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Rotation sets and monotone periodic orbits for annulus
homeomorphisms

Philip Boyland*

Abstract If/is a homeomorphism of the annulus and p/q îs a rational in lowest terms that îs contained

in the rotation set of/then/has a (/?, #)-topologically monotone periodic orbit In addition, îf/has a
/?/&lt;7-penod orbit that is not topologically monotone then the Farey interval of pjq is contained in the

rotation set of/
Section 1

There are many theorems which give information about periodic orbits for maps
of the annulus. The Poincaré-Birkhoff theorem implies that an area preserving
homeomophism always has periodic orbits with rotation numbers equal to every
rational number between the rotation numbers of the boundary circles. With the

addition of the monotone twist hypothesis, one gets more information. In this case,
the Aubry-Mather theorem yields the existence of periodic orbits whose radial
order is preserved by the map. Such orbits are called monotone or Birkhoff ([K]).

Using topological techniques Hall showed that whenever a monotone twist map
has a p/^-periodic orbit, it has a monotone p/^-periodic orbit ([Hl]). In [H2] he

pointed out the appropriate generalization of this notion to a homeomorphism of
the annulus and asked whether the appropriate version of the Aubry-Mather
theorem for periodic orbits was true in this more gênerai context. Recently, Le
Calvez answered this to the affirmative under the area preserving hypothesis ([LC]).
This paper contains a proof of the gênerai case. In addition, it is shown that if the

homeomorphism has a /&gt;/#-periodic orbit that is not &quot;topologically monotone&quot;

then a certain interval depending on simple arithmetic properties of pjq must be in
the rotation set. This second resuit was proved for monotone twist maps without
the area preserving hypothesis in [Bdl] using Lemma 4 of [B 4- H].

The main tool used in the proofs is the Thurston-Nielsen theory of surface

automorphisms. The proofs are clarified and simplified by encoding the theorem in
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a statement about a partial order on the set of periodic orbits for homeomorphisms
of the annulus. This partial order is the analog of the partial order in Sharkovski&apos;s

Theorem. For background information on this partial order on braid types see [Bd2].
If p and q are relatively prime integers, define m/n to be the maximum of

{r/s : r/s &lt;p/q, s &lt;q and (r, s) 1} and k/l to be the minimum of {r/s : r/s &gt;p/q,

s &lt;q and (r, s) 1}. The Farey interval of p/q is I(p/q) [m/n, k/l]. The only
property of Farey intervais we will use is that the endpoints of the Farey interval
satisfy mq —pn — 1 and kq —pi 1. The endpoints of the Farey interval are the

last two convergents of the continued fraction of p/q if the last partial quotient is

made equal to one (see [HW], chapter 3). The notation p(f) means the rotation set

of/

MAIN THEOREM. Iff is an orientation and boundary preserving homeomor-

phism of the annulus and p/q e p(f) with p and q positive and relatively prime then

f has a (/?, q)-topologically monotone periodic orbit. Iffhas a (p, q)-orbit that is not
topologically monotone then I(p/q) £

Recalling the interprétation of rotation number as a frequency of oscillation,
one could make an analogy between this resuit and the fact that an oscillating
physical System or field that supports a complicated vibration at a given frequency
must also support the simplest, least excited state with that frequency (cf. [Hg]).

It is natural to ask whether there is a similar theorem about irrational numbers
in the rotation set. One version of this might be: If a is an irrational number with
a e p(f) does/have a minimal set on which the dynamics are semiconjugate to
rigid rotation on a circle? Under the monotone twist hypothesis the answer is yes.
One way to prove this is by taking Hausdorff limits of monotone periodic orbits
([K]).

For a gênerai homeomorphism the answer is no. In [Hnl], Handel constructed
an area preserving, C°°-diffeomorphism, h, with an irrational a e p(h) such that
every point with rotation number a is contained in a single minimal set, X. The set

X is the Hausdorff limit of topologically monotone periodic orbits but h restricted
to X is not semiconjugate to rigid rotation by a on a circle. The set X is

topologically a pseudocircle. This leads to: What type of minimal sets with rotation
number a must/possess when a is an irrational in the rotation set of/(cf [Bd4])?
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Section 2

We begin with some basic notation and définitions. A homeomorphism / of the
annulus A S1 x [0, 1] will always be isotopic to the identity. A lift to the universal

cover Â R x [0, 1] is denoted/, and T : A -+Â given by T(x, y) (x + 1, y) is the
deck transformation. The projection onto the first factor is nx : Â -? R.

