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Complète nonorientable minimal surfaces in R3

Marty Ross

Abstract. We consider complète nonorientable minimal immersions x(M) c R3. Assuming the double
cover N of M has finite total curvature, we generalize an argument of Lopez/Ros to give a sufficient
condition for the instability of x(M) in terms of the total curvature of M and the genus y of N. We apply
this condition to prove that if the immersion is regular then x(M) is unstable. We also consider the case
where the immersion is finitely branched, and we classify the possibilities under the assumption that N
is hyperelliptic.

1. Introduction

Let x(M) çR3 be a complète minimal immersion. x(M) is stable if the 2nd
variation of area is nonnegative for every compactly supported C1 variation of
x(M) ([BC], §1). Fischer-Colbrie/Schoen [FS] and doCarmo/Peng [CP] indepen-
dently proved that if M is orientable and x(M) is stable then x(M) is a plane. The
corresponding question for nonorientable M remains open, and it is this question
we investigate hère.

One can study the case of nonorientable M by lifting to the double cover N of
M. There is a natural 2: 1 projection n : N-+M and an antipodal map I : N-*N,
an orientation-reversing involution without fixed points satisfying

n(I(p)) =*(/&gt;), peN. (1)

The immersion can be lifted to x(N), and we are then interested in variations
which are symmetric with respect to / (see Section 2). Restricting to oriented
isothermal coordinates (with respect to the induced metric), N becomes a
Riemann surface. In such coordinates the antipodal map is anticonformal. Also, if
N has finite total Gauss curvature (again in the induced metric) then N N —

{/?,,... 9pk} is conformally a finitely-punctured compact Riemann surface ([Os],
§9). This characterization of N continues to hold if x(M) has finitely many branch
points, since the underlying resuit of Huber still holds ([Os], p. 89). However, if
x(M) is permitted to hâve infinitely many branch points, then the characterization
can fail ([Os], p. 73). The above resuit of Fischer-Colbrie/Schoen/DoCarmo/Peng
continues to hold if one allows finite branching ([M]), but the resuit is false for
nonorientable surfaces. For example, Henneberg&apos;s surface, which possesses two
branch points, is stable ([C]).
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Since N is a Riemann surface, we can write x(N) using the classical Weierstrass
représentation ([Os], §8):

x{p) Re #, /&gt; € N, (2)

where

(3)

Hère g : N -&gt; C is a meromorphic function and a is a holomorphic differential on
Implicit in (2) is the fact that # has no real periods:

: [ &lt;f&gt; 0Re (P 0 for every closed curve y ^ N. (4)
Jr

The branch points of x(N)9 if they exist, occur at the zéros of &lt;P. Furthermore,
if TV has finite total curvature then g and w extend meromorphically to N. g : N -&gt; C
is the Gauss map of x(N) in the following sensé: if C : N -+S2 is the (standard)
Gauss map of x(N), and if n : S2 -* C is stereographic projection then

g noG. (5)

The fact that x(N) is a double cover of a nonorientable immersion is équivalent
(with (4)) to ([Ol], §1)

1*0 &lt;f&gt;, (6)

which is in turn équivalent to the two équations

S °/=-!/&amp; (7)

/?a -g2a. (8)

Condition (7) is of particular interest to us. Suppose that N N — {p{,..., pk}
has finite total curvature. It is standard that the instability of x(N) can be reduced
to an eigenvalue estimate on N, and thus to the existence of suitable test functions
on N. If we want to consider the instability of the nonorientable immersion x(M),
we hâve to then search for test functions on N with appropriate anti-symmetry with
respect to /, corresponding to variations of x(N) which don&apos;t separate the sheets -
see Section 2. It turns out that certain functions into S2 can be considered as a trio
of such test functions. Composing with stereographic projection, the resulting
functions hâve exactly the symmetry of the Gauss map given by (7). The idea in this
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context is due to Lopez and Ros [LR]; they use this formulation to prove that the
catenoid and Enneper&apos;s surface are the only complète orientable minimal immersions

into R3 of index 1. By a simple generalization of their argument we hâve the

following sufficient condition for instability:

THEOREM 1. Let x(M)çR3 be a complète, nonorientable, finitely branched
minimal immersion of finite total curvature with double cover N and Gauss map

g : N -+€. Suppose there is a meromorphic function E : N -&gt; C with deg h ^ deg g,

/i-/=-l//T, (7)&apos;

and such that h is not obtainedfrom g by composition with a Môbius transformation.
Then x(M) is unstable.

