On the arithmetic of some division algebras.

Autor(en): Gekeler, Ernst-Ulrich
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 67 (1992)

PDF erstellt am:
17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-51098

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On the arithmetic of some division algebras

Ernst-Ulrich Gekeler*

Introduction

As is well known since Deuring's pioneering work [5], there is a close relationship between the theory of elliptic curves in positive characteristic p, and the arithmetic of the definite quaternion algebra $H(p)$ over \mathbb{Q} ramified at p. Deuring's results relied heavily on Eichler's class number formula for $H(p)$ [8], proved shortly before by analytical means. A more geometrical interpretation (and independent proof) of these results has later been given by Igusa [16], and in particular by Deligne and Rapoport [2]. The main feature is that supersingular elliptic curves (i.e., special points on a certain modular scheme) are in 1-1 correspondence with the set of left ideal classes in a maximal order of $H(p)$. That correspondence may be used to derive properties of the modular scheme from those of $H(p)$, but also vice versa.

Now the question arises whether the same type of relationship holds if one replaces "elliptic curves" by objects that in many other respects behave similarly, namely by "Drinfeld modules". In this case, instead of $H(p)$, one considers division algebras $D=D(r, \not, \infty)$ of dimension r^{2} over their center K (a global field of positive characteristic), and that ramify at precisely two places ℓ, ∞ of K, with invariants $1 / r,-1 / r$, respectively.

Let A be the subring of K of elements regular away from ∞. It turns out that (definitions to be given below) "supersingular Drinfeld A-modules of rank r in characteristic \nsim "
(i) have maximal A-orders B in D as their endomorphism rings;
(ii) their isomorphism classes correspond to the left ideal classes of a fixed A-order B.

In some cases, enough is known about the modular schemes for Drinfeld modules to be able to count the number of supersingular points. This way, we

[^0]arrive at class number formulas for $D(r, \not, \infty)$ that could not be obtained otherwise. This is notably the case if $r=2$ [14], or if K is a rational function field $\mathbb{F}_{q}(T)$ and " ∞ " is the usual place at infinity. The latter case will be treated in detail. In particular, we shall describe the associated modular scheme and its supersingular locus. The principal result, Theorem 5.13 , is an explicit expression for the number of ideal classes with a fixed weight. We also obtain the Mass formula 5.11, which generalizes Deuring's formula
$$
\sum 1 / \#(\operatorname{Aut}(E))=(p-1) / 24
$$

Recall that the sum on the left hand side is over the supersingular classes of elliptic curves in characteristic p, and $(p-1) / 24$ is one half the value of the Riemann zeta function at -1 , deprived from its Euler factor at p.

Besides the relationship with Drinfeld modules mentioned above, our proof relies on
(a) the transfer principle (3.5);
(b) the reducedness of the supersingular locus (4.3);
(c) some calculations (see Section 6) special to the case of a polynomial ring A.

From (b) and (c) we derive the Mass formula, which, combined with (a), yields the theorem. But note that both (a) and (b) do not depend on specific assumptions on A.

In principle, our Drinfeld module interpretation of the division algebra D should also allow to determine its type number ($=$ number of conjugacy classes of maximal orders). At least, Proposition 7.5 yields a geometrical description of the set of types. As an example, we present the case $r=2$, which is quite analogous with the elliptic curve case. However, for $r>2$, further research is needed for a numerical evaluation through zeta values and commutative class numbers.

Some of the results of this paper (e.g. Theorem 5.13) have been announced in the C.R. note [13].

1. Notations

Throughout, K will denote a function field in one variable over the finite field \mathbb{F}_{q} with q elements, of characteristic p. We assume that \mathbb{F}_{q} is the exact constant field of K. We fix, once for all, a place " ∞ " of K, and let A be the subring of elements of K regular away from ∞. The places of K different from ∞ are in $1-1$ correspon-
dence with the maximal ideals ("primes") of A. We will not distinguish between the two concepts; for \nless such a prime, \mathbb{F}_{\nless} is the field $A / \not \subset$. Associated with ∞, we have the normalized absolute value "|?" and the degree function "deg" on K defined by $\operatorname{deg} x=\log _{q}|x|$. The basic example is given by
(1.1) $K=\mathbb{F}_{q}(T)$ a rational function field, ∞ the usual place at infinity, and $A=\mathbb{F}_{q}[T]$ the polynomial ring.

Then $\operatorname{deg} x$ agrees with the degree of the polynomial $x \in A$.
For any $r \in \mathbb{N}$ and prime \not, the central division algebra $D=D(r, k)$ over K is determined up to isomorphism by the following data:
(i) $\operatorname{dim}_{K}(D)=r^{2}$,
(ii) $\operatorname{inv}_{\neq}(D)=1 / r$,
(iii) $\operatorname{inv}_{\infty}(D)=-1 / r$,
(iv) $\operatorname{inv}_{v}(D)=0$, if $v \neq h, \infty$.
("inv v ") is the local invariant at the place v of K, cf. [17].) We call these algebras of Drinfeld type; as we will see, their ideal theory is related to Drinfeld A-modules.
(1.3) An order in D will be a maximal A-order in D, i.e., a subring B of D that (i) contains A; (ii) is finitely generated as an A-module; (iii) satisfies $K B=D$, and is maximal with these properties. A left ideal of B is an A-lattice $0 \neq b \subset D$ that satisfies $B \ell \subset \ell$. Two left ideals ℓ, ℓ^{\prime} are in the same class if there exists $f \in D^{*}$ such that $\ell^{\prime}=\ell f$. The right order of b is $B^{\ell}=\{f \in D \mid \ell f \subset \mathfrak{b}\}$. For the convenience of the reader, we collect the most important properties (which are well known and hold in much greater generality):
(1.4) (i) The type number $t(D)$ of conjugacy classes of orders in D is finite.
(ii) Fix an order B in D. The number of left ideal classes of B is finite and independent of B, therefore an invariant of D. It is called the class number $h(D)$.
(iii) Each order B^{\prime} in D is the right order B^{ℓ} of some left ideal $\&$ of B. In particular, $t(D) \leq h(D)$.