Given Je e Â we define its rotation number under / as

,(*,/) lim
&quot;»(/&gt;(*-))-»,(*-)

if the limit exists. Note that we include the dependence on the lift in our définition
of rotation number. The set of rotation numbers of/is

A theorem of Handel ([Hn3]) states that p(f) is a closed set. A periodic orbit, o(x),
is called a (p, #)-periodic orbit if its period is q and there are lifts Je and /with
T~p fq(x) Je. Note that if x is a (/?, #)-periodic orbit there always exists a /?&apos; with
0 &lt; p&apos;jq &lt; 1 such that jc is also a (/?7^)-Peri°dic orbit.

Remark. One may define the rotation interval for any point x as

limir
I n-* oc

and then define p(/) (J p(x,/). A theorem of Franks ([FI]) and Handel ([Hn2])
shows that p/q e p(f) with p and q relatively prime implies that/has a (/?, #)-periodic

orbit. Thus p(/)nû p(/)nQ and since p(/) is closed, a simple argument

yields p(f) =p(/).
We next define braid types and the partial order. Fix a copy of the annulus

minus n interior points and call it An. The group of isotopy classes of orientation
preserving homeomorphisms of An is denoted Gn. The isotopies fix the boundary
setwise but not necessarily pointwise. If / : A -? A is a homeomorphism with a

period «-periodic orbit o(x,f) e Int (^4), let Ax A — o(x,f) and/x -f\A^ Pick a

homeomorphism A : Ax -*An and let [A/*/*&quot;1] dénote the isotopy class in Gn. Define
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the braid type of o(x9f), denoted bt{x,f), to be the conjugacy class of [hfxh~l] in
Gn. By passing to the conjugacy class we hâve made bt(x,f) independent of the

choice of homeomorphism h. For o(x,f) contained in a boundary circle of A, we
hâve to modify the définition of braid type siightly. If, for example,

o(x,f) cS&apos;x {1} we let Â S1 x [0, 1 -h e] for some e &gt; 0 and choose/: Â -+Â, a

homeomorphism extending/. Define bt(x,f) bt(x,f) and note that this is

independent of the choice of the extension. The set of ail possible braid types on the

annulus is called BT. Given a homeomorphism/ : A-+A define its set of braid types
as bt{f)~ {bt(x,f}: o(x,f) is a periodic orbit}.

We define a relation on BT as follows. If a, p g BT, a ^ /? if and only if
a g bt(f) implies p g bt(f) for ail homeomorphisms/. The first proposition says
that this relation is, in fact, a partial order. This is stated without proof in [Bd2].
It relies on a resuit of Brunovsky [Br] which says that, given N &gt; 0, an isotopy
between Kupka-Smale diffeomorphisms /0 and/i can always be approximated by
a diffeotopy with the property that ail orbits of period less than N undergo only
saddle node and flip bifurcations. Further, ail bifurcations involving orbits of
period less than N occur at a finite number of distinct parameter values.

PROPOSITION 1. The relation {BT, &lt;) is a partial order.

Proof. It is obvious from the définition that a &lt;&gt; a and that a &lt; p and (S &lt; y

implies a &lt; y. We must therefore show that a &lt; p and P &lt;* a implies a p. For this

it suffices to show that a ^ p and a # P implies the existence of some / with
p g bt(f) but a £ bt(f), i.e. p % a.

Using standard constructions (e.g. section 6 of [F3]) we may find Axiom A (and
thus Kupka-Smale) maps f0 and /, with ce $ bt(f0) and P $ bt(f0) and p e bt(fx).
Let N be larger than the period of ce or p. Use Brunovsky&apos;s theorem to obtain a nice

diffeotopy, fM, between f0 and /,. Now let ^0 inf {//: a g bt^f^) or P e bt(f^)}.
There must be a bifurcation occurring for f^o. If this bifurcation is a saddle node,
then the two orbits created as ju increases hâve the same braid type which must be

p as a ^ p. If the bifurcation is a flip, then the orbit that persists through the
bifurcation was présent for /j &lt; /*0 and thus cannot hâve type a or p. The doubled
orbit must therefore hâve type p. In either case, picking e &gt; 0 small enough to that
no bifurcation of period less than N happens between ju0 and n0 + 2e, we hâve

fi ebUf^ + J but a tbtif^ + J. D
Since a braid type is essentially an isotopy class, in order to understand this

partial order one needs a good understanding of isotopy classes on surfaces. This is

provided by the Thurston-Nielsen Theory (see [T) or [FLP] for more détails). This
theory provides a &quot;prime décomposition theorem&quot; for isotopy classes. If a class is

irreducible, it is either finite order or pseudo-Anosov. In the first case there is a map
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(/&gt; in the class that satisfies (j)n id for some n In the second case, there îs a

pseudo-Anosov map (j) in the isotopy class As the Thurston type of an isotopy class

îs unchanged by conjugacy, ît makes sensé to speak of reducible, irreducible, finite
order and pseudo-Anosov braid types

Following Handel ([Hn3]) we say that a map îs &quot;pseudo-Anosov relative to a

finite invariant set K if ît satisfies ail the properties of a pseudo-Anosov homeomor-
phism except the associated stable and unstable foliations may hâve 1-pronged
singulanties at points in K&quot; Note that thèse maps are the same as the &quot;generahzed

pseudo-Anosov maps&quot; of Geber and Katok ([GK])
There are several features of pseudo-Anosov maps that will be important hère

The first two follow from the existence of a Markov partition ([FLP], exposé 10)

First, pseudo-Anosov maps hâve fimtely many penodic orbits of each penod and

second, each point îs nonwandermg under itération Another useful property îs that
&lt;/&gt;%T) £ F for ail n / 0 when F îs any homotopically nontrivial simple closed curve
that îs not boundary parallel ([M] and [HT]) This implies that if &lt;j&gt; A^A îs

pseudo-Anosov rel a penodic orbit, o(x,f), and y îs a simple arc Connecting two
points on o(x,f), then (pn(y) ^y for ail n ^0 One can see this by choosing a

smooth model for (j) (using [GK]), blowing up the points of o(x,f) to boundary
circles (see [Hn4]) and then observing that the behaviour of y under itération îs

easily understood by examimng the behaviour of a simple closed curve F obtained
from y as shown in figure 1

A braid type, j8, îs said to be of type (p, q) if one (and hence ail) penodic orbits,

o{x,f), with bt(x,f) P are of type (/?, q) If jS îs a pseudo-Anosov (/?, #)-braid type
we say that the map (j) with lift $ represents Pif (j) A-+A has a penodic orbit, o(jc),

with bt(x, &lt;t&gt;) fi and T p$q(x) x for any lift x of x and &lt;/&gt; îs pseudo-Anosov
rel o(x) Handel has shown ([Hn3]) that p((j)) îs a closed interval (closely related
results were proved by Fned [Frl], Lemma 3 and [Fr2], Theorem 4) We may

Figure
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thus define the rotation interval of P as pi(P) — p($). Since any two isotopic
pseudo-Anosov maps are conjugate ([FLP], exposé 12), this définition is indepen-
dent of the choice of &lt;j&gt;9 however, it does dépend on the choice of &lt;j&gt;. More precisely,

it dépends on the fact that we hâve treated /? as a {p9 #)-braid type and ignored the

fact that P is also a (p + kq, #)-braid type for any k g Z. To avoid this ambiguity
we shall always assume that the p and q in the notation &quot;(/&gt;, #)-braid type&quot; and
&quot;(A #)-perodic orbit&quot; satisfy 0 &lt;p/q &lt; 1.

Braid types will be used to define the notion of a topologically monotone

periodic orbit. If fp/q : Â -? À is defined by z »-? z + (p/q9 0), let Tp/q : A -&gt; A be the

projection. Define ap/q e BT to be the braid type of a periodic orbit of Tpjq. A
periodic orbit is topologically monotone if bt{x9f) ap/q. One can check that if/
is monotone twist, a periodic orbit is topological monotone if and only if it is

Birkhoff in the usual sensé ([H2]). For the braid type 0Lp/q9 we define pi(&lt;xp/q) p/q.
Thç next proposition collects together some useful properties of the objects we

hâve defined. Parts (1) and (2) are essentially folklore. They are contained in [Bd3]
and were also known to Smillie. However, they do not seem to hâve a published
proof.

PROPOSITION 2. Let fie BT be a (p9 q)-braid type with p and q positive and

relatively prime then

(1) fi is irreducible.

(2) P — 0Lp/q if and only if p is finite order.

(3) P € bt(f) implies piiP) ç= p(/).
(4) If P is pseudo-Anosov and &lt;f&gt; represents p then bt{&lt;j&gt;) — {a g BT: a &lt; P}.

Proof. (1) Assume that P is reducible. This implies the existence of a home-

omorphism \jt: A-*A with a periodic orbit o(x, ij/) with bt{x, \j/) P and a family
of simple closed curves F {F,,..., Fk } that are pairwise disjoint and nonhomo-
topic and satisfy F ^A —o(x,f) and \jf(F)=r. In addition, if Dt is the disk
bounded by Fl9 Dt contains at least 2 but no more than q — 1 éléments of o(x9f).
Renumbering if necessary, let F, be such that x e Bx and Ft r\Bx 0 if i&apos; ^ 1.

Let dx dénote the inner boundary of A. Now if 3, was contained in Bx then since

^f{dx) 3, we would hâve ${BX) Bx and thus o{x9 \j/) ç Bl9 a contradiction. We

may therefore lift Bx to a compact BaÂ. If we let h be the least positive integer
with ^*(r,) =rl5 then $k(Ê) =2? + (m,0) for some integer m. It is easy to see

that this implies that p(x, $) m\k. But since x is (/?, #)-periodic for \j/9 p/q m/k
and thus since p and q are relatively prime, q k. But using the définition of k9 this
implies that o(x9 ^) n Bx x, a contradiction.

(2) Once again, let ij/ : A-+A be a homeomorphism with a periodic orbit
a(x, ^f) with bt(x9 $) p. If p aplq then tyq ~ id rel o(x91//)9 and thus P is finite
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order. On the other hand, if P is finite order, we may fînd a ij/ that represents P with
\j/q id. If we let D dénote the disk obtained by collapsing the inner boundary of
A to a point, the induced map \j/

&apos;

: D -? D is a homeomorphism that satisfies
\\i&apos;q id. Using a theorem of Brouwer ([Bw]), Karekjarto ([Kj]) and Eilenberg ([E])
this implies that i//&apos; is topologically conjugate to Rpiq and thus P &lt;xp/q.

(3) This is a direct conséquence of Proposition 1.2 of [Hn3].
(4) This is a direct conséquence of the application on page 531 of [TH].

Section 3. The main resuit on (BT, &lt;) is

THEOREM 1. If P is a (/?, q)-braid type then p &gt;
&lt;xp/q. Further, if p / ap/q then

I(p/q)czpi(Pl

The main theorem stated in the introduction is an easy conséquence of Theorem
1, the définition of ^ and Proposition 2. For the proof of Theorem 1 we shall need

the following lemma. Its proof came from a discussion with John Franks.

LEMMA 1. Iff\ Â -&gt; Â is an orientation and boundary preserving homeomorphism

with fT — Tf and 0 $ convex hull (p(/)) then Âjf is an annulus.

Proof A theorem of Franks ([FI]) states that if/has a nonwandering point it
has a fixed point. Thus 0 £ p(/) implies that given x g Â there exists an s &gt; 0 so

that for ail n # 0, fn(Be(x)) n BE(x) 0. This gives charts for Â/f
The main work lies in showing that Â //is Hausdorff. For this we must show that

given x and y $ o(x,f), there exists e &gt; 0 so that fn(Be(x)) nfm(Be(y)) 0 for ail m
and n. Equivalently, Be(y) nfn(Be(x)) 0 for ail n. We assume that p(f) c= (0, oo)

(the other case being similar) and claim there exists an M such that for ail z and

\n\&gt;M,

\nx(fn(z))-nx(z)\&gt;2.

