ordinary classes. A homology class jc is said to be characteristic

if its mod 2 réduction [jc]2 e H2(N; Z2) is Poincaré dual to the Stiefel-Whitney class

w2(N) (i.e. x • z &lt;w2(iV), z} mod 2 for each z e H2(N)) and ordinary otherwise.
For a characteristic class jc, jc • x a(N) mod 8 (see [M-H], Lemma 5.2), where

a(N) dénotes the signature of N signature of A).

Since H2(N) is torsion free, each x # 0 is an intégral multiple of some primitive
indivisible) class y e H2(N), x dy. If x # 0 and d &gt; 0, d is called the divisibility

of jc.

THEOREM 1.1. Let x e H2(N) be a class of odd divisibility d. There exists a

locally flat, simple embedding f:S2-&gt;N representing x if and only if
(i) KS(N) $[&lt;t(N) — x • x] mod 2, when x is a characteristic class, and

(ii) b2(N) î&gt; maxo*J&lt;d \&lt;t(N) - 2j(d -j)
Both conditions in Theorem 1.1 are known to be necessary (also for d even).

Condition (i) is a topological version of a resuit due to Kervaire and Milnor
[K-M]. The proof is essentially the same as that in [K-M], the main ingrédient
being Rochlin&apos;s formula relating the signature of a closed spin 4-manifold to its

Kirby-Siebenmann invariant. Inequality (ii) is due to Rochlin [R] (cf. [H-S]) in
the differentiable category, and it follows from the G-signature formula applied to
a ramified covering of N branched over the embedded 2-sphere. By an argument of
Wall [W4], (ii) holds also for a locally flat topological embedding. The proof of
Theorem 1.1 will be completed in Section 4, where assuming (i) and (ii) we
construct the required embedding. It should also be pointed out that the existence

of a simple embedding representing a primitive class x in Theorem 1.1 can be

deduced directly from Freedman and Quinn&apos;s results.

THEOREM 1.2. Let x € H2(N) be a class of odd divisibility d9 and if d&gt;\

assume that b2(N) ^ 2. If
b2(N)&gt; max \a(N) - 2j(d-j)(l/d2)x • x\,

then any two locally flat, simple embeddings S2-+N representing x are ambient

isotopic.
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COROLLARY 1.3. Any two locally flat, simple embeddings S2-&gt; N representing
a homology class of odd divisibility are ambient isotopic in N # (S2 x S2).

We remark that the isotopy statement of Theorem 1.2 holds true in the
differentiable category as well provided

b2(N) &gt; max \a(N) - 2j(d -j)( l/d2)x • x\ + e(d, m)
0 £j &lt;d

for some integer e(d, m) ^ 0 which dépends only on d and m. The proof is

essentially the same; in addition, one only needs to know that the smooth
s-cobordism theorem and Quinn&apos;s isotopy theorem hold stably, up to connected

sum with copies of S2 x S2 [Q,], [Q2].

2. Stable embeddings

The purpose of this section is to discuss locally flat embeddings S2-*N* in
the stable category. Let N be a closed, oriented, simply connected 4-manifold
as in Section 1 and let jc g H2(N). We say that x is stably represented if
x®0€H2(N#k(S2x S2)) is represented by a locally flat embedding /: S2-&gt;

N # k(S2 x S2) for some k &gt; 0. Two stable embeddings /, /&apos; : S2 -+

Nk N # k(S2 x S2) are stably homeomorphic if there is an orientation preserving
homeomorphism h : (Nk + rJ(S2)) ^(Nk + rJ&apos;(S2)), r &gt; 0.

For x e H2(N), we define 0{x) e 7j2 according to the following rule. If x is

characteristic O(x) KS(N) + ^a(N) — x • x] mod 2, and we set 0(x) 0 otherwise.

THEOREM 2.1. For each homology class x e H2(N), x can be stably represented

by a {simply embedded) locally flat 2-sphere if and only if 0(x) 0.

As pointed out in Section 1, the necessity of the condition follows from an

argument of Kervaire and Milnor [K-M]. Before proving the other direction, let us
recall some terminology from [F-K] (see also [K] for a somewhat différent
treatment of some of thèse topics).

Let &amp;4har be the topological characteristic bordism gorup of characteristic pairs
(AT4, £2), where N and K are closed and oriented, K £ N is a locally flat surface and

[K] g H2(N; Z) is characteristic. Two pairs (AT, K) and (W, K&apos;) are said to be

characteristically bordant if there exists a compact oriented 5-manifold N and an
oriented, locally flat 3-submanifold K3 with [K]2 g H3(N, dN; Z2) dual to w2(N) and



392 R LEE AND D M WILCZYNSKI

Given a characteristic pair (N, K), we can try to perforai ambient surgery on K
to get an embedded 2-sphere in N. The &quot;obstruction&quot; to such a surgery problem can
be briefly described as follows (see [F-K] for détails). Let Ax,..., A&amp; be embedded
circles representing the generators of a symplectic basis of HX(K) - Z2*, and let vt

be a normal vector field to At which is tangent to K. Embed a 2-disk Dx in N
transversely to K with dDt At. Let d, e Z dénote the algebraic intersection number
of int Dt with K. The obstruction to extending vt to a normal vector field over Dt
is another integer e,eZ nx(SO(2)). Associating dt + et (mod 2) to each At9 we
obtain a quadratic form q : HX(K; Z2) -+Z2. Let &lt;p(N, #) dénote the Arf invariant
of #. It turns out that &lt;p détermines a well-defined homomorphism O4har -? Z2 ([F-K]
Lemma 5).

LEMMA 2.2. q&gt;(N, K)
Proof.lt follows from [F-K] and [Hs] that a : O$har-&gt;ZeZ0Z2,

a(JV, A:) (a(iV), |[(x(iV) - K - K], KS(N)) is an isomorphism. The explicit generators
of Of&quot; are (C/^CP1), (CP2#CP2, 3CP1 #CP!) and (|£8|,0), where |£8|
dénotes the simply connected 4-manifold whose intersection pairing is isomorphic to
the £g-lattice. Clearly, ^(l^l, 0) ^(0) 0. Since &lt;p and G agrée also on the other
two generators ([F-K] Lemma 6), the resuit follows.

Proofof Theorem 2.1. Let x g H2{N) and assume 0(x) 0. We shall show that
x can be stably represented by a simply embedded locally flat 2-sphere.

