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Doubling measures and quasiconformal maps

Susan G. Staples*

1. Introduction

In this paper we study the relationship between quasiconformal maps and

doubling measures. First recall the définition of a doubling measure. Let D be a

domain in M&quot; and let fi be a Borel measure defined on D. Let 2Q dénote that cube

concentric with Q and of side length twice that of Q. We say that \i is doubling on
D, pie @(D)9 if there exists a constant c &gt; 0 such that n(2Q) ^ cfi(Q) for ail cubes

Q with 2Q c D.
In particular we examine the following problem. Suppose /:/)-?£&gt;&apos; is a

homeomorphism between domains in R&quot;, n &gt; 1. For each \x e®{D&apos;), consider the

induced measure v n(f( • on D. Classify those / for which each such v is also

a doubling measure.
Previous articles ([A], [J], [R], [S], [U]) hâve studied the analogous question with

respect to the classes of BMO functions, Hardy-Littlewood maximal functions and

A^ -measures. For the higher dimensional cases, that is n ^ 2, the desired homeo-

morphisms /which préserve thèse classes prove to be quasiconformal maps. In the

one dimensional case, Jones has shown that the précise class of homeomorphisms
of the line which préserve BMO are those which satisfy f eA^. This is not
équivalent to the statement that/is quasisymmetric. Major différences thus exist in
the results for the cases n — 1 and n ^ 2.

In each of the aforementioned articles, the authors needed to impose hypothèses

on the homeomorphism / beyond the préservation of the given class in order to
assure the quasiconformality of/. Thèse extra assumptions hâve included differen-

tiability assumptions and subdomain conditions in various forms.
Hère we présent proofs that quasiconformal maps préserve doubling measures

in dimensions n ^ 1. We also show, using standard additional hypothèses similar to
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Institute. She wishes to thank the Institute for its hospitality. The author was also supportée by Grant
# DMS 9004251 from the U.S. National Science Foundation.
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those mentioned above, that maps / which préserve doubling measures must be

quasiconformal for n ^ 2 and quasisymmetric for n 1. Note that in contrast to
the situation with BMO functions ([J], [R]), similar theorems hold in both the cases

n 1 and n ^ 2. However, we will point out other observed différences for doubling
measures dépendent on this given dimensional break.

2. Notation and preliminary lemmas

Throughout this paper D and D&apos; dénote domains in Un9 n &gt; 2, and G and G&apos;

indicate subdomains of D and Df respectively. We use Q for any closed cube and

by xQ we mean that cube concentric with Q which arises from expanding Q by a

factor of t ^ 1. If the center of Q is specified to be x, we write Q Q(x); if, in
addition, the side length of Q is 2r, we write Q Q(x, r). Lebesgue measure is

denoted by | • |.

We recall the analytic définition of quasiconformality. A function f:D-+W is

said to be absolutely continuous on Unes, ACL, if / is continuous and if / is

absolutely continuous on almost ail line segments in R parallel to the coordinate
axes. Hère R {x g W | at ^ xt ^ bt} a D is any closed «-interval in D.

Dénote the Jacobian matrix of/at x by F(x) and its déterminant by J(x,f). A
homeomorphism/ : D -+Df is said to be K-quasiconformal if/g ACL,/is differen-
tiable a.e. in D with respect to Lebesgue measure and

sup \F(x)h\n^K\J(xJ)\a.e. (2.1)
h e Un, \h\ 1

A homeomorphism/ : D -? D&apos;is said to satisfy the condition (N) if \A | 0 implies
|/41 0. It is well known that quasiconformal maps satisfy the condition (N).

The one dimensional analogues of quasiconformal maps are quasisymmetric
maps. An increasing self-homeomorphism / of the real line is called K-quasisym-
metric if

for ail jc, t e R, t # 0.

We make the following slight extension in the définition of doubling measures.
We say that a Borel measure \i defined on D is in 9{D, t), t ^ 1, if there exists a
constant c &gt; 0 such that

li{2Q) £ cfi(Q) (2.3)
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for ail cubes Q such that 2xQ a D. If we wish to specify that a measure // is

doubling with an associated constant c, we write the constant in (2.3) as c^.
Similarly a Borel measure n defined on D is in AX{D, t) [S], if there exist

positive constants a and ô such that

KQ)
f\E\Viw\) and

for ail cubes Q with xQ a D and for every measurable set E aQ.
Note that the class A^{D,x) is contained in the class of doubling measures,

^(D, t). This containment can be shown to be strict, i.e., there are examples of
doubling measures which are not Aœ-measures ([FM], [W]). Thus the problem of
examining which homeomorphisms préserve doubling measures is différent from the

analogous problem for A^ -measures.
Reimann [R], has shown that the &quot;pull back&quot; of Lebesgue measure under a

quasiconformal map is an A^ -measure.