All the orders B^{\prime} in D contain the unit group \mathbb{F}_{q}^{*} of A, which "generically' is the full unit group of B^{\prime}. We define the weight $w(\ell)$ of a left ideal ℓ of B as

$$
w(\boldsymbol{C})=\#\left(\left(B^{\sigma}\right)^{*}\right) /(q-1) .
$$

(1.5) Finally, we let $\zeta_{K}(s)$ be the zeta function of K [18]. It is a rational function $P\left(q^{-s}\right) /\left(1-q^{-s}\right)\left(1-q^{1-s}\right)$ in q^{-s}. The polynomial $P(X)$ has integral coefficients,
degree $2 g$ (where g is the genus of K), and satisfies $P(1)=$ class number of K. For a finite set S of places of K, we put

$$
\zeta_{K, S}(s)=\prod_{v \in S}\left(1-q^{-(\operatorname{deg} v) s}\right) \zeta_{K}(s)
$$

In practice, S will be $\{\not, \infty\}$, so

$$
\begin{equation*}
\zeta_{K, S}(s)=P\left(q^{-s}\right) \frac{\left(1-q^{-d s}\right)\left(1-q^{-d_{\infty} s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)} \tag{1.6}
\end{equation*}
$$

where d and d_{∞} are the degrees of \nless and ∞, respectively. Thus for the example (1.1) and S as above,

$$
\zeta_{K, S}(s)=\left(1-q^{-d s}\right) /\left(1-q^{1-s}\right)
$$

2. Review of Drinfeld modules

In positive characteristic p, the additive group scheme G_{a} has non-trivial module structures, due to the existence of non-scalar endomorphisms. More precisely, let τ_{p} be the Frobenius endomorphism $x \mapsto x^{p}$. For any field L of characteristic p, the ring of L-endomorphisms $\operatorname{End}_{L}\left(G_{a}\right)$ is the non-commutative polynomial ring $L\left\{\tau_{p}\right\}$ with the commutator rule $\tau_{p} x=x^{p} \tau_{p}$ for constants $x \in L$. We put $\tau=\tau_{q}=\tau_{p}^{f}$, if $q=p^{f}$. Let now L be equipped with an A-structure $\gamma: A \rightarrow L$, i.e., L is an extension of K or of some \mathbb{F}_{k}.
(2.1) A Drinfeld A-module of rank r over L is a structure of A-module on $G_{a} \mid L$, given by a ring homomorphism

$$
\begin{aligned}
\phi: A & \rightarrow \operatorname{End}_{L}\left(G_{a}\right)=L\left\{\tau_{p}\right\}, \\
n & \mapsto \phi_{n}
\end{aligned}
$$

(necessarily taking its values in $L\{\tau\}$), such that for $0 \neq n \in A, \phi_{n}=\Sigma g_{i}(\phi, n) \tau^{i}$, the following conditions are satisfied:
(i) $g_{0}(\phi, n)=\gamma(n)$,
(ii) $\operatorname{deg}_{\tau} \phi_{n}=r \cdot \operatorname{deg} n$.

The characteristic of ϕ (or of L) is \nsim, if $\mathbb{F}_{\nless} \subset L$, and ∞ if $K \subset L$. Morphisms of Drinfeld modules are morphisms of group schemes compatible with the A-actions. We put $\operatorname{End}_{L}(\phi)$ for the ring of L-endomorphisms of ϕ, i.e., for the centralizer of $\phi(A)$ in $L\{\tau\}$. Further, for $0 \neq n \in A$, we denote by ${ }_{n} \phi$ the scheme in A-modules ker ϕ_{n}. Conditions (i) and (ii) imply that it is flat and finite of degree $|n|^{r}$. For an ideal n of A, we put ${ }_{n} \phi=\bigcap_{n} \phi, n$ running through n. It is étale if and only if n is relatively prime with the characteristic of L. In this latter case, the abstract A-module of points of ${ }_{n} \phi$ over the algebraic closure \bar{L} of L is isomorphic with $(A / n)^{r}$. Also, one may define Drinfeld modules, morphisms, the schemes ${ }_{n} \phi \ldots$ over arbitrary A-schemes. Thus one has level structures, modular schemes ... for Drinfeld modules. For all of this, see [6], [11], [1].
2.2. EXAMPLE. If $A=\mathbb{F}_{q}[T]$ as in (1.1), a rank r Drinfeld A-module ϕ is determined by ϕ_{T}, which must have the form