Let N W4kjV4 where W\s smooth and simply connected, Fis contractible, and
Z3 dW dV is an intégral homology sphère [F,]. By immersion theory, jc can be

represented by a smoothly embedded surface/ : K-+W. It was shown in [F-K] that
in the case of a characteristic class jc, q&gt;(N9 K) is the only obstruction to ambient

surgery on K which results in a stable embedding S2-*Nk, k &gt;0. By Lemma 2.2,
&lt;p(N, K) 0 and surgery can be performed.

Next assume x € H2(N) is an ordinary class. If x is also primitive, then by [W3]
Theorem 3 there is a smooth embedding S2-? Wk W#k(S2 x S2)), k&gt;0 stably
representing x. It remains to consider the case of an imprimitive class jc. As in the
characteristic case we can represent a basis of HX(K) by embedded circles

Al9... ,A2sTo surger some At inside Wk9 we first find a smoothly embedded 2-disk

D, in Wk with dD, =D,nK At. Let et € Z 71,(50(2)) be the obstruction to
extending a normal vector field from At to Dt defined as before. (Notice that dt 0

in this case.)
We claim that Dt can be chosen so that et e 2Z. Suppose this done. We can form

the connected sum of pairs

where gt : S2-&gt;S2 is a smooth map of degree —eJ2. This results in an embedded
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disk D*infVk+x with e* 0. We can then replace the normal 1-disk bundle to At
in K by the boundary of the 1-disk bundle determined by the extended normal vector
field on D*. Thus, by ambient surgery on K along An we can reduce the genus of
Kby 1. Repeating this procédure several times gives eventually an embedded 2-sphere

stably representing x.
To prove the above claim, let us suppose et 1 mod 2. Write x dy with y a

primitiveclass. Supposealso that kis anevenform, i.e. z • z e 2Z foreachz g H2(Wk).
Since x is not characteristic, d must be odd, and consequently y is ordinary. For k ^ 2,

the orthogonal group 0{k) opérâtes transitively on primitive ordinary éléments of
given square by [W2]. Hence we can assume that there is a pair of hyperbolic éléments

w, v e H2{Wk), u - u v - v =0,u - v l, such that y pu + v for some p e Z. As a

primitive ordinary class, u can be represented by an embedded 2-sphere S in Wk. Under
the connected sum Dt # S, e, does not change because u • m 0, but d, 0 does change
to d\ dt + x • u d. Also, we may spin D, =Dt#S once around &gt;4,, as in [F-K],
p. 87, changing e\ e, to e\ ± 1 and j; to rf^ ± 1. After spinning |&lt;/| times we get D&apos;[

with ^&apos; et ± d and d&quot; 0. Thus e;&apos; g 2Z as required, but we hâve achieved that at
the expense of introducing the intersection int (£&gt;&apos;/ n K. We may assume that int (D&quot;

intersects K transversely. Since d&quot; 0, we can arrange ail the intersection points to
occur in pairs with opposite ± 1 indices. For a given pair of points, we can create

a Whitney circle by joining the two points by one path in int (D&quot;) and another in
K. Then, by taking a connected sum with S2 x S2 (framed surgery along a nearby
curve) we can find an embedded 2-disk in which to perforai the Whitney trick. By
itération we can cancel ail points of intersection, so that dD&quot; D&quot; nK At. This

proves the claim for an even form L
In the odd case, X can be diagonalized, that is, there is a basis {y,} of H2(Wk)

such that jj - yh= ±ôjh. Then x Z a}yp and since jc is ordinary, a} e 2Z for some

index j. That y7 can be represented by an embedded 2-sphere S. As before we take

D\ Dt # 5, for which we now hâve e\ e% + y, • y, g 2Z and d&apos;l=dl+aJ a}. This

new disk D\ can be spun |&lt;i,|-times around At to produce D&quot; with e&apos;[ =e&apos;t ±a;e2Z
and d&apos;[ =0. Finally, we cancel ail intersections int (/)&quot;) r\K to guarantee that
dD&quot; =D&quot;nK An thereby proving the claim.

As noted before, this shows that jc g H2(N) can be stably represented. To finish
the proof, we need only observe that each embedding f:S2-&gt;Nk can be improved
to a simple embedding by surgery on embedded circles generating the commutator
subgroup of 7t,(A^ —/(S2)). Since Nk is simply connected, framings can be picked
so that each surgery opération replaces Nk + r by Nk + r +,.

COROLLARY 2.3. Suppose N is a spin 4-manifold. For a characteristic class

x g H2(N), x can be stably represented by a {simple) locally flat 2-sphere if and only

if x - x 0 mod 16.



394 R LEE AND D M WILCZYNSKI

Proof. Since KS(N) |(x(JV) mod 2, we hâve x • x 0(x) • 8 mod 16.

COROLLARY 2.4. Let N, N&apos; be homotopy équivalent, but nonhomeomorphic,
simply connected 4-manifolds. Let \j/ : [H2(N), A] -+[H2(N&apos;), A&apos;] be an isometry of
intersection pairings. For each class x e H2(N), either x or \//(x) can be stably
représentée by a simple, locally flat 2-sphere.

Proof. KS(N) # KS(N&apos;) implies that either 0{x) 0 or 0(i//(x)) 0.

THEOREM 2.5. If x e H2(N) is an odd divisibility class, then any two simple
embeddings f{,f2 : S2-&gt;N representing x are stably homeomorphic.

Proof. According to [F2] Theorem 10, each locally flat 2-sphere in N has a

topological vector bundle neighborhood. Let vt (/ 1, 2) be such a neighborhood of
f(S2). Since v, is an oriented 2-plane bundle classified by its euler number, there is

an oriented homeomorphism (v,,/,(S2)) (v2,/2(S2)). Let X, N — v,. We wish
to extend dXt £ ôX2 to an oriented homeomorphism between Xx # k(S2 x S2) and
X2 # k(S2 x S2), k&gt;0.

Notice first that X% admits a spin structure unless N is nonspin and x is not
characteristic in which case X, is a nonspin manifold. In the spin case, dXt inherits
the spin structure from Xt. In fact, dXt is homeomorphic to either a lens space
or S1 x S2 (the latter occurs precisely when x - x 0), so dXt always admits a

spin structure and we can impose it arbitrarily when Xt is not spin. Form
X XX Kje{—X2) by identifying the boundaries via a spin reversing homeomorphism

ôXi^d(—X2) where —X2 dénotes X2 with the orientation reversed. It
follows that X is a spin manifold iff Xt is.