LEMMA 2.4 ([R], Corollary p. 262). Let f:D-*D&apos; be K-quasiconformal.
Then there exists a constant x=r(K,n) such that \i e A^^D, t), where fi(E)
\f(E)\.

Thus by our remark above the measure \i induced by a quasiconformal map /
satisfies \i e Q){D, t).

We now state three équivalent définitions of doubling measures. At any given

point in the proofs in this paper we use whichever définition proves most convenient

computationally. We say that two closed cubes are neighboring whenever \Q\ \S\

and QnS ^ 0.

LEMMA 2.5. Let \i be a Borel measure defined on D. The following are

équivalent:
(2.6) There exist constants c &gt; 0 and t ^ 1, such that

for ail cubes Q such that 2xQ a D.

(2.7) There exist constants a &gt; 0, b &gt; 0 and x ^ 1 such that

fi(mQ) &lt;; ambfi{Q)

for ail m &gt; \ and ail cubes Q such that 2kxQ c D. Hère k
min {zeZ:z^ log2 m).
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(2.8) There exist constants d&gt;0 and a ^ 1 such that

for ail pairs of neighboring cubes S and Q in D such that aQ c D.

The équivalences above can be shown by standard géométrie arguments. One

can deduce (2.7) with a c and b log2 c by repeated applications of (2.6). For the

proof of (2.7) =&gt; (2.8), one clearly has n(S) ^ /i(m0 &lt; amb\x(Q) for m 1 + 2y/n.
This will hold for ail cubes Q satisfying aQ c £&gt;, with a 2*t, where k
min {z e Z : z ^ log2 (1 + 2y/n)}. Finally, to see (2.8) =&gt; (2.6) we can décompose

2Q into 2n cubes, each neighboring Q. Thus ju(20 &lt; 2nd^(Q) for ail cubes (2 such

that 2Qx c Z), with t cr. D

3. Main results

The theorems for the one dimensional case are a part of the known &quot;folklore&quot;

for quasisymmetric maps. However, thèse results do not appear to be in print. Since

they merely dépend on the définition of quasisymmetry and a quick application of
Lemma 2.5, we include them hère for completeness.

THEOREM 3.1. Letf: U-+U be an increasing homeomorphism of the real Une

onto itself Then the following are équivalent.

(3.2) fis K-quasisymmetric.
(3.3) For every \i e ®(R), v ju(/( • belongs to ®(R) with cv cv(c^ K).

Proof Consider any two adjacent intervais Q and S with |Q| |S| f and

|Q|n|S| {jc}, the common endpoint of Q and S. We write Q&apos; =f(Q) and 5&quot;

Assume first that/is ^-quasisymmetric and ne@(U) with associated constant d
from (2.8). By the définition of quasisymmetry in (2.2),

loi * K\S&apos;\.

We can cover Q&apos; with m [K] -h 1 neighboring intervais Ix,..., Im such that |/71 \S&apos;\

for ail y 1 to m. Next we estimate //(/( •

Kf(Q))

where rf&apos; rf7(rf,
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From this particular case of adjacent neighboring intervais we can deduce (2.6).
Now assume that condition (3.3) holds. In the one dimensional case the

implication (3.3) =&gt;(3.1) is almost trivial, since we need only apply (3.3) to the

measure v(Q) \Q&apos;\ induced by Lebesgue measure. By (2.8) we hâve v(S) &lt; dv(Q)
as well as v(Q) &lt; dv(S). In other words,

l_Jf(x + t)-f(x)\

We now proceed with the higher dimensional case; henceforth we assume n &gt; 2.

Hère we state results for mappings between gênerai domains D, D&apos; cz Un.

THEOREM 3.4. Iff\D-+D&apos; is a K-quasiconformal map, then q&gt;:fi-+v

Kf( &apos; w 0 monomorphism between @)(D&apos;) and ^(A t), t x(K, n). Moreover, we

can take cv c£, j? p(K, n).

Note that in the case where D D&apos; M&quot;, we can take t 1, and q&gt; gives an

automorphism of $&gt;(Un).

The proof dépends on Lemma 2.4 along with the following lemma which dérives

from Lemma 4 in [G] and Lemma 4 in [R]. (See also [S], Lemmas 2.16 and 2.19.)

LEMMA 3.5. Let f:D^&gt;D&apos; be a K-quasiconformal map and let a&gt;\ be

given. Then there exists a constant t =T(K,n,a),T ^ 1, such that for every cube

Q(x) ci D satisfying xQ a /), both of the following conditions are true.