$$
\phi_{T}=\gamma(T)+\lambda_{1} \tau+\cdots+\lambda_{r} \tau^{r} \quad\left(\lambda_{i} \in L\right)
$$

with the single condition $\lambda_{r} \neq 0$.
(2.3) Let now \nless be a prime of A. A Drinfeld module ϕ in characteristic \nless is called supersingular if ${ }_{\star} \phi$ is local, or equivalently, ${ }_{\ell} \phi(\bar{L})=0$. This is also equivalent with End (ϕ) being projective of rank r^{2} as an A-module [7], [12]. Therefore, rank one Drinfeld modules are always supersingular. Also, in the situation of (2.2), the module ϕ in characteristic (T) determined by $\phi_{T}=\lambda_{r} \tau^{r}$ is s.s.. All the s.s. Drinfeld modules in characteristic \nsim may be defined over some finite extension L of the "prime field" \mathbb{F}_{\neq}. If m is the order of \nsim in the class group Pic A of A, one may actually take the extension L of \mathbb{F}_{\neq}of degree $m^{\prime}=m \cdot r$ ([12], Prop. 4.2). In particular, the set $\Sigma(r, \npreceq)$ of \bar{F}_{\neq}-isomorphism classes of supersingular Drinfeld modules of rank r is finite.

The connection with $D(r, k)$ is through the next theorem, which is similar to Deuring's theorem on elliptic curves:
2.4. THEOREM ([12], Theorem 4.3). Let ϕ be a supersingular Drinfeld module of rank r over the A-field L of characteristic \nless, and suppose that L is large enough such that $\operatorname{End}_{L}(\phi)=\operatorname{End}_{L}(\phi)$.
(i) The K-algebra End $(\phi) \otimes K$ is isomorphic with $D(r, \npreceq)$.
(ii) $B:=\operatorname{End}(\phi)$ is an order (i.e., maximal) in End $(\phi) \otimes K$.
(iii) There is a canonical bijection from the set $L I(B)$ of left ideal classes of B to $\Sigma(r, \npreceq)$.

We briefly describe the bijection: For $b \in B$, let ${ }_{b} \phi$ be the subscheme ker b of G_{a}, and for a left ideal $\ell \subset B,{ }_{b} \phi=\bigcap_{b} \phi(b \in \ell)$. The latter is the kernel of some morphism $\phi \rightarrow \phi^{\ell}$ of Drinfeld modules, where ϕ^{6} is uniquely determined up to isomorphism. Moreover, ϕ^{ℓ} is supersingular, its class depends only on the left ideal class of b, and the induced map $(\ell) \mapsto\left(\phi^{\prime}\right)$ from $L I(B)$ to $\Sigma(r, \not p)$ is bijective.

Thus $L I(B)$ may be described through $\Sigma(r, \not p)$. Our strategy will be to identify $\Sigma(r, \nprec)$ with a certain set of geometric points on a suitable modular scheme. Classical geometric arguments will then lead to the determination of its cardinality. The corresponding modular schemes are sufficiently well known for that purpose in the cases (at least):
(a) $r=2$,
(b) $A=\mathbb{F}_{q}[T]$.

In case (a), i.e., if D is the quaternion algebra ramified in \nless and ∞, all the ingredients for a discussion à la Deligne-Rapoport are available [10], [11]:

- Drinfeld module analogues $M_{0}(\nsim)$ of Hecke modular curves with conductor p;
- structure of the special fiber (only ordinary double points on $M_{0}(\nprec) \times \bar{F}_{h}$, and these agree with the supersingular points);
- calculation of the genus of $M_{0}(\nprec)$.

Some complications arise, however, from the existence of non-principal ideals in A. Using this approach, one can prove the following result (for details, see [14]):

2.5. THEOREM. Let B be an order in $D=D(2, \nprec)$.

(i) The weight $w(\ell)$ of a left ideal b of B is 1 or $q+1$. Let $h_{1}\left(h_{2}\right)$ be the number of ideal classes (b) with $w(b)=1(w(b)=q+1)$, respectively.
(ii) If at least one of the degrees d of \nsim and d_{∞} of ∞ is even, we have

$$
h_{1}=d_{\infty} P(1) P(q) Q \quad \text { and } \quad h_{2}=0 .
$$

If d and d_{∞} are odd, we have

$$
h_{1}=d_{\infty} P(1)[P(q) Q-P(-1) /(q+1)] \quad \text { and } \quad h_{2}=d_{\infty} P(1) P(-1) .
$$

Here,

$$
Q=\frac{\left(q^{d}-1\right)\left(q^{d_{\infty}}-1\right)}{(q-1)\left(q^{2}-1\right)}
$$

(iii) In any case, the mass formula holds:

$$
\sum_{\ell \in L I(B)} w(f)^{-1}=d_{\infty} P(1) P(q) Q
$$

Note that by (1.5) and (1.6), $d_{\infty} P(1)$ is the order of the class group Pic A, whereas $P(q) Q=\zeta_{K, S}(-1)$. Our mass formula therefore "agrees" with Deuring's (see also (5.11)).

In case (b), if the rank r is strictly greater than two, these arguments do not apply. In what follows, we will develop what is needed to handle that case.