Let d dénote as usual the divisibility of x. Since / is a simple embedding,
MJT,) =Hx(Xt) ^Zd by Poincaré duality (cf. [H-S] Lemma 3.1). Furthermore,
n^dX^ maps onto nl(Xl), so by Van Kampen n^X) =Zd. The manifold X
détermines then a class in the oriented bordism group Q4(K(Zd, 1)) and in the spin
case in Q^xn(K(Zd, 1)).

From the Atiyah-Hirzebruch spectral séquence we immediately see that
Qfin(K(Zd, l))^H0(Zd, Qfxn)^Z is generated by the E% manifold. Similarly,
Q4(K(Zd, 1)) s Z©Z2 with the cyclic summands detected respectively by the

signature and the Kirby-Siebenmann invariant. Now depending on whether

x - x — 0 or not we hâve either a(Xt o(N) or o(Xt &lt;r(N) ± 1. In either case

o(Xt) dépends only on x and not on i. Thus a(X) —o{Xx) — &lt;r(X2) =0. Also
KS(X) =0, so [X] =0 in Q4(K(Zd9 1)) (resp. Qlpm(K(Zd, 1))). Thus there is an
oriented (resp. spin) 5-manifold W5 such that dW X. Since dXt has a bicollared
neighborhood in X, W can also be viewed as a relative bordism from (Z,, dXx to
(X2, dX2). It follows now from [Kr] §2 that there is a relative s-cobordism between
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Xx # k(S2 x S2) and X2 # k(S2 x S2), k&gt;0. This together with Freedman&apos;s s-
cobordism theorem [F2] implies that (iV,/,(52)) and (N,f2(S2)) are stably homeo-

morphic, as required.

3. Group actions on 4-manifolds.

In this section, we discuss the unstable classifications of locally flat, simple
embeddings S2-&gt;N representing the same homology class. The topological classification

of such embeddings will be reduced to a problem concerning certain hermitian
pairings. This algebraic problem will in turn be settled in Section 4.

Let/ : S2 -» iV be a locally flat, simple embedding representing a homology class

x e H2(N) of divisibility d. As noted in Section 2, n{(N -/(S2)) s H{(N -/(S2)) is

a cyclic group of order d. Following [H-S] and [R], we can form a d-fo\d ramified
covering n : M -*N branched over f(S2). By construction then M supports a
continuous action by the group Cd nx (N —f(S2)). The fixed point set of this action
is a locally flat 2-sphere S n~l(f(S2)), and n maps S homeomorphically onto
/(S2). Since / : S2 -? N is a simple embedding, so is S -? M. In fact, nx (M - S) 0,

so the homology class z [S] g H2(M), represented by 5, is primitive. Furthermore,
it follows from [F2] Theorem 10 that S çM has a neighborhood homeomorphic to
a Q-vector bundle over S, i.e. Cd acts locally linearly on M. By choosing correctly
the generator g of Cd9 we may assume that g acts on the normal fiber to S via

multiplication by e2m/d. Also, it follows from the van Kampen theorem that M is

simply connected. Conversely, a semifree, locally linear exaction on a simply
connected 4-manifold M, whose fixed point set is a 2-sphere representing a primitive
class z g H2{M), corresponds to the ramified covering M-+M\Cd.

The above construction allows us to reformulate the classification problem for
embeddings as a similar problem for the corresponding group actions.

PROPOSITION 3.1. There is a one-to-one correspondence between the isomor-

phism classes of locally flat, simple embeddings f : S2-?AT4, nx(N) =0 representing

homology classes ofdivisibility dand the isomorphism classes ofsemifree, locally linear,

cyclic group actions (Cd, M), nx(M) 0,/or which the fixed point set Fix (Cd, M) is

a simply embedded 2-sphere representing a primitive homology class.

Let M be a closed, oriented, simply connected 4-manifold, and let G Cd be

a cyclic group acting locally linearly on M. Assume that the action is semifree,
and that the fixed point set MG Fix (G, M) is a simply embedded 2-sphere

representing a primitive class z g H2(M). It follows that G préserves both the

orientation of M and its intersection pairing À : H2(M) x H2(M) -+Z. Let v dénote
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the equivariant tubular neighborhood of MG c Af, and let Mo M — int v be the
complément. There is a commutative diagram of exact séquences

H,(M,Mrt) « H,(t/,31/)

From the diagram we see that the triple \H2(M\ l, z] completely détermines the

homology group H2(M0) and its intersection pairing.
Our first goal is to détermine the G-isovariant homotopy type of (G, M).

Following [Wil], we introduce two auxiliary G-spaces X and B. The first G-space X
is a G — CW complex obtained by attaching free w-cells (n ^ 4) of the form G x D&quot;

to M so that (i) each closed cell is disjoint from v, and (ii) nt(X — v) 0 for i # 2.

Similarly, the space B is obtained by attaching free «-cells (n ^ 4) to X so that
nt(B) =0 for i*2.

Now suppose we are given another G-manifold (G, M&apos;) satisfying the same
conditions as those required from (G, M). In addition, suppose there exists

a ZG-module isomorphism 0 : H2(M)-+H2(M&apos;) which préserves the
intersection pairings, 0*/l&apos; A, and sends z [AfG] to z&apos; [M&apos;G]. In such a case we
shall say that 0 is a ZG-isometry, and write 0 : [H2(M), A, z] s [#2(*O. *&apos;&gt; z&apos;l w^
wish to show that 0 can be realized by an isovariant homotopy équivalence
h :M-+M&apos;.

Since z • z z&apos; • z&apos; and the action of G near the fixed 2-spheres MG and M/G is

completely determined by thèse intersection numbers, there exists an equivariant
homeomorphism v -&gt;v7 between the tubular neighborhoods. In fact, to simplify our
notation, we shall identify v and v&apos; via this homeomorphism and write v v&apos; from
now on. We wish to extend this identification to ail of M and M&apos;.

The first step towards the required extension is to find an isovariant homotopy
équivalence cp : X -+ Xf rel v which induces 0 on n2(X) £ H2(M). It follows from
our braid diagram that 0 induces as a ZG-isomorphism 0O : H2(M0) -+H2(M&apos;O)

which respects the induced intersection pairings. Now from obstruction theory,
the map q&gt;\X-*X&apos; can be constructed provided (0o)+k=k\ where

k g Ext|G (Ë0(dv), 7C2(MO)) is the relative first A:-invariant of (G, M) defined in
[Wil]. Since dv is connected, k=k&apos; 0 and the condition is trivially satisfied.
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Therefore there exists a diagram

(3.2) -1 !» ^X
dv s Mq s M&apos; »&apos;

where i is the inclusion of M in X, i&quot; is the composite map M&apos; c» JT X9 and the
dotted arrow indicates the map h to be constructed.