(3.6) There exists a cube P\f{x)) a D&apos; with f~\P&apos;) P =&gt; Q such that

\P&apos;\^C\\Q% cl=cl(K,n% and aP&apos;czD&apos;.

(3.7) There exists a cube S\f(x)) c D&apos; with f-\S&apos;) =5cg such that

\Q&apos;\&lt;c2\S% c2 c2(K,n).

Proof of Theorem 3.4. Let T=max(T1,T2) where xv is the constant for x

given by Lemma 2.4 and x2 is similarly that for Lemma 3.5. Consider any
cube Q satisfying 2xQ c D. Apply Lemma 3.5 with a 2k, k min {zeZ:
z £ log2 mxjnjn\ to find cubes P&apos; =&gt; (20&apos; =/(2fi) and S&apos; c Q&apos; =f(Q) such that

||| (3.8)

and

ICI * c2\S&apos;\. (3.9)
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From Lemma 2.4 we also deduce

Combining (3.8), (3.9) and (3.10) yields

m=m(K,n). (3.11)

Choose any doubling measure // g 3)(D&apos;). We can make use of définition (2.7)
since P&apos;czmxln^ftiSf and 2kS&apos;aaP&apos;aD&apos;. By (2.6) we see that v=fi(f(-))e

t), since for the cube Q under considération

Note that since the restriction,/^, remains Â&apos;-quasiconformal for any subdomain

G of 2), we can also state Theorem 3.4 in terms of subdomains G and
G&apos; =/(G). In Theorem 3.12 we assume such subdomain conditions hold.

We show (Example 3.23) that is does not suffice to deal exclusively with the

doubling measure induced by Lebesgue measure. Instead we construct a spécifie

doubling measure on D&apos; to arrive at our resuit.

THEOREM 3.12. Let f\D-+D&apos; be a homeomorphism which is ACL and

differentiable a.e. and which along withf~l satisfies the condition (N). Suppose there

exists a constant x x(f) such that the induced mapping cp : [i -? v ^(/( • is a
monomorphism from &lt;3{G&apos;) to &lt;2)(G, x), whenever G is a subdomain of D and
G&apos; =f{G). Assume, in addition, that cv cv(c^,f). Then f is a quasiconformal map.

Proof. The condition (N) above guarantees that the set Jo {x g D :

J(x&gt;f) 0} has Lebesgue measure zéro. Note that this is the only place in the proof
where we need to invoke this condition.

Consider now any point xoe D such that / is differentiable at x0 and
J(xo-&gt;f) 9*0. The Jacobian matrix F(x0) can be written in the form F(x0) pAa,
where p, a g O(n) and

A,
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By (2.1) it suffices to show that

Xn&lt;aku (3.13)

where a is a constant independent of x0.
Observe that the rotation maps a ~1 and p

~1 provide isomorphisms preserving
doubling constants from 9{D, t) to 9{oD, x) and from $)(!)&apos;) to 9{p~xD&apos;) respec-
tively. Thus we can assume without loss of generality that F(x0) is a diagonal
matrix. It is equally apparent we can reduce to the case Àx 1.

The principal idea in the proof rests on the construction of a spécifie doubling
measure which will guarantee (3.13). Since ail of the estimâtes in the construction
are translation invariant, we can assume without loss of generality that xo

/(*o)=0.
Let g dénote the linear map g(x) Ax. Consider the adjacent neighboring

cubes Qx(xr, r) Qx(r) and Q2(x_r, r) Q2(r) with xr (0, 0,.. r) and

x_r (0, 0,.. -r). Note that x0 0 is in Qx nQ2.
We build a doubling measure fi(E) — \h{E)\ on the union of the rectangular

boxes Rx(r) vR2(r), where Rx(r) =g(Qx(r)) and R2(r) =g(Q2(r)), and h is a K0-qx\2i-

siconformal map to be constructed. Hère in an effort to make the explanation
clearer and more concise, we give the précise détails and computations only for the

case n 2. However, ail of thèse ideas in the construction can be generalized to
higher dimensions. Note that ail of the estimâtes are scale invariant with respect to
r and if X2 $ N our construction provides an upper bound for [À2] which, in turn,
gives (3.13). Thus to ease computations we momentarily assume r — 1 and À2eN.