We prove Theorem 1, along with a generalization, Theorem Y, in Section 2.

In order to apply this theorem, we need to know of the existence of meromorphic

functions of relatively low degree satisfying (7)&apos;. In connection with this, we
would like to know something of the possible antipodal maps / : N -? N. In gênerai,
both of thèse questions appear to be difficult, but we do hâve the following (also
proved in Section 2).

LEMMA 2. Suppose N is a compact Riemann surface of genus y with an

anticonformal involution I : N ^&gt;N, and suppose there is a meromorphic function g on
N satisfying {!)&apos;. Then there is a meromorphic function h satisfying {!)&apos; with deg h

&lt;y + 1.

The point for us is that the Gauss map of a regular minimal immersion, as well
as satisfying (7)&apos;, always satisfies deg g &gt; y + 3. (This follows readily from [HM],
but for completeness we sketch a proof in Section 2). Thus, combined with the
above results, we hâve

THEOREM 3. Suppose that x(M) ç R3 is a complète, regular, nonorientable
minimally immersed surface offinite total curvature, Then x(M) is unstable.

This theorem leaves open the possibility of the existence of stable finitely-
branched immersions. In Section 3 we assume N is hyperelliptic and classify the
possible antipodal maps on N (Theorem 5). This enables us to prove that except in
two spécial cases, x(M) must still be unstable (Corollary 6). One of the omitted
cases allows Henneberg&apos;s Surface, which is a stable nonorientable surface with two
branch points ([C]). In Section 4 we construct stable, finitely branched immersions
permitted by the other case.
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The above questions hâve been investigated by a number of authors. The

stability of Henneberg&apos;s surface, and other nonorientable immersions of projective
planes of total curvature — 2n, has been observée, among others, by Choe [C] and
Meeks. The instability of ail other projective planes was independently proved by
Choe [C] and Lima/daSilveira [LS]; Choe [C] also proved the instability of
minimally immersed Klein bottles. Lima and daSilveira [LS] proved that if M has

infinité total curvature and is finitely connected then the stability operator has

infinité index.1

2. Instability of regular immersions

As stated in the introduction, the instability of regular nonorientable immersions

follows immediately from Theorem 1 and Lemma 2. To prove Theorem 1,

suppose x(M) is a complète, nonorientable finitely-branched minimal immersion
with Gauss curvature K, and let x(N) be the induced immersion of the orientable
double cover. By the 2nd variation formula ([S], [M]) x{M) is stable iff

f
JN

+ 2Kf2 &gt; 0 (9)

for every compactly supported C1 function/: N -+R with the antipodal symmetry

P*N. (10)

(/ corresponds to a variation of x(M) with initial velocitiy vector field V =fG.
Thus (10) ensures V ° /(/?) V{p)). If M, and thus N, has fini te total curvature,
then any C1 function/: ÂT-&gt;R satisfying (10) is a legitimate test function in (9)
[F].

Suppose now that h:N-*C is a meromorphic function satisfying (7)&apos;. Let
H (Hl9 H2,H3) n~loh where n : S2^C is stereographic projection. Then H
satisfies (10). Applying (9) to each component of H, the argument in [LR] proves
that if x(M) is stable then

: f (11)

l[LS] states only that x(M) is unstable, but the proof appears to establish more.
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This immediately gives a spécial case of Theorem 1 : if deg h &lt; deg g then x{M) is

unstable. To obtain the theorem in full generality, we consider the case of equality
in (11). It is shown in [LR] that equality in (11) implies

(12)

pointwise. To complète the proof of Theorem 1, we show that (12) implies G and

H are related by an isometry of S2. Let U ^ N be any open set small enough so that
G : U -+VX and H : U -+V2 are diffeomorphisms. Since G and H are conformai,
H o G~l : Vx -&gt; V2 is a conformai diffeomorphism. By (12), H o G~l T must in
fact be an isometry of S2, and thus a rigid motion of S2. By connectedness,

H T o G on ail of N.