Since B is an Eilenberg-MacLane space, it follows from [Mac] that H4(B) can
be identified with the module of symmetric 2-tensors Fn2(M) £ n2(M) &lt;g)z 7t2(M).
Under this identification, the image of the fundamental class j*i+[M] € H4(B)9

j : X c+ B9 corresponds to the 2-tensor given by the intersection pairing on
7t2(M) ^ H2(M). The fact that 6 is an isometry can now be interpreted as saying

We assert that j+: H4(X)-+H4(B) is a monomorphism, and so the above

equality implies that i*[Af] f*[M&apos;]. From a Mayer-Vietoris séquence argument,
we see that H4(X) H4(X0) © Z where Xo X — v. Since Jf0 is also an Eilenberg-
MacLane space, /^(A&apos;q) can be identified with rn2(X0). Under this identification,
the map y&apos;* restricted to H4(X0) corresponds to the induced map rn2(X0) -+rn2(X)
which is clearly injective. On the other hand, the Z-summand in H4(X) is mapped
under y* to the subspace Z&lt;z®z&apos;&gt;, where zf en2(X) is the élément A-dual to z.

This proves that H4{X) a.ndj+H4(X) hâve the same rank over Z, and the assertion
follows.

We also claim that once the required isovariant map h : (M, Mo) -?(M&apos;, MJ) is

constructed so that diagram (3.2) commutes up to isovariant homotopy, then h is

automatically an isovariant homotopy équivalence. For any such h induces the

isomorphism 9 on the second homotopy group, and

U[M] i;*,[M] (deg *)i;[Jlf1 (deg h)U[M].

Thus deg/i 1, and the claim follows from Poincaré duality and the Whitehead
theorem.

Finally, there is a secondary obstruction to construction of h, lying in the

equivariant cohomology group

//* (Mo, dv; n4(X09 Mo)) s H0(M0/G; n4(X0, Mo))

S n4(X0, Mo)
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From the following commutative diagram

H4(M/G) &gt; //4(M/G, v/G) &lt;-^- H4(MJG, dv/G)

H4(X/G) &gt; H4(X/G, v/G) ^- H4(X0/G, dv/G) &gt; H4(X0/G, M&apos;o/G)

we see that this obstruction corresponds to the class a =(//G)*[M/G]—
(Ï/G)*[M&apos;/G] in H4(X0/G, MJG). Furthermore, if we consider the transfer
homomorphism

tr+ : H4(X0/G9 M&apos;0/G)-+H4(X0, Mo),

then tr+(a) is the obstruction to a nonequivariant extension fî:(M9M0)-+
(M&apos;, Mo) such that i&apos;° H c~ i rel v. However, this nonequivariant obstruction

and so a € Ker (tr*) s ^0(G; ^4(^0, Mo)).
To compute this last group, we note that H3(M&apos;O) £ HX(M&apos;Q, dv) =0, and

consequently,

Also, it follows from [Wil] Proposition 2.3 that n2(X0) s 7T2(MO) fits into the exact

séquence of ZG-modules

Q-+QZ-+ 712(^0)0 rZG-+Hl(MiMG)--&gt;0.

Since H1 (M, MG) 0 and QZ is represented by the augmentation idéal / of ZG, we
conclude that n2(Xo) and / are stably isomorphic ZG-modules, i.e.,

for some integers r and s. Now in the case of an odd order d, the results of [H-K]
§3 imply that rn2(X0) is a stably free module, whereas for d even Fn2(X0) is stably
isomorphic to a certain permutation module. In either case ÊQ(G\ rn2(X0)) 0,

and consequently the obstruction a vanishes.

To replace the resulting G-isovariant homotopy équivalence h : (M, Mo) -&gt;

(M&apos;, Mq) by an equivariant homeomorphism, we must also assume that M and M&apos;
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have the same Kirby-Siebenmann invariant. A calculation with the topological
surgery exact séquence shows that this condition is also sufficient when d is odd.
Thus we have the following

THEOREM 3.3. Let (G, M) and (G, M&apos;) be group actions satisfying ail the

requirements specified in Proposition 3.1. Given a ZG-isometry d : [H2(M), A, z]
[H2(M&apos;), X\ z\ there exists an isovariant homotopy équivalence h\M-*M&apos; rel v

which extends the identity map on the tubular neighborhood v and induces 0 on

H2(M). Furthermore, if M and Mf have the same Kirby-Siebenmann invariant and
d is odd, then h can be required to be an equivariant homeomorphism.

Our next resuit describes the ZG-module structure of H2(M).

THEOREM 3.4. H2(M) is a stably free ZG-module,

Proof. We begin by showing that H2(M) is a projective ZG-module. We have

already seen that H2(M0) is stably isomorphic to the augmentation idéal /. The two
modules are related to each other via the following exact séquence

(3.5) 0-//2(v) -*//2(M) -#2(M, v) -&gt;0.

Notice that //2(M, v) £ H2(M0, dv) is isomorphic via Poincaré duality to
H2(MQ) Homz (//2(M0), Z) and as such it is also stably isomorphic to /.

We shall show that //&apos;(G; H2(M)) 0 for each i &gt; 0 (i 2, 3 is enough) by
examining the long exact séquence in cohomology

H&apos;~ \G; H2(M, v)) -^ //&apos;(G; H2(y)) &gt; H&apos;(G; H2(M)) &gt; H&apos;(G; H2(M, v)).