3. Transfer principle

In this section, all the Drinfeld modules ϕ are defined over the A-field $L=\overline{\mathbb{F}}_{h}$, and End $(\phi)=\operatorname{End}_{L}(\phi)$. The automorphism group Aut (ϕ) is the finite subgroup of elements of L^{*} that commute with all the operators $\phi_{n}, n \in A$. As is easily seen, this is the multiplicative group of some extension of \mathbb{F}_{q} of degree s, say. We call $s=s(\phi)$ the size and $w=w(\phi)=\left(q^{s}-1\right) /(q-1)$ the weight of ϕ. Since Aut (ϕ) generates a commutative subfield of End (ϕ), it follows that
(3.1) $s(\phi)$ is a divisor of $r=\operatorname{rank}(\phi)$.
(3.2) The map $b \mapsto \phi^{\ell}$ of (2.4) induces an isomorphism of the right order B^{b} of ℓ with End $\left(\phi^{6}\right)$ [12, 3.8]. In particular, the unit group $\left(B^{6}\right)^{*}$ is isomorphic with Aut ($\phi^{\prime \prime}$). Therefore, $w(\ell)$ as defined in (1.4) agrees with $w\left(\phi^{\ell}\right)$.
3.3. LEMMA. The size of a supersingular Drinfeld module ϕ over L is always relatively prime with d and d_{∞}. (Recall that d and d_{∞} are the degrees of \nsim and ∞, respectively.)

Proof. By assumption, the constant field extension K_{s} of K of degree $s=s(\phi)$ embeds into $D=\operatorname{End}(\phi) \otimes K$. As is well known [17], this means that the ramified places \nsim and ∞ extend uniquely to K_{s}. This in turn implies $(s, d)=$ $1=\left(s, d_{\infty}\right)$.

In what follows, t will be a divisor of $s=\operatorname{size}(\phi)$. Let A_{t} and $K_{t}=$ Quot $\left(A_{t}\right)$ be the constant field extensions of degree t of A and K, respectively. As stated above, there are unique extensions to K_{t} of \nless and ∞, denoted by h_{t} and ∞. Having chosen an embedding of $\mathbb{F}_{h_{t}}=A_{t} / h_{t}$ into L, the rank r Drinfeld A-module $\phi: A \rightarrow L\{\tau\}$
has a unique extension to a Drinfeld A_{t}-module $\phi^{\prime}: A_{t} \rightarrow L\{\tau\}$. Since $\phi_{n}=\phi_{n}^{\prime}$ $(n \in A)$, and \mathbb{F}_{q} is the exact constant field of K_{t},
(i) $r^{\prime}=\operatorname{rank}\left(\phi^{\prime}\right)=r / t$,
(ii) $s^{\prime}=\operatorname{size}\left(\phi^{\prime}\right)=s / t$,
(iii) ϕ^{\prime} is supersingular if and only if ϕ is.

We put $\Sigma(r, \nprec, q, s)$ for the set of L-isomorphism classes of supersingular Drinfeld A-modules of rank r and size s over $L=\bar{F}_{\neq 2}$. Thus $\Sigma(r, \nprec)$ is the disjoint union of the $\Sigma(r, \npreceq, q, s), s$ running through the divisors of r coprime with d and d_{∞}. Furthermore, the lift $\phi \mapsto \phi^{\prime}$ defines a map

$$
\ell_{t}: \Sigma(r, \nprec, q, s) \rightarrow \Sigma\left(r / t, \not \ell_{t}, q^{t}, s / t\right)
$$

3.5. PROPOSITION. ℓ_{t} is bijective.

Proof. The inverse of ℓ_{t} is given by restricting ϕ^{\prime} to A.
Clearly, the decomposition according to sizes and the above "transfer principle" also apply to the study of ideal classes of $D(r, \not n)$. It would be interesting to know to what extent this generalizes to division algebras not necessarily of Drinfeld type. In our case, considering simultaneously A and all its extensions A_{t}, we will use an induction procedure to calculate

$$
\begin{equation*}
\sigma(r, \nsim, q, s)=\# \Sigma(r, \npreceq, q, s) \tag{3.6}
\end{equation*}
$$

4. The supersingular locus

Let M^{r} be the coarse modular scheme for rank r Drinfeld modules in characteristic $\not p$ [6], [1]. It is the fiber product with $L=\overline{\mathbb{F}}_{\neq}$of the A-scheme called $M^{r}(1)$ in [11]. The L-valued points of M^{r} correspond bijectively to the L-classes of rank r Drinfeld modules. Recall that d is the degree and m the order of p in Pic A, i.e., $p^{m}=(f)$ with $f \in A$. For $i=1, \ldots, r-1$, let
(4.1) $H_{i}(\phi)=$ coefficient of $\tau^{i d m}$ in the polynomial ϕ_{f} in τ.

This is a modular form of weight $q^{i d m}-1$ [15], [11], the i-th Hasse invariant. (Clearly, it depends on the choice of the generator f of \mathfrak{p}^{m}, but this doesn't matter.) We have the trivial equivalences
(4.2) ϕ supersingular $\Leftrightarrow \phi_{f}$ a monomial const. $\tau^{r d m}$ in $\tau \Leftrightarrow H_{i}(\phi)=0$, $i=1, \ldots, r-1$.