This claim easily implies that for any e &lt; 1/2 and |y| &gt; M, Be(y) nfJBe(x)) 0. While
for \j\ &lt; M, continuity and the fact that x $o(y) imply that there exists an e &lt; 1/2

with fJ(Be(x)) nBe(y) =0- Thus granted the claim we are done.

To prove the claim, note that p(/)c=(0, oo) implies that there exists a ô &gt; 0 so

that for any z e Â there is an N\z) so that
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for ail n ^ N&apos;(z). Thus using continuity, there exists e(z) and N(z) so that

d( y, z) &lt; e(z) implies

def
nx(fNiz\y)) - nx(y) D(yJN^) &gt; 2.5.

Thus using compactness, there are zn e, and Nt for i 1,. k so that (J BB{zt)

covers [0, 1] x [0, 1] s A and x g J9ei(zt) implies that D(zJN) &gt; 2. Let 5£|(z,) 5,.
Now let JV max{iVj and C sup {D(z,fJ):0 &lt;j &lt; N and zeÂ). Since

Tf=fT and ^4 is compact, C is finite. Pick m &gt; max {C, 2} and let M mN.
Given z and n &gt; M, let /0 be so that z e BlQ and let zx =/VV/o(z). Next let i\ be so

that Zi is contained in an integer translate of Btl and let z2 =/;v&apos;1(zi)- Continue until

^ which satisfies

&quot;t*
N,t&lt;n but X Ntl&gt;n.

Define 7 by j « -Efr/ ATir We then hâve

D(zJn) =D(zJN&lt;o) + • • • + /)(z*_,,/&quot;*-») +D(zkJ&gt;) &gt;2m - C&gt;2

which proves the claim.
Thus Â/f is a compact surface. Its easy to check that its first homology is Z and

so its an annulus.

Proof of Theorem 1. We prove the second assertion first. By virtue of Proposition

2(1) and (2), J? is pseudo-Anosov. Let (f&gt; and $ represent /? with bt(x, &lt;/&gt;) /?.

If we let I(p/q) [m/n, k/l] then since pi(fi) is a ciosed interval, it suffices to show
that {m/n, k/l} e p(&lt;?).

We proceed by contradiction and assume that m/n $ p{$), the case k/l 4 p(&lt;?) is

similar. By Lemma 1, Â/$nT~m is an annulus which we dénote B. Let X c Â be the
total lift of o(x, (f&gt;). Because o(x, &lt;j&gt;) is of type (p/q)9 the éléments of X can be

labeled as {Je,} which satisfy &lt;j&gt;(xt) xl + p
and T(xt) xl + q. Since m/n is an

endpoint of the Farey interval of p/q, mq —np —1 and so (j&gt;nT~m(xl) xl+l.
Thus if n : Â -&gt; B is the projection, n(X) is a single point.

Because T and $ commute, T~p$q induces a map on B, which will be denoted
\j/. It is clear that \jf(n(X)) n(X). As is well known, since n(X) is a single point and

^ is orientation preserving this implies that \// ~id rel Tr(Jif) (where, as above, we
allow isotopies that may not fix the boundary pointwise). One way to finish the

proof is to obtain a contradiction using results of Fried which show that \jj is flow
équivalent to &lt;t&gt; ([Fr3], pp. 561-562) and is thus psuedo-Anosov ([Fr4], Lemma on
Page 261). A direct proof can be given as follows.
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Let y : [0, 1] -? Â be a simple arc Connecting xx to x2 with y((0, l))nl 0. Since

0 and thus (f)q is pseudo-Anosov, then using the remarks before Proposition 2,
T&quot;p^q{y) is not isotopic to y rel X On the other hand, if y is the projection of y to
B, then since ^ ^id rel n(X), we hâve ^(y) ~ y rel (X). Lifting this isotopy to Â yields
a contradiction.