Without loss of generality, we can assume that G has prime power order, say
d =pr. Let K^G dénote the unique subgroup of order p. For i even, consider the

following commutative diagram

Zpr W\G- H2(M, v)) -^ H&gt;(G; H2(v)) Zpr

rcs I | rcs

Z, H-\K- H2(M, v)) -i-» H\K; H2(v)) Zp

It follows that for each i &gt; 0, H&apos;(G; H2(M)) 0 iff H&apos;(K; H2(M)) 0. (Notice that
H&apos;{G; Z) H&apos;+\G; /) 0 for i odd.) But H&apos;(K; H2(M)) 0 for i &gt; 0 by [E], so

H2{M) is a projective ZG-module, as required.
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Finally, to prove that H2(M; Z) is stably free, we invoke the pull-back diagram
of commutative rings (Rim&apos;s square)

(3.6) modIl lmodI

Z &gt;Zrf
mod d

Hère A ZG, I 1 + g H + gd~l is the sum of ail groups éléments in G, and
Ax =A/(I). Associated with this diagram there is a Mayer-Vietoris séquence of
ÀT-groups

(cf. [M2]). In the présent situation, Kx(Zd) is the group of units in Zd and the
induced map KX(AX) ^ Kx(Zd) is a surjection. Hence

and we can détermine the structure of a projective module over A by taking the

tensor product with Al9 and examining the resulting élément in K^{AX). We make

use again of the exact séquence in (3.5)

0 -? Z -? H2(M) -&gt; H2(M, v) -&gt; 0.

Tensoring with Al9

Z ®A Ax -+H2(M) ®A AX-*H2{M, v) ®A Ax -^0.

Since H2(M) ®A Ax is a projective yl,-module which has no Z-torsion and

Z ®A Ax s Z^ we obtain an isomorphism H2(M) ®A Ax s H2(M9 v) (8)^ /l, of yir
modules. But H2(M9v) is stably isomorphic to / which is a free /lj -module. It
follows that the tensor product H2(M9 v) ®A Ax is a stably free yl,-module, and
hence it represents the trivial élément in the reduced Â^-group Rq(Ax). This proves
the theorem.

The last two results suggest that we study &quot;pointed&quot; intégral yl-lattices [L, A, z],
where L is finitely generated, stably free A -module (A ==ZG) equipped with a

A -invariant unimodular pairing À : L x L-+Z and a base point, a distinguished
primitive class z € LG. However, for technical reasons, it will be more convenient to
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replace X by the corresponding hermitian pairing h : L x L-+A defined as follows

geG

The term &quot;hermitian&quot; refers to the property h(x, y) h(y, x), where — : A -+A is

the natural involution on the group ring given by g «-?g&quot;1.

Thus, associated with each group action (G, M) of the type considered there is

a pointed ,4-isometry class of [H2{M\ hM, z], where hM is the nonsingular hermitian
pairing corresponding to the intersection pairing X and z [MG]. By Theorem 3.3,

group actions (G, M) are classified by the corresponding pointed yl-isometry
classes.

We conclude this section with an observation based on the proof of Theorem
3.4. Our proof that H2(M) is stably free A -module also shows that the extension in
(3.5) is a generator of the group Ext^ (A{, Z) Zd. Thus up to Galois automor-
phism of Al9 (3.5) is (stably) isomorphic to

An easy computation with transfer shows that the corresponding séquence for the

orbit manifold M&apos;/G,

0 &gt; H2(v/G) -^ H2(M/G) &gt; H2(M/G, v/G) &gt; 0

Z

results from tensoring (3.5) over A with Z.
A similar relationship exists between the intersection pairings of M and M/G.

By a straightforward géométrie argument, we find that the intersection pairing on

H2{MjG) H2(M) ®A Z is given as

h ®A 1 : (H2(M) ®A Z) x (H2(M) ®AZ)^Z

(h ®A\)(x9y)= Z %g-lx,y).
geG

This we record as

PROPOSITION 3.7. There is a Z-isometry ofpointed Z-lattices

n*®Al: [H2(M\ hM9 z]®AZ^ [H2(M/G), XM,G, x]
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where n* : H2(M)-+H2(M/G) is the projection, z [MG], and x n+(z). D

4. Pointed hermitian pairings

Let A be a ring with involution; for simplicity assume A is commutative with 1.

A pointed hermitian pairing over A is a triple [P, h, z], where is a finitely
generated, projective A -module, A:PxP-+ylisa hermitian pairing and z e P is a
base point. An isometry of pointed hermitian pairings over A is an isomorphism of
A -modules which respects the pairings and the base points. We define addition of
pointed hermitian pairings by the following formula

[P, h, z]®[P\ h\ z&apos;] [P®P\ h@h\ z®z&apos;}.

For a homomorphism of rings with involution cp : A -&gt;A\ we hâve a change-of-
rings opération:

[P, h, z] ®A Af [P ®A A&apos;, h®AUz ®A 1].

(A spécial case of this opération appeared already in Proposition 3.7.) [P, A, z] and

[P\ h&apos;, z&apos;] are said to be stably équivalent if for some integers r and s

[P, h, z]@H(Ar) s [P\ h&apos;, z&apos;] ®H(A%

where H{Ar) stands for the hyperbolic pairing [A2\ H(Ar), 0] r[A2, H(A)9 0].
When [P, h, z] and [P\ h&apos;, z&apos;] are stably équivalent, we write [P, h, z] ^s [P\ h\ z&apos;].

[P, h, 0] will often be abbreviated to [P, h].

If G Cj is a cyclic group and /t ZG with the involution given by g \-&gt;g~\

then a pointed hermitian pairing [P, A, z] over /l is said to be realizable whenever

there exists an action (G, M) of the type considered in Proposition 3.1 such that
[P, h, z] s [H2(M)9 hM, [MG]]. By Theorem 3.4, the underlying module of a realizable

pairing is stable free.

PROPOSITION 4.1. A pointed hermitian pairing [P, h, A over ZG is realizable if
and only if it is stably realizable,

Proof Suppose

[P, A, z] © H(Ar) s [H2(M), hMy [MG]] ©H(AS).
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Now [H2(M), hM, [MG]] ®H(AS) can be realized by the equivariant connectée! sum

(G, A/,) (G, M) # s(G, G x S2 x S2)

of (G, M) with copies of S2 x S2. In the exact séquence

0-+//2(M, - MG) -? H2(MX) -+ H2(MU M, - Mf) -*0

the third nonzero group is isomorphic to H\MG) by Poincaré duality and the

hyperbolic summand H(Ar) corresponds to a subspace in H2(Ml — Mf Therefore
by Freedman&apos;s disk theorem [F2] with nl G, there exist framed embedded

2-spheres S2 x D2-+Ml — MG representing the hyperbolic generators of H(Ar).
Using thèse framed 2-spheres we can perforai surgery on Mx — MG to kill H(Ar).
The resuit of this surgery realizes [P, h, z].

We now proceed to formulate the cancellation law for pointed hermitian
pairings over ZG. We shall assume for the rest of this section that G Cd is a cyclic

group of odd order.

THEOREM 4.2. Let [P9 h, z\ [P&apos;9 h\ zf\ be nonsingular pointed hermitian pair-
ings over A ZG with P stably free of rank ^ 3. Assume that z e PG and [P, h, z]
has a hyperbolic summand équivalent to H(A). If [P,h,z] =5 [P\ h\ z&apos;] and
[P, h, z] ®AZ^ [P\ h\ z&apos;\ %A Z, then [P9 h, z] s [P\ h\ z&apos;]. Furthermore, each

isometry between [P, h, z] ®A Z and [P\ h\ z&apos;\ ®A Z is induced by one between

[P9h9z]and[P&apos;,h&apos;9z%

Proof Let F be the usual maximal order in QG containing A. Consider the
cartesian square

A &gt;F

1 1

A &gt;f

where A FLÂp, f Tlfp, and the products are taken over the primes dividing d.

We shall show that (i) [P, h,z] ®A F £[/&gt;&apos;, h\ zr] ®A F and [P, h, z] ®A A s
[/&gt;&apos;, h\ z&apos;\ ®A A, and (ii) that (i) implies [P, h, z] s [P\ h\ z&apos;\

We first note that since F X\n\d Z[Çn] and d is odd, the hermitian pairings
[P, h] ®A Z[ÇJ, n # 1, and [P, h] &lt;g&gt;A Âp hâve quadratic refinements. It follows now
from [W5] Theorem 10 that [P, h] ®A Z[CJ s [P\ h&apos;\ ®A Z[CJ. This together with
the hypothesis over Z implies [P, h, A ®a r [P\h\z&apos;] ®A F. (Notice that
[P, h, z] ®A Z[CJ s [P, A, 0] ®A Z[CJ for ze?G and n * 1.) By Lemma 1 and
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Theorem 2 of [W5], the statement over Âp can be reduced to one over ¥pCr where

Cd Cplx Cr. Since VpCr is semisimple, cancellation is possible over Âp9 and so

[P, A, z] ®A Â [P\ *&apos;, z&apos;] ®A A, as required.
The isometry classes of pointed hermitian pairings over A that are équivalent to

[P, A, z] over F and A are in one-to-one correspondence with éléments of the double
coset space

Aut ([/&gt;, A, z] ®A yl)\Aut ([P, A, z) ®A f)/Aut ([P, A, z] ®A F).

This follows from [Ba2] Theorem 7.30 and the gênerai discussion in [W6]. Let [a] be

the double coset corresponding to [P&apos;, A&apos;, z&apos;].

We claim that [a] has a représentative a&apos; g Aut([P, h, z] ®A f) of déterminant 1.

Since [P\ h\ z&apos;} ®H{Ar) s [P, A, z] ©//(/lr) for some r, [P&apos;, A&apos;, z&apos;]®H{Ar)

corresponds to the trivial double coset in

Aut ([P, A,z]®AÂ®H(Âr))\Aut ([P, A,z] ®^ f0//(fO)/Aut ([P, A,z]

Therefore for some représentative a, det(a) a • ar where a g A, ar ïln\dan g F,

a, 1, âa ûnâw l. Since yî is a complète semilocal ring and //(/î/rad) is

diagonalizable, there is

/? g Aut (^(^)) x 1 c Aut ([P, A, z] g)^ ^)

with det(j5)=a~1. By the Dirichlet unit theorem, an=(±Çln) - un where

«„ g Z[ÇJ x is of infinité order (unless un 1) and has the property that ûn un

modulo finite units. From anân 1, it follows that un 1, and consequently
a&quot;1 =det(j8w) for some

Pn g Aut (/f(ZO) x 1 s Aut ([P, A, z] ®^ Z[CJ).

If we now let /?, 1 and fir Tln\d f}n, then a&apos; jSa/?r is the required représentative.

Finally, by the strong approximation theorem [Sh, 5.12], applied to the spécial

unitary group SAut ([P, A, z] ®A Z[(J, the latter is dense in

Since the space of left cosets

Aut ([P, A, z] ®A ^)\Aut([P, A, z] ®^ f)
is finite, this shows that [a] has a représentative in SAut ([P, A, z] ®A F). Thus [a] is

the trivial double coset and [P\ A&apos;, z&apos;] S [P, A, z], as required.
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To prove the second statement of the theorem, it suffices to show that the
natural map

Aut ([P, A, z}) - Aut ([/&gt;, A, z] ®A Z)

is surjective. By virtue of Rim&apos;s square (3.6), this is équivalent to showing that the

image of Aut ([P, h] &lt;g&gt;A Z) in Aut ([P, h] ®yi Zd) is contained in the image of

Aut ([P, A] ®A Ax) -&gt; Aut ([P, h] ®A Zd).

Notice that this last statement is true stably, when [P, A, z] is replacée by
[P, A, z] @H(Ar), r &gt; 0, since in the stable range the lifting problem for isometries

over 7jd reduces to a déterminant question. This shows that given

&lt;xz g Aut ([P, A, z] ® A Z) x 1 c Aut ([P, A, z] ®A Z 0 H(TT)\

there exists &lt;zr g Aut ([P, h, z] © //(/T)) such that az © 1 &lt;xr 0^ Z.

LEMMA 4.3. 77*m? exwte aw isometry a e Aut ([P, A, z] ®H(Ar)) such that
a - oir préserves the hyperbolic summand of [P, A, z] © H(Ar) and a ®A Z 1.

It follows from Lemma 4.3 that &lt;x • ar o^ ©a2 where &lt;x{ e Aut ([P, A, z]) and

a2 g Aut (H(Ar)). Thus &lt;xz© 1
&lt;xr ®^ Z (a, ®A Z) © (a2 ® ^ Z).

LEMMA 4.4. 77im? exists a spécial isometry â g SAut ([P, h, z] ®A Â®H(Âr))
such that à • (ar ®A Â) préserves the hyperbolic summand of[P9 A, z] ®A Â @H(Âr))
and â ®A 2= 1.

Proof of Lemma 4.3. Each isometry a over A can be thought of as a pair of
isometries â and oy over Â and F, respectively, which are compatible over f. Let
a g SAut ([P, A, z] 0^ yî ©//(yîr)) be the isometry provided by Lemma 4.4. By the

strong approximation theorem applied to SAut([P, A, z] ®A Z[Çn]) for each n\d,
n &gt; 1, ô ®A f can be lifted to an isometry ar e SAut ([P, A, z] ®^ T © H(rr)) such

that ar ®r Z= 1. By construction, &lt;r and cr are compatible over f and the

corresponding a g Aut ([P, A, z] ©//(ylr)) has the required properties.