Therefore, we define the supersingular locus $\Sigma=\Sigma\left(r, \not _\right)$in M^{r} as the zero locus of the $r-1$ forms $H_{i}(\phi)$. It is a finite subscheme of M^{r} with the set $\Sigma(r, \not p)$ of (2.3) as its L-valued points. The double use of the symbol $\Sigma(r, \not p)$ is justified by the next proposition.

4.3. PROPOSITION. The scheme $\Sigma(r, k)$ is reduced.

Proof. This is more or less a restatement of (a special case of) the results given in [6], Sections 4 and 5 . We show how (4.3) follows from loc. cit., using the terminology given there. Also, the next few references are with respect to loc. cit. Let ϕ correspond to $x \in \Sigma(r, \npreceq)(L)$, and let $\tilde{\phi}$ be an infinitesimal deformation, i.e., a Drinfeld module over the dual numbers $L[\epsilon]$, where $\epsilon^{2}=0$. Now the deformation theory of ϕ agrees with that of its $\not p$-divisible module (Prop. 5.4), and, since ϕ is supersingular, with that of its formal A_{μ}-module (Prop. 4.5, $A_{h}=$ completion of A at \nsim). Let $\pi \in A$ be a prime element, and write $\phi_{\pi}, \tilde{\phi}_{\pi}$ for the corresponding formal module operators derived from $\phi, \tilde{\phi}$, respectively. The supersingularity condition translates to $\phi_{\pi}=$ const. $\tau^{\text {rd }}+$ higher terms. Proposition 4.2 implies that $\tilde{\phi}$ is isomorphic with some formal module ψ given by

$$
\psi_{\pi}=\phi_{\pi}+\epsilon \sum_{1 \leq i \leq r-1} t_{i} \tau^{\mathrm{id}} \quad\left(t_{i} \in L\right) .
$$

Let $\tilde{\phi}$ correspond to the $L[\epsilon]$-valued point \tilde{x} of M^{r}, and suppose that

$$
\tilde{x} \text { factors through } \Sigma(r, \not p)
$$

(i.e., $\tilde{\phi}$ supersingular, too). If $m=1$, we may take $\pi=f$, and (*) says $t_{i}=0$, $i=1, \ldots, r-1$. It is not hard to see that also for $m>1,(*)$ implies the vanishing of the t_{i}. That means, each deformation \tilde{x} of x in $\Sigma(r, \npreceq)$ is constant, which gives the assertion.
4.4. REMARK. The analogous result in the elliptic curve case states that Deuring's polynomial

$$
H_{p}(\lambda)=\sum_{0 \leq i \leq s}\binom{s}{i}^{2} \lambda^{i} \quad(p \neq 2 \text { prime, } s=(p-1) / 2)
$$

has only simple roots (see [16]). It is also equivalent with the fact that the two irreducible components of the Hecke modular curve $X_{0}(p) \times \bar{F}_{p}$ intersect transversally in supersingular points [2].

5. The case of a polynomial ring

From now on, we assume that A is the polynomial ring $\mathbb{F}_{q}[T]$. Let the prime ideal \nsim be generated by the monic irreducible polynomial p of degree d. ($p=\operatorname{char} \mathbb{F}_{q}$ will not further be used.) All our Drinfeld modules will be defined over $L=\bar{F}_{h}$. Two such, ϕ, ϕ^{\prime}, given by the coefficients $\lambda_{i}, \lambda_{i}^{\prime}$ of $\phi_{T}, \phi_{T}^{\prime}$, respectively (compare (2.2)), are isomorphic if and only if there exists $c \in L^{*}$ such that

$$
\begin{equation*}
\lambda_{i}^{\prime}=c^{q^{i}-1} \lambda_{i} \quad\left(i=1, \ldots, r=\operatorname{rank}(\phi)=\operatorname{rank}\left(\phi^{\prime}\right)\right) . \tag{5.1}
\end{equation*}
$$

Now consider λ_{i} as an indeterminate of weight $e_{i}=\left(q^{i}-1\right) /(q-1)$. Let $\bar{M}=\bar{M}^{r}$ be the scheme Proj $L\left[\lambda_{1}, \ldots, \lambda_{r}\right]$ and $M=M^{r} \hookrightarrow \bar{M}$ the open subscheme defined by $\lambda_{r} \neq 0$. From (5.1) it follows that M is the modular scheme considered in the last section. (The "natural" weight for the indeterminate λ_{i} would be $q^{i}-1$. Dividing through the $\operatorname{gcd} q-1$ doesn't of course change the resulting M.) Later on, we will need the following observation:
(5.2) For natural numbers i, j, we have

$$
i\left|j \Leftrightarrow\left(q^{i}-1\right)\right|\left(q^{j}-1\right) \Leftrightarrow e_{i} \mid e_{j}
$$