It is possible to obtain a slightly more gênerai version of Theorem 1. (11) is a

comparison of the énergies of H and G, using the fact that

I 2K=-\
Jtv Jn

(13)

If we consider H : N -&gt;S2 satisfying (10) but not necessarily conformai then the

components of H are still legitimate test functions for (9), and we obtain

THEOREM T. Let x(M)çR3 be a complète, nonorientable, finitely-branched
minimal immersion of finite total curvature with double cover N and Gauss map
G : N-&gt;S2. Suppose there is a C1 function H.N-+S2 satisfying (10) with less

energy thon G. Then x(M) is unstable.

Next, to prove Lemma 2, we may as well assume deg g &gt; y +1. Then, by (7)&apos;,

we can write the divisor of g as

Now consider the divisor

&quot; + &quot;&quot;£,+:, « [»/2].

Since deg* =y +n -2m S y, the Riemann-Roch theorem ([FK, §3.4]) implies
there is a meromorphic function / with (/) à l/&lt;%. Relabelling the P, if necessary,
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we can write

Now define

One easily checks that A satisfies (7)&apos; and that deg h&lt;&gt;s+(y+n—r)&lt;&gt;y + \.

The final ingrédient in the proof of theorem 3 is the claim that deg g ^ y + 3 for
the Gauss map of a regular nonorientable immersion. This cornes from the Gauss-

Bonnet formula for a complète minimal immersion in R3 ([JM, Th4]):

J-K 2k(X(M) - n{M)\
M

where «(M) is the total number of ends of M at oo, counting multiplicity. Now, if
M is nonorientable with double cover N of genus y, then since M has at least one

puncture, X{M) &lt; - y. As well, «(M) &gt; 3 ([HM, Th 6], [K, Cor 1]). Together with
(13), this gives

=&gt; deg g &gt; y + 3,

as desired.

3. Antipodal maps on hyperelliptic surfaces

A compact Riemann surface N is said to be hyperelliptic if there is a degree 2

meromorphic function z : N -&gt;C Our intention is to classify the possible antipodal
maps on N (Theorem 5), which together with Theorem 1 will give instability results

for hyperelliptic minimal immersions (Corollary 6).

To begin, we recall some elementary properties of hyperelliptic Riemann
surfaces ([FK], 111*7). If N is a hyperelliptic surface of genus y, and if a degree 2

function z : N -» C is chosen to not hâve branch points at its pôles, then N can be

represented by the polynomial

w2 (z - px){z - p2) -&apos;(z -p2y + 2). (14)
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Hère w : N -&gt; C is a meromorphic function on N of degree 2y + 2, and every point
P g N is determined uniquely by z(P) and w(P). In particular, the (distinct) points
P\ &gt; • • • &gt; /fy + 2 can be identified with points on JV, the branch points of z. Any
meromorphic function / : i? -? C can be written as a rational function of z and w,
and if deg / &lt; y then / can be written as a rational function of z alone.

Any compact Riemann surface of genus y ^ 2 is hyperelliptic (of course if y 0

then N &amp;C and i? admits degree 1 functions). If y ^ 2 then any degree 2 function

Z! : N -* C can be written as Zj 7&quot; © z where T is a Môbius transformation. There
is then a meromorphic function W! and a polynomial Q such that wf Q(zx). Q is

of degree 2y + 2 unless T sends some /?* to oo, in which case Q is of degree 2y -h 1.

The key to classifying the antipodal maps on N is the following:

LEMMA 4. Suppose T : C —? C is a Môbius transformation satisfying

T(T(z))=z. (15)

Then there is a Môbius transformation S such that either

Sofo5&quot;1(z)=z (16)

or

SoToS-l(z) -l/z. (17)

Proof ([AG], 1-9-4).