Proof of Lemma 4.4. Consider the cartesian square

ï
t
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where ÂX Â/(Z), I l+g + • • • +gd~ \ t Upldtp, and ±d t®Zd. We
wish to lift the identity 1 eSAut([P, A] ®a %d ®H{ÎId)) to a spécial isometry
âx € SAut ([P, h) ®A Âx (&amp;H(Â\)) such that Sx • (&lt;xr ®A Âx) préserves the hyperbolic
summand of [P, h] ®A Âx © H(Â\)). By Lemma 1 and Theorem 2 of [W5], this is

équivalent to the corresponding lifting problem modulo the radical. The construction

of a lifting having ail the required properties modulo the radical is clearly
possible as follows from the following diagram

p\d

P\d

REMARK 4.5. It follows from the proof of Theorem 4.2 that the hypothesis of
a hyperbolic summand in [P, h, z] can be replaced by the weaker condition that such

summands exist only over A and Z[£J for each n | d, n &gt; 1. The point hère is of
course that we no longer require a hyperbolic summand in [P, A, z] ® A Z which
would be too restrictive for our purposes. Notice that if [A, À, x] is a pointed
Z-lattice, then it is possible that [A, k] may split off a copy of H(Z) but [A, A, x]
may not. For example, take any [A, A, x] for which [A, À] [Ao, Ao] © H(Z) where

[Ao, Ao] is a positive definite lattice, x # 0, and A(x, x) 0.

For any hermitian pairing [P, h] over ZG, the hermitian pairing [P, h] ®z C

décomposes over CG as ®/~o [P(j)&gt; fy] where P(j) s P ®z C is the subspace of
P &lt;g)z C on which the generator of G acts by multiplication by e2mjld and h} is the

component of h &lt;g)z C corresponding to P{j). Let o} dénote the signature of
[PU), M

THEOREM 4.6. Let [P, h, z] be a nonsingular pointed hermitian pairing over
A ZG {d odd) with z g Pg. Assume that P is a stably free A-module ofrank m ^ 3

and that [P, h, z] ®A Z has a hyperbolic summand H(Zk) for some 0 &lt; k &lt; mil. If
m ^ m2LX0&lt;Lj&lt;d IcJ + 2/r, then there exists a pointed hermitian pairing [P0,h09z0]

over A such that [P, h, z] s [Po, h0, zQ] © //(;!*).

Proof By assumption, there exists a pointed Z-lattice [^4, A, x] and an isometry

(4.7) az : [P, A, zjS.Zs [A, A, x] © //(Z*).

Consider now [P, h, z] ®A F. Since k &gt; 0, the hermitian pairing [P, h] ®A Z[(J,
« I d, n &gt; 1 is indefinite at each archimidean place, and since d is odd it also has a
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quadratic refinement. Therefore by [W5] Theorem 11, there exists a pointed
hermitian pairing [Pr, hr, zr] over F and an isometry

otr : [p, k z]®Ar^ [pn hn zr] e mrk)

such that &lt;xr ®r Z &lt;xz.

Since f ïln\dIIp\dÈp[Çn], the classification of unpointed hermitian pairings
over f reduces, by [W5] Theorem 2, to a problem over Iln\dTlp\d¥p[Çn]. Over
F/&gt;[CJ&gt; hermitian pairings are classified by the rank and the discriminant invariant
in ¥p /¥p2. Thèse are also the invariants needed for the classification over Â.

Furthermore, a collection of invariants over f is realized by a hermitian pairing
over Â if it is so stably realized. Thus there is a hermitian pairing [P, fi] over Â and

an isometry

We also wish to find a base point z for [P, fî]. (The obvious candidate would be

ot(z (g) 1) but unfortunately it need not lie in the summand P). Now â and az induce
isometries of 2-lattices

[P9 h]®At^ [P, fi\®À

[P, h, z] ®A t s [A, K x] ®z 10 H{tk).

Since over t cancellation is possible, [A, À] ®z 1 s [A £] ®,î t. Let y eP ®At
be the image of x ® 1 under this isometry. We now define f tr*(y) e PG, so that
by construction

as éléments in Â.

If k&gt;2 then according to [BaJ §4, Aut([P, h] ®AÂ) acts transitively on
primitive éléments in P ®A Â of the same &apos;iength&quot;. In particular, there is in that
case â e Aut [P, h] ®AÂ) such that &lt;x(a(z ® 1)) z. Furthermore, if k &gt; 3, such a â

can be found with déterminant 1.

Assume temporarily that k &gt; 3. Let / dénote the set of ail isometries from
[Pn hr, zr] ®rf® H{fk) to [P, fi, z] ®Â f0 H(fk). Define

a =(&lt;r ®Âf) o(&amp;®Af)o (&amp;r ®rf) -i
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Then a e /. Let [a] dénote the double coset of a in

Aut ([P, /T, z] © H(Âk))\I/Aut ([Pr, hr, zr] © H(rk)).

LEMMA 4.8. There exist isometries 0, : [Pr, Ar, zr] &lt;g)r f s [A £, z]

02 € Aut (//(f*)) mcA fAaf ^ © j?2] [a] W det (j82) 1.

By [Ba2] Theorem 7.30, there exists a pointed hermitian pairing [Pl9 hu zx) over
A which over F (resp. yî) is équivalent to [Pr, Ar, zr] (resp. [P, fi, f]) and such that
the composite isometry

[Pr, Ar^rl ®r f S [Pl9 hx9zx] ®A f S [A £ f] ®Â f
is equal to /?,. Likewise, there is a yl-projective module P2 for which
H(P2) ®Ar H{Tk), H(P2) ®A Â s #04*), and such that the composite isometry

®r f s //(P2) ®^fs #(i*) ®^ f H(fk)

coincides with f}2 • Since [/?, © j82] [a], there is an isometry

Since det (f}2) 1, P2 is a stably free module (see [M2] Lemma 2.4), and so

(4.9) [P9h9z]®H(A&apos;)*[Pi9hl9zl]®H(Ak + &apos;)9 r&gt;0.

It is clear now that the assumption on k is not needed if we are only interested in
a stable statement of the form (4.9). (Just apply the previous argument to
[P, K A ®H(A3) in place of [P, A, z].) Thus (4.9) holds for any k &gt; 0.

The following lemma follows easily from Rim&apos;s square (3.6).

LEMMA 4.10. Let [A, A, x] be a pointed Z-lattice. Suppose there is a pointed
hermitian pairing [Puhuzx] over A=ZG such that [Pl9hx,zx] ®A Z©//(Zr) s
[A, A, x] © H(Zr), r &gt; 0. There exists a pointed hermitian pairing [Po, h0, z0] over A
such that [Po,h0, z0] ®AZ^[A, A, x] and [Po, Ao,z0] ^s [P,, hx, z,].

Apply Lemma 4.10 to the nonhyperbolic summand of [P,h,z] ®A Z in (4.7).
Thus there is a pointed hermitian pairing [Po, Ao, h0] such that

[P, A, z]®H{Ar) s [Po, *o, z0] ®//(^fc + 0, r &gt; 0,
(4.11)

[P, A, z] ®^ Z s [Po, Ao, z0] ®^ Z © H(Zk).
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Notice that if the first équivalence in (4.11) is tensored over A with either Â or
Z[(J, n\d9n&gt;l then a hyperbolic form of rank r can be cancelled from both sides.

Therefore by Remark 4.5, Theorem 4.2 can be applied to (4.11) so that
[P, h, z] s [Po, h09 z0] © H(Ak\ as claimed. D

REMARK 4.12. Let us record for future référence the following observation
based on the previous proof. If [P, A, z] ®H(Ar), r &gt; 0 has a hyperbolic summand

équivalent to H(Ar+ *), then [P, h, z] ®y4 Â splits off a copy of H(Â). This statement
is definitely not true over A as it fails already over Z (even when z 0).

Proof of Lemma 4.8. We appeal again to the strong approximation theorem of
[Sh]. It follows that modulo the action of SAut ([P, h,z] ®AA) any élément of the

spécial unitary group SAut ([P, A, z] ®/1 f) can be lifted to SAut ([P, h, z] ®A T).
That is, given ô g SAut ([Pr, hr, zr] ®r f©//(f*)), there exist

ôr € SAut ([/Y, hr, zr] © H(rk)) and S e SAut ([P, fi, z] 0 H(Âk))

such that a&lt;5 =S(xôr. Hence [a^] [a] for each such S.

Since SAut ([P, h, z] ®Af) acts transitively on hyperbolic summands H(fk) in
[P, h,z]®A f, there is &lt;5, e SAut ([Pr, Ar, zr] (g)^ f0//(f*)) and isometries
P&apos;o : [Pr, Ar, zr] ®r f s [P, /T, f] ®^ f, /r, g Aut (i/(f*)) such that «j, /?{,©ft.
Let 6 det (P\). Since rfis odd, we can find isometries S3 e Aut ([Pr, /ir, zr] ®^ f
^4 g Aut (H(f)) with respective déterminants b and 6 ~j. Thus if we let

ô2 &lt;53 © ô4 g SAut ([Pr, Ar, zr] ®r f© H(f%

then a^! ô2 P\®Pi has the required properties.

Proof of Theorem 1.1. Assume conditions (i) and (ii). By Theorem 2.1, x can be

represented by a locally flat, simple embedding S2-+Nk N # k(S2 x S2) for some
k. If A: &gt; 0, let n : M -&gt;Nk be the ramified covering corresponding to this
embedding via Proposition 3.1 and let [P, A, z] [H2(M\ hM, [MG]]. It follows from

Proposition 3.7 that

[P, A, z] ®^ Z s [//2(A0, A*, x] © tt(Z*).

Furthermore, according to [R], &lt;x, (x(M) -2j(d-j)(\jd2)x • x for each 0£j&lt;d.
Since by assumption

rank (P) b2(N) + 2kZ max \a(N) - 2j(d -j)( \/d2)x • jc| + 2A:,
0£j&lt;d
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Theorem 4.6 applies to [P, A, z]. Thus there is a pointed hermitian pairing
[Po, Ao, z0] such that [P, A, z] £ [Po, Ao, z0] ©#(.4*) and by Lemma 4.10 we can also

assume that [Po, *0, z0] ^Z^ [#2(#)&gt; ^»*]•
Since [P0,A0,z0] £5[P, A, z], Proposition 4.1 shows that [P0,A0,z0] can be

realized by an action (G, X). Since Jf/G results from surgery on M/G9 the Kirby-
Siebenmann invariants of X/G and N are the same. Therefore the isometry of
intersection pairings

[H2(X/G)9 kXIG9 [XG]] s [Po, *o, z0] ®^ Z s [//2(iV), A, x]

can be realized by a homeomorphism / : X/G -&gt; iV. /(A&quot;0) ç iV is then the required
2-sphere in N. O

Proofof Theorem 1.2. Let/,/&apos; : S2-^N be two locally flat, simple embeddings
representing x e H2(N). Let M, M&apos;-+N be the associated ramified coverings, and
let [P, A, z], [P&apos;, A&apos;, z&apos;] be the corresponding pointed hermitian pairings over A.

Proposition 3.7 and Theorem 2.5 imply

[P, A, r] ® 1 Z S [P&apos;, A&apos;, z&apos;] 0,ZS [JÏ2(A0, A, *],
(4.13)

[PA][P\A&apos;&apos;]

We claim that [P, A, z] s [P&apos;9 A&apos;, z&apos; ]. This is trivial when d 1, so assume d &gt; 1. By
assumption,

rank (P) *2(iV) :&gt; max \a(N) - 2j(d -j)(\/d2)x • jc| + 2.

In particular, [H2(N),X] is indefinite and since b2(N)&gt;2, [H2(N)9 A, x] ®H(Zr)
splits off a copy of #(Zr +*), r &gt; 0. Therefore by Theorem 4.6, [P, A, z] © //(ylr) has

a hyperbolic summand équivalent to H(Ar+ *)• By Remarks 4.12 and 4.5, Theorem
4.2 can be applied to (4.13). Hence [P, A, z] s [P&apos;, A&apos;, z&apos;], as claimed.

It follows now from Theorem 3.3 and the second part of Theorem 4.2 that there
is an equivariant homeomorphism k.M-^M&apos; such that k/G : N-+N induces the

identity on homology. Then (k/G)of=f and according to the isotopy theorem of
[Q2J and [P], k/G is isotopic to the identity on N. Thus / and /&apos; are ambient

isotopic. D
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