This implies that the greatest common divisor of e_{i} and e_{j} is e_{k}, where $k=\operatorname{gcd}(i, j)$. Next, we specify the supersingular locus $\Sigma=\Sigma(r, \npreceq)$ on m. If ϕ is given by $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in L^{r}$, i.e.,

$$
\phi_{T}=\gamma(T)+\sum \lambda_{i} \tau^{i}
$$

ϕ_{p} may be written

$$
\phi_{p}=\sum_{1 \leq i \leqslant r d} g_{i}(\underline{\lambda}) \tau^{i},
$$

where $g_{i}(\underline{\lambda})$ depends polynomially on $\underline{\lambda}$. More precisely, $g_{i}(\underline{\lambda})$ is an isobaric polynomial of weight e_{i}, and

$$
\begin{equation*}
H_{i}(\phi)=H_{i}(\underline{\lambda})=g_{i d}(\underline{\lambda}) \tag{5.3}
\end{equation*}
$$

of weight $f_{i}=\left(q^{i d}-1\right) /(q-1)$, is the i-th Hasse invariant.
5.4. LEMMA. The \bar{M}-locus $V_{\bar{M}}\left(H_{1}, \ldots, H_{r-1}\right)$ of H_{1}, \ldots, H_{r-1} is contained in M.

Proof. Let $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{i}, 0, \ldots, 0\right) \in L^{r}$ with $\lambda_{i} \neq 0,0<i<r$. Then $H_{i}(\underline{\lambda})$ is the leading coefficient of ϕ_{p}, where ϕ is the rank i Drinfeld module defined by $\underline{\lambda}$. Therefore, $H_{i}(\underline{\lambda}) \neq 0$, i.e., $V_{\bar{M}}\left(H_{1}, \ldots, H_{r-1}, \lambda_{r}\right)=\emptyset$.

Let \bar{N} be the projective $(r-1)$-space over L with projective coordinates $\ell_{1}, \ldots, \ell_{r}$, and let $\pi: \bar{N} \rightarrow \bar{M}$ be defined by $\pi\left(\ell_{1}: \ldots: \ell_{r}\right)=\left(\lambda_{1}: \ldots: \lambda_{r}\right)$, where $\lambda_{i}=\ell_{i}^{e_{i}}$. We further let $\mu\left(e_{i}\right)$ be the group of e_{i}-th roots of unity in L,

$$
G^{*}=\prod_{1 \leq i<r} \mu\left(e_{i}\right), \quad G=G^{*} \times \mu\left(e_{r}\right)
$$

G acts effectively on \bar{N} through $\left(\ldots c_{i} \ldots\right)\left(\ldots: e_{i}: \ldots\right)=\left(\ldots: c_{i} e_{i}: \ldots\right)$, and π is the associated quotient morphism. If $N=\operatorname{Spec} L\left[\ell_{1}, \ldots, \ell_{r-1}\right]$ denotes the complement of $V_{\bar{N}}\left(\ell_{r}\right)$ in \bar{N}, the quotient $N^{*}=N / G^{*}$ is the affine space Spec $L\left[\lambda_{1}, \ldots, \lambda_{r-1}\right]$, and

$$
M=N / G=N^{*} / \mu\left(e_{r}\right)
$$

where $c \in \mu\left(e_{r}\right)$ acts on N^{*} by $c\left(\ldots, \lambda_{i}, \ldots\right)=\left(\ldots, c^{-e_{i}} \lambda_{i}, \ldots\right)$. Define the schemes Σ^{*} and $\tilde{\Sigma}$ as the fiber products

$$
\Sigma^{*}=\Sigma \underset{M}{\times} N^{*}, \quad \tilde{\Sigma}=\Sigma_{\mathrm{red}}^{*} \underset{N^{*}}{\times} N
$$

respectively. Hence in the diagram

all the rectangles are cartesian, where the upper (lower) vertical arrows are quotients by $G^{*}\left(\mu\left(e_{r}\right)\right)$, respectively. In what follows, "points" of these schemes are points over $L=\overline{\mathbb{F}}_{k}$.
5.6. LEMMA. Let $x \in N^{*}(L)$ and ϕ be the Drinfeld module associated with $\pi_{2}(x)$. The stabilizer of x in $\mu\left(e_{r}\right)$ has order $w(\phi)$.

Proof. Let $x=\left(\lambda_{1}, \ldots, \lambda_{r-1}\right)$. Then $w(\phi)=\left(q^{s}-1\right) /(q-1)$ with $s=s(\phi)=$ $\max \left\{t\left|\lambda_{i} \neq 0 \Rightarrow t\right| i, i=1, \ldots, r-1\right\}$. The stabilizer is the subgroup $\left\{c \in \mu\left(e_{r}\right) \mid\right.$ $\left.\lambda_{i} \neq 0 \Rightarrow c^{e_{i}}=1, i=1, \ldots, r\right\}$, which has order $\operatorname{gcd}\left(\left\{e_{i} \mid \lambda_{i} \neq 0\right\} \cup\left\{e_{r}\right\}\right)$. The latter equals $w(\phi)$, as follows from (5.2).

In particular, Σ^{*} is in general not reduced; from (4.3) and the above we see that its points occur with multiplicity $w(x)=w(\phi)$. Next, for $i=1, \ldots, r-1$, we define the functions H_{i}^{*} on N^{*} by

$$
H_{i}^{*}\left(\lambda_{1}, \ldots, \lambda_{r-1}\right)=H_{i}\left(\lambda_{1}, \ldots, \lambda_{r-1}, 1\right) .
$$

It is clear that their common zero locus $X=V_{N^{*}}\left(H_{1}^{*}, \ldots, H_{r-1}^{*}\right)$ is contained in Σ^{*} and agrees set-theoretically with Σ^{*}.