To prove the first assertion of the theorem, we may assume /? / 0Lpjq and thus it
is pseudo-Anosov. Let $, &lt;£ and x continue to be as in the first paragraph of the

proof. By the second assertion of the theorem which we hâve just proved, p/q is in
the interior of p{$), Further, as noted in Section 2, &lt;/&gt; has finitely many periodic orbits
of each period and each point of A is nonwandering under &lt;f). Under thèse

hypothèses, Theorem 3.3 of [F2] implies that (j) has at least two (p, #)-periodic orbits
in the interior of A with nonzero Lerschetz index. One of thèse orbits might be o(x)
(actually not, see remarks after the proof) and we dénote the second by o{y).

Since o(y) is a periodic orbit of a pseudo-Anosov map by Proposition 2(4),
bt(y, i/0 ^ bt(x \j/). On the other hand, an argument using Brunovsky&apos;s theorem
similar to the proof of Proposition 1 shows that for each braid type y, there is a

diffeomorphism of the annulus with only one periodic orbit of braid type y. Thus,
in particular, bt(x, $) ^ bt(y, (j&gt;). Summarizing, we hâve shown that if jS is a

pseudo-Anosov (p, #)-braid type then there is another (p, #)-braid type y ¥&quot; fi with
y&lt;p.

Now let S {g g BT: a is of type (/?, q) and a ^ /?}. As noted in Section 2,

pseudo-Anosov maps hâve only finitely many periodic orbits of each period. Thus
using Proposition 2(4), S is finite. Let aeSbe minimal in S, i.e. it satisfies y &lt; a

implies y a for any y € S. Using the resuit of the last paragraph, a is not
pseudo-Anosov so by Proposition 2(1) and (2), it is finite order and a =oip/g.

Remarks

(1) With référence to the 5th paragraph of the proof, we can apply the
Euler-Poincaré formula to the invariant foliation of (j) (after blowing down the

boundary circles to points). This yields L 2 — p 2x(S2) 4 where the sum is over
the singularities of the foliation and p is the number of prongs at the singularity
([FLP], pg. 75). Since o(x) is a periodic orbit, ail the singularities at points of o(x)
must hâve the same number of prongs. There must be only one prong to obtain
Z 2 —p 4. On the other hand, the Lefschetz index of a one-pronged singularity
that is fixed by a pseudo-Anosov map must be zéro. Thus both the periodic orbits
given by Franks theorem are différent from o(x).

(2) The proof given above of the second assertion of Theorem 1 was inspired
by the alternative characterization of flow équivalence given on page 561 of [Fr3].
The proof given has the merit of being somewhat self-contained. Also, Lemma 1

perhaps has some independent interest.
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Figure 2. The braid type fi£/5.

One can also obtain the resuit directly using flow équivalence. Briefly, the

fact that mjn $ p($) implies that the cohomology class u e H^M^) given by
u(avx +bv2) =na — mb is strictly positive on the homology directions of &lt;/&gt;. (Hère M^
is the suspension manifold of &lt;p and H^M^) has generators vx in the annulus
direction and v2 in the flow direction.)

This implies (Theorem D of [Frl]) the existence of a cross section to the

suspension flow that represents u. The value of the cohomology class just represents
the number of intersections of a homology class with the cross section. Thus, the fact
that mq — np 1 means that the suspension of o(x) hits the cross section in just one

point. The return map to this cross section is conjugate to the map if/ in the proof.
(3) The inclusion I(p/q) c pi (fi) is, in gênerai, the best one can do. There is a

braid type with I(pjq) pi(fi). Define p£jq to be the braid type obtained by rigidly
rotating by p/q and then doing a Dehn twist around two adjacent points on an
orbit. (See figure 2, the arcs between points are included to indicate the action of
the complément of the orbit). The braid type P£q is the same as ot(m/n, k/l) given
in [Bd2] (where I(p/q) [m/n, k/l]). For this braid type one can compute an
invariant train track and compute that p((j&gt;) — I(p/q) directly.
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