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The semiregular polytopes

G. Blind and R. Blind

Abstract A convex &lt;i-polytype in Ed îs called semiregular, if îts facets are regular and îts vertices
équivalent A hst of semiregular polytopes for d &gt; 4 îs known smce 1900 Recently ît has been proved
by n B MaKapoB [cô Bonp zmcicp reoM, MaT nccjie^ MM AH Mojuj CCP Bbin 103, C 139-150,
KmiiHHeB 1988], that this hst îs complète for d 4 We présent hère a simple proof for that this hst îs

complète in any dimension

1. Introduction

Let P be a convex rf-polytope in Ed. P is called regular-faced, if ail its facets are

regular. P is called semiregular, if its facets are regular and if its vertices are

équivalent (i.e. the group of symmetries of P acts transitively on the vertices of P).
Clearly, every semiregular polytope is regular-faced.

For d 3 the semiregular polytopes coincide with the Archimedean solids. For
d &gt; 4 Gosset established a list of semiregular polytopes m [6]. Various constructions
of semiregular polytopes hâve been described since, but ail the time it stayed open
whether Gosset&apos;s enumeration is complète (see [7, p. 413]). Only in 1988 there is

published a proof [8], that Gosset indeed found ail the semiregular ^/-polytopes for
d 4. This proof uses the complète enumeration of regular-faced 3-polytopes in [9];
the vertex-figure of a semiregular polytope is then carefully examined.

In [1], [2] and [3] we completely enumerated the regular-faced ^/-polytopes for
d ^ 4; a wide class of them, however, is only given by a method how to construct
them. We shall show, how to deduce from this list of ail regular-faced polytopes

THEOREM 1. Gossefs list of semiregular d-polytopes is complète for d ^ 4.

2. Gosset&apos; list of semiregular d-polytopes for d &gt; 4

Besides the regular polytopes Gosset found 7 semiregular polytopes, namely 3

for d 4 and always one for d 5,. 8. They are described in [6] by the sets of
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their facets together with some incidence properties of the following type

151

d

4

5,

name in [6]

tetroctahednc

tetncosahednc

octicosahednc

\

sets of facets

5 octahedra
5 tetrahedra

24 icosahedra
120 tetrahedra

120 icosahedra
600 octahedra

{d — l)-crosspolytopes
{d — l)-simphces

a {d — 3)-face is contained in

2 octahedra
1 tetrahedron

2 icosahedra 1 (l icosahedron
1 tetrahedronj [3 tetrahedra

1 icosahedron
2 octahedra

2 (d — l)-crosspolytopes
1 (d — l)-simplex

3. Regular-faced d-polytopes for d &gt; 4

In [1], [2] and [3] we showed, that for d &gt; 4 the following list of regular-faced

d-polytopes îs complète:
for d &gt; 5: the regular polytopes,

the polytopes of Gosset&apos;s list,
the pyramid with basis a regular {d — l)-crosspolytope, and

the bipyramid with basis a regular (d — l)-simplex.
for d 4: the regular polytopes,

the polytopes of Gosset&apos;s list,
the pyramid with basis an octahedron,
the bipyramid with basis a tetrahedron,
the pyramid and the bipyramid with basis an icosahedron,

the union of a tetroctahedron (see Gosset&apos;s list) and of a pyramid, whose

basis is an octahedric facet of the tetroctahedron, and

the set se of polytopes arising from the regular 600-cell by cutting off
vertices in the following way:

Let Z be the 600-cell and let {Et }f= be a set of vertices of Z, such that no two
vertices of {£,}f= are adjacent, i.e. joined by an edge of Z. Since Z is regular, for

every Et the vertices adjacent to Et are contained in a hyperplane, which détermines

a closed halfspace H(Et) not containing Er Then Zn nf=, H(Et) is a convex

polytope, which is regular-faced, because Z is simplicial and no two vertices of
{£,}f=1 are adjacent. We say that Zn nfœ, #(£,) arises from Z by maximally

cutting off the vertices of {EË }f= x. Thus the set se is the set of those regular-faced

polytopes which arise from the 600-cell by maximally cutting off a set of vertices,

where every two vertices are non-adjacent.



152 G BLIND AND R BLIND

Let us remark that analogously we may maximally eut off a suitable set of
vertices from the icosahedron.

4. Proof of the Theorem

Let P be a semiregular polytope, which is not regular and not contained in
Gosset&apos;s list. Since P is regular-faced and since the vertices of P are équivalent, we

immediately deduce from the list of ail regular-faced polytopes that P is 4-dimen-
sional and that P e srf.

Now let P be any semiregular polytope with P e s/. Let P arise from Z by
maximally cutting off k &gt;0 vertices of Z. Then, since Z has 120 vertices, the
number e of vertices of P is given by

The set of facets of P is a set of tetrahedra and exactly k icosahedra. Let a vertex
E of P be incident with m &gt; 0 icosahedric facets. Then the vertex-figure of P at E
is a 3-polytope arising from an icosahedron by maximally cutting off m vertices
where every two are non-adjacent. But such 3-polytopes exist only if m ^ 3. We
remark that for m 3 there exists only one such 3-polytope: its 3 pentagonal faces

do not hâve a common vertex, but every two of them hâve a common edge; so in
case m 3 the 3 icosahedral facets through E do not hâve a common edge, but

every two of them hâve a common 2-face.

The vertices of P are équivalent, hence every vertex of P is contained in m
icosahedric facets; thus m ^ 1. Moreover, every icosahedric facet contains 12

vertices of P, so e \2k/m. From this and (*) follows

m
120,

The only integer solution of this equality is m — 3, k — 24; so we hâve m 3.

Now let £ be a given vertex of P and let /, I{, I2 be the m 3 icosahedric facets

through E. Then by the previous remark InIxr\I2 is not an edge of /, but Inlx
and Inl2 are 2-faces of /. Thus, if 3F is the set of those 2-faces of /, which are also

contained in another icosahedric facet, then no two éléments of 3F hâve a common
edge, but every vertex of / is contained in exactly two éléments of #&quot;. From this it
is easily seen that 3F is uniquely determined for given Inlx and /n/2, and so are
the facets intersecting / in a 2-face. Proceeding in this way we see that P is uniquely
determined for given /, Ix and /2-
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Three icosahednc facets through a vertex correspond to vertices of Z, which are
uniquely déterminée up to isometries of Z by the previous remark. So there exists

at most one semiregular polytope in «s/.

The tetncosahednc polytope of Gosset&apos;s list îs known to be in se (see e.g. [5, p.
152f.]). Hence it is the only semiregular polytope in s/, which concludes the proof.

5. Concluding remarks

1. We tned to make the proof as self-contained as possible. The resuit would
also follow immediately from k 24 using Theorem 2 in [4].

2. It is well known (see e.g. [7, p. 413]) that if the définition of semi-regularity
is slightly changed by substituting &apos;ail vertex figures are congruent&apos; for the transitiv-
îty of the symmetry group, then the Archimedean sohds are no more the only
3-polytopes allowed, but there exists exactly one additional polytope. Further
additional 3-polytopes exist, if instead of the congruence of the vertex figures we

assume only, that every vertex is contained in the same number of facets (see [9]*).
This is in contrast to the situation in higher dimensions:

In the proof of our Theorem we did not really use the transitivity of the

symmetry group of a semiregular polytope, but only the fact that every vertex is

contained in the same number of facets. Thus we hâve

THEOREM 2. A regular-faced d-polytope, where every vertex is contained in the

same number offacets, is semiregular for d &gt; 4.
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