5.7. PROPOSITION. X is the reduced scheme $\sum_{\text {red }}^{*}$ underlying Σ^{*}.

It has to be shown that X is reduced. Since the proof is somewhat technical and doesn't connect with the present material, it will be given in the next section. Note however that the reducedness in points of size 1 results directly from (5.6).

Finally, we define the polynomial $\tilde{H}_{1}(i=1, \ldots, r-1)$ by

$$
\tilde{H}_{i}\left(\ell_{1}, \ldots, \ell_{r}\right)=H_{i}\left(\lambda_{1}, \ldots, \lambda_{r}\right)
$$

where $\lambda_{j}=\ell_{j}^{e}$. Then \tilde{H}_{i} is homogeneous of degree $f_{i}=\left(q^{i d}-1\right) /(q-1)$, and from (5.4) and (5.7),

$$
\tilde{\Sigma}=V_{N}\left(\tilde{H}_{1}, \ldots, \tilde{H}_{r-1}\right) .
$$

Its degree (number of points counted with multiplicity) is therefore given by

$$
\begin{equation*}
\operatorname{deg}(\tilde{\Sigma})=\prod_{1 \leq i<r} f_{i} \tag{5.8}
\end{equation*}
$$

On the other hand, (5.6) implies that the multiplicity of $y \in \tilde{\Sigma}$ in the fiber $\Sigma \times_{M} N=\Sigma^{*} \times_{N^{*}} N$ is $w(\pi(y))$ times its multiplicity in $\tilde{\Sigma}$. Together with (4.3), this yields

$$
\begin{equation*}
\operatorname{deg}(\tilde{\Sigma})=\operatorname{deg}(\pi) \sum_{x \in \Sigma} w(x)^{-1} \tag{5.9}
\end{equation*}
$$

with

$$
\operatorname{deg}(\pi)=\prod_{1 \leq i \leq r} e_{i}
$$

Let r_{1} be the largest divisor of r coprime with d, so the possible sizes of supersingular rank r Drinfeld modules over L are the divisors of r_{1}. Putting $\Theta=\Theta(r, \not p, q)$ for the measure of $\Sigma=\Sigma(r, \not p)$,

$$
\begin{equation*}
\Theta=(q-1)^{-1} \sum_{x \in \Sigma} w(x)^{-1}=\sum_{s \mid r_{1}} \frac{\sigma(r, \not h, q, s)}{q^{s}-1} \tag{5.10}
\end{equation*}
$$

and comparing with (1.6), we arrive at the

5.11. Mass formula:

$$
\Theta(r, \not p, q)=(q-1)^{-1} \prod_{1 \leq i<r}\left(q^{i d}-1\right) /\left(q^{i+1}-1\right)=(q-1)^{-1} \prod_{1 \leq i<r} \zeta_{K, S}(-i)
$$

Since this depends only on $d=\operatorname{deg} \nprec$, we will also denote it by $\Theta(r, d, q)$.
5.12. REMARK. The number Θ is in fact the Haar measure of a certain adelic double coset associated with the algebra D [3]. The word "mass" is an erroneous but commonly used translation of the german word "Maß" = "measure" [9].

Now it is easy to calculate the class number $\sigma(r, \not p, q, s)$. Recall it is the number of classes of supersingular Drinfeld A-modules of rank r and size s in characteristic $\not p$, or, equivalently, the number of left ideal classes of size s in a maximal order B in $D(r, \nprec)$.

Let $\mu(i)$ be the Möbius function: $\mu(i)=(-1)^{n}$ if i is a product of n different prime factors, and $\mu(i)=0$ if a square divides i.
5.13. THEOREM. $\sigma(r, \not p, q, s)=\sigma(r, d, q, s)$ depends only on the degree d of \nprec. It is given by

$$
\sigma(r, d, q, s)=\frac{q^{s}-1}{q^{r}-1} \sum_{i \mid\left(r_{1} / s\right)} \mu(i) \prod_{\substack{0<j<r \\ j \equiv 0(i s)}} \frac{q^{j d-1}}{q^{j}-1}
$$

Proof. First note that in the situation of (3.5), we have

$$
\begin{equation*}
\sigma(r, \not p, q, s)=\sigma\left(r / t, \not n_{t}, q^{t}, s / t\right) \tag{*}
\end{equation*}
$$

If $r_{1}=1$, only $s=1$ contributes to the measure in (5.10), so (5.11) gives the result. Now let $r_{1}>1$. For $s>1$, the inversion formula reads

$$
1=-\sum_{1 \neq i \mid s} \mu(i)
$$

Therefore,

$$
\begin{aligned}
& \Theta(r, d, q)-\sigma(r, \not p, q, 1) /(q-1)=\sum_{1 \neq s \mid r_{1}} \frac{\sigma(r, \not p, q, s)}{q^{s}-1} \\
& =-\sum_{1 \neq s \mid r_{1}} \frac{\sigma(r, \not ூ, q, s)}{q^{s}-1} \sum_{1 \neq i \mid s} \mu(i) \\
& =-\sum_{1 \neq i \mid r_{1}} \mu(i) \sum_{\substack{s \mid r_{1} \\
s=0(i)}} \frac{\sigma\left(r / i, \not h_{i}, q^{i}, s / i\right)}{q^{i(s / i)}-1} \\
& =-\sum_{1 \neq i \mid r_{1}} \mu(i) \Theta\left(r / i, \not \ell_{1}, q^{i}\right),
\end{aligned}
$$

i.e.,

$$
\sigma(r, \not p, q, 1)=(q-1) \sum_{i \mid r_{1}} \mu(i) \Theta\left(r / i, d, q^{i}\right)
$$

The right hand side depends only on the degree d of $\not p$. Hence (5.11) yields the wanted formula for $s=1$ and, together with (*), for general s.