THEOREM 5. Suppose N is a hyperelliptic Riemann surface of genus y &gt; 2, and

suppose I : N -&gt;N is an antipodal map. Then N and I can be written either in theform

w2 (z -Px)(z -/?,) • • • (z -py+l)(z -Py+i), Im/&gt;, *0, (18)

\zoIr~z&gt;
\W o/= —W,

or

*2 ^ -PxXz + 1/Pi) • • • (2 -/»,+ ,)(« + l/py+l), (20)

/=-l/z-
o/=-w/P+1.

K &apos;

If y is even then the 2nd case does not occur.
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REMARK. This resuit also holds for y 0 and 1, but has less meaning in thèse

cases. (As well, the proof given below does not apply in thèse cases.) If y 0 then

it follows from Lemma 4 that N admits a degree 1 function z satisfying (7)&apos;. If y 1

then the easiest way to obtain a suitable classification is to identify N » C/L where

L is a lattice in the plane. The existence of the antipodal map / means that we can

assume L &lt;2, Ici&gt; is rectangular and / is given by

/(z)=z + l. (22)

([AG]), Th. 1-9-8). Notice that the case where L is rhomboidal is ruled out by the

condition that / hâve no fixed points). Now let

(23)

where &amp; is the Weierstrass ^-function, el9 e2, e3 are the values of 9 at the zéros of
»\ and

b=yf(el-e3)(e3-e2)eR+9 (24)

([A], pp. 277-279). A calculation shows that degJ2r=2 and &amp; satisfies (7)&apos;.

Furthermore, by the functional équation for ^,

(25)

k= /l^£eR+. (26)

Proof of Theorem 5. Let Zj be a degree 2 function on N. Then zx o / is also

of degree 2 and so, because y &gt; 2, there is a Môbius transformation such that
Z, o / 7* o z,. Since / is an involution, T satisfies 15). Let z 5 o z, where S is the

Môbius transformation given by Lemma 2. According to whether (16) or (17) is

satisfied, we hâve either zo/ zorzo/= —1/z.

If z o / z then the branch points of z corne in conjugate pairs and we can
find w such that (18) is satisfied. (The branch points of z cannot occur on the

extended real axis, since thèse would then be fixed points of /.) (18) then implies
(w o /)2 w2, and thus w o I ±w. The plus sign cannot occur, since then /would
fix the real z axis.
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Now suppose z o /= -1/f. Replacing z by (z + el0)/(z -e10) if necessary, we

can assume z does not hâve a branch point at oo. Pairing the branch points of z as

above, we can find w such that (20) is satisfied. (20) then gives

Replacing z by a suitable eI0Cz, we obtain (21).

It remains to show that if y is even then (21) is in fact inconsistent. Since / is

supposed to be an involution, we hâve

-w,

giving the desired contradiction.

COROLLARY 6. Suppose x(M) £ R3 is a complète, finitely branched, non-
orientable minimal immersion of finite total curvature, and suppose that the double

cover N ofM is hyperelliptic ofgenus y. Then x(M) is unstable in thefollowing cases:

(i) ify=O and the total curvature of M is less than —2n;

(iii) ifyèil and y is even\

(iv) if y ^ 3, y is odd, and the total curvature of M is less than —An.

Proof of Corollary 6. Cases (i) and (ii) follow from Theorem 1, (13), and the
remark following the statement of Theorem 3: for case (ii) we define

(28)

and prove that deg &apos;S 2, ^ satisfies (7)&apos;, and &lt;&amp; is not related to &amp; by a Môbius
transformation.

To prove case (iii), let

w

(z - px){z - p2) •••(z-
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It is easy to show deg fx deg f2 y + 1, fx and f2 satisfy (7)&apos;, and that fx and f2
are not related by a Môbius transformation. The proof of (iii) will now follow if we

can show N does not admit fonctions of degree &lt; y satisfying (7)&apos;. Supposing/is
such a fonction, we know /= R(z) is a rational fonction of z. If z(p) 0 then by
(19),

contradicting (7)&apos;.

Finally, the proof of case (iv) divides into two subcases. The lst subcase, when

(18) and (19) apply, is identical to case (iii). For the 2nd subcase, z itself satisfies
(7)&apos;, and the resuit follows from Theorem 1 and (13).

4. Stable branched immersions

Let N be the compact Riemann surface given by

w2 (z4 + /&gt;4)(z4 + \/p4)(z2 - q2i)(z2 - i/q2) • • • (z2 - q2ni)(z2 - i/q2n), (29)

where n &gt;0, p, qu ,qn eR9 and

\&lt;p&lt;qx&lt;&quot;&lt;qn. (30)

TV is a hyperelliptic surface of genus y 3 + 2«, and we can define an antipodal map
I:N-+Nby (21).

We shall construct complète finitely-branched nonorientable immersions

x(M) £ R3 with double cover x(N), antipodal map /, and Gauss map

g =z. (31)

(Note (7) is automatically satisfied.) If qn is close enough to p then any such

immersion will be stable, the proof of which we now sketch: for more détails, see

[R].
By [F], the stability of x{M) is équivalent to the nonnegativity of certain

eigenvalues of À -h 2 on the branched cover of S2 obtained by the map
n ~l o z : N -* S2. To be more précise, we initially assume n 0 (in which case N is

the underlying Riemann surface of the Schwarz surfaces considered in [R]). Let gh,



74 MARTY ROSS

£i&gt; #2&gt; #3 be the following automorphisms of N:

&apos;go(z,w)=(z, -w)
gl(z,w)=(iz9w)
g2(z,w) (-/z, w)

j3(z,w)=(l/z,w/z4).

Notice that

I go°g\ og2°gi- (33)

Thèse automorphisms are commuting isometries on the branched cover of S2. Thus,
when considering Rayleigh quotients to estimate eigenvalues of A + 2, it is enough
to consider test functions / which are odd or even with respect to g0, gl9 g2, g3.
Further, by (10) and (33), we can assume/is odd with respect to g0 and even with
respect to g3: if not then the other symmetries ensure that the zéro set of/includes
a great circle, making the eigenvalue estimate straight-forward.

We hâve thus reduced the case n 0 to considering functions /which are odd
with respect to g{ (say) and g0, and even with respect to g2 and g3. In [R] we show
that the lowest eigenfunction/of A + 2 with thèse symmetries has (strictly) positive
eigenvalue (the key to the proof is that the zéro set of/intersects every circle of
latitude in diametrically opposite points). This complètes the proof of stability for
n=0.

If n &gt; 0 then we assume qn is close to p. Ail the branch points of z are then
contained in the lift of eight small disks on S2. Removing thèse disks gives us a

Riemann surface independent of n ^ 0. Then, by the n 0 case, the lowest

symmetric eigenvalue of A + 2 on this surface is positive and bounded away from
zéro, independent of the size of the disks. By a standard logarithm cut-off argument
[F], removing the disks can only raise the eigenvalue slightly. Thus the original
eigenvalue must also hâve been positive, and we hâve stability of x(M) for ail n.

It remains to show there is a symmetric immersion of N with Gauss map g z.

For any integer k ^ 0 let

*-^. (34)

where

/-2 + ^±i&gt;. (35)
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Then

(0(z)^(l/z)&amp;7 a* ^TT) &quot;gV

Thus a^ satisfies (8) and if

a f ^a*, ^ g R, (36)

then a also satisfies (8). Thus we just hâve to show that (4) can be satisfied by
suitable choice of the constants Ak. By making K huge, this is in fact very easy. The

immersion x(N) with Weierstrass g and a will hâve 2y + 4 pôles, and we must
ensure that 4&gt; has no real penods if we wind around one of thèse pôles. As well, the

homology group of N has a basis of 2y éléments we need to consider. Since there

are three differentials to integrate, this gives a total of 12y + 12 period conditions to
be satisfied. Thèse conditions are linear in the Ak, so K \2y + 13 is large enough
for the Ak to be selected.
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