Let Kq&gt; 1 and define the Ko-quasiconformal map h on Rx(l)uR2(l) RxuR2
as follows. First, let h be the identity on R2. Divide Rx into X2 adjacent neighboring
cubes Sx,..., SÀ2 of side length 2 with centers yt (0, 2/ — 1), i 1 to k2. Further
décompose each cube St into four régions TlXi Tl2, Tt3 and Tl4, where TuX is the
closed triangle with vertices {yt, vt (-1, 2/ — 2), ut (1, 2/ — 2)}, Tl2 is the closed

triangle with vertices {yn vn wt — 1, 2/ — 1)}, Tl3 is the closed triangle with
vertices {yn un zt (1, 2/ - 1)} and Tl4 {x (xx,x2) :\xx\&lt; 1,2/ - 1 ^ x2 &lt; 2/}
is the top half of St.

Define h in a pieeewise manner on each cube St as a radial stretching map with
respect to yt followed by a suitable translation. On Sï9 let h(yx) =yx, and let the

radial stretching factor be 1 in Txx (i.e., h(x)=x in Txx), and let the radial
stretching factor be Ko in TXA. As the rays sweep from yxvx to yxwx and from yxux
to yxzx, let the radial stretching factor increase continuously from 1 to Kq. In
particular, if we dénote the angle between a ray yxx in TX2 and yxvx (or similarly
the angle between a ray in Tl3 and yxux) as 0,bthen we dénote the radial stretching
factor on that ray by H(6), l£ H(0) &lt;: ^0-
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We continue to define h inductively. Assume that h has been defined on

Sl9..., St_,. We define h on 5, as follows. On TlA let h be that radial stretching

map with constant stretching factor Kl0~l followed by a suitable translation such

that h{ôTlX) =h{dT{l_x)4). In other words we glue together consécutive maps on
cubes {St} in such a way that the stretching factors agrée on ôS,ndS,_ ^ Note that
this uniquely détermines h(yt). Now in Tl4 we let the radial stretching factor be K&apos;o

and in Tl2 and Tl3 we let the stretching factor be K&apos;o~l H(0), where 0 is defined

in a way analogous to that above. This complètes the construction of the desired

map h.

Let t be the constant given in the hypothesis and let a — a{x) be the constant for
which (2.8) is satisfied. Now since/is differentiable at jc0 0 in D, given any e &gt; 0,

there exists an r &gt; 0 such that ail of the following are satisfied:

cQl(r)uaQ2(r)c:D, (3.14)

c Rx{ar + sr)KjR2(ar + sr) &lt;= D\ (3.15)

r)), (3.16)

and

(3.17)

Hère by Px(r, — e) (similarly P2(r, +e)), we mean that rectangle concentric with
JR^r) having edge lengths (2 — 2a)r and (2A2 — 2a)r.

Consider now the Âo-quasiconformal map h defined on /^(or+erju
i£2(crr -f er) ZT and the doubling measure /i( • \h{ • )| in ^(£&quot;) it induces. We
take our subdomains G and G&apos; to be aQ\(r) vaQ2{r) and f{oQx{r) KjoQ2{r))
respectively. Note that /x|G- gives a doubling measure on G&apos; which we also dénote

by n, with c^ cM(Âo, «).

Applying our hypothesis along with (2.8) we hâve

M/(Gi W» * &lt;M/(G2 W)), rf d(KoJ). (3.18)

Now assume A2 ^ 2 and e &lt; 1/2 and estimate both sides of (3.18). Condition (3.17)
yields

KfiQi(r))) * KP2(r, +fi)) ^ 2((r + e)2^ + r2( 1 + e)(2A2 + s))9 (3.19)

while (3.16) gives

,(r, -£)) &gt; 2(1 - e)2^2- i)r2B (3#20)
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In (3.20) the quantity on the far right arises from that part of the tail end cube of
RY(r + e) which is in Px(r, — e).

Combining thèse with (3.18) and letting e-^Owe hâve

Kl^-D &lt; d{K2 + 2X2\ d d(K0J). (3.21)

Finally, since Ko&gt;\, we conclude from (3.21) that A2 is bounded, namely

X2&lt;a=a{K0J). (3.22)

This complètes the proof. [J

Note that a more gênerai case of Theorem 3.1 can be proven with only minor
modifications in the original argument. The theorem cannot be stated analogously
to Theorem 3.12 in terms of intervais / and V of IR and ®(/&apos;) and ^(/, t) though,
since we lack the theorems of Gehring [G] and Reimann [R] in the one dimensional

case.

As we mentioned earlier the proof of the higher dimensional case involves more
than examining the doubling measure induced by Lebesgue measure in D&apos;. It is

necessary to consider some non-trivial doubling measure on D&apos; as the following
example shows.

EXAMPLE 3.23. Let/: Rw-Rw be of the form

f(xux2, ...,*„) (fx(xx)J2(x2\ ,/„(*„)),

where each ft is Kt-quasisymmetric. Then the induced measure n(E) \f(E)\ is a

doubling measure, whereas / need not be quasiconformal.
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