6. Proof of (5.7)

Let ϕ be the Drinfeld module over $L=\overline{\mathbb{F}}_{k}$ defined by

$$
\phi_{T}=\sum_{0 \leq i \leq r} \lambda_{i} \tau^{i}
$$

where $\lambda_{0}=\gamma(T)$ and $\lambda_{r}=1$. Write

$$
\phi_{p}=\sum_{0 \leq i \leq r d} g_{i} \tau^{i} .
$$

Then $g_{0}=\gamma(p)=0, g_{r d}=1$ and $g_{i d}=H_{i}(i=1, \ldots, r-1)$. We will show the nonsingularity of the functional matrix

$$
\left(\frac{\partial H_{i}}{\partial \lambda_{j}}\right)_{i, j=1, \ldots, r-1} \text { in supersingular points } \underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{r-1}, 1\right)
$$

First, we have $\phi_{p} \circ \phi_{T}=\phi_{T} \circ \phi_{p}$ in $L\{\tau\}$. Equating the τ^{k}-coefficients yields

$$
\begin{equation*}
[k] g_{k}+\sum_{n<k}\left(g_{n} \lambda_{k-n}^{q^{n}}-g_{n}^{q^{k-n}} \lambda_{k-n}\right)=0 \tag{6.1}
\end{equation*}
$$

Here, k is any non-negative integer, $[k]$ is the residue of $T^{q^{k}}-T$ in $\mathbb{F}_{\neq} \subset L$ and $\lambda_{i}=0$ if $i \notin\{0, \ldots, r\}, g_{i}=0$ if $i \notin\{0, \ldots, r d\}$, respectively. Note that

$$
\begin{equation*}
[k]=0 \quad \text { if and only if } k \text { is divisible by } d \tag{6.2}
\end{equation*}
$$

We abbreviate $\partial g_{k} / \partial \lambda_{j}$ by $a_{k, j}$. Applying $\partial / \partial \lambda_{j}$ to (6.1) gives

$$
[k] a_{k, j}+\sum_{n<k} a_{n, j} \lambda_{k-n}^{q^{n}}-g_{k-j}^{q \prime}=0
$$

since $g_{0}=0$. Now, if $\underline{\lambda}$ is as above and supersingular, $g_{k-j}=1$ if $k-j=r d$ and $g_{k-j}=0$ otherwise, i.e.,

$$
[k] a_{k, j}+\sum_{k-r \leq n<k} a_{n, j} \lambda_{k-n}^{q^{n}}=\begin{array}{ll}
0 & (k \neq r d+j) \tag{6.3}\\
1 & (k=r d+j)
\end{array}
$$

Put for the moment $h_{i}=g_{r d+i-r}$.
6.4. LEMMA. Let $0<i, j<r$. Then

$$
\left(\frac{\partial h_{i}}{\partial \lambda_{j}}\right)(\underline{\lambda})=\begin{array}{ll}
0 & (j<i) \\
1 & (j=i)
\end{array}
$$

In particular, the matrix is nonsingular.
Proof. Since $\lambda_{r}=1$, (6.3) gives a linear recursion for $a_{k-r, j}$ in terms of $a_{n, j}$ with $n>k-r$. This shows that $a_{k-r, j}=0$ as long as $k>r d+j$, and $a_{k-r, j}=1$ for $k=r d+j$. Putting $k=r d+i$ gives the assertion.
6.5. LEMMA. Consider λ_{j} as indeterminate and the g_{k} as elements of the polynomial ring $L\left[\lambda_{1}, \ldots, \lambda_{r-1}\right]$. If id $\leq k<(i+1) d, g_{k}$ lies in the ideal generated by H_{1}, \ldots, H_{i}.

Proof. If $k=i d, g_{k}=H_{i}$. If $k>i d,[k] \neq 0$ by (6.2). Now use (6.1) and induction.
End of the proof of (5.7): By the above, the functions h_{i} may be written $h_{i}=\Sigma_{k} u_{i, k} H_{k}$ with some $(r-1, r-1)$-matrix $\left(u_{i, k}\right)$ in $L\left[\lambda_{1}, \ldots, \lambda_{r-1}\right]$. Thus

$$
\frac{\partial h_{i}}{\partial \lambda_{j}}=\sum_{k}\left(\frac{\partial u_{i, k}}{\partial \lambda_{j}} H_{k}+u_{i, k} \frac{\partial H_{k}}{\partial \lambda_{j}}\right) .
$$

Evaluating at a supersingular $\underline{\lambda}$ (i.e., where the H_{k} vanish) shows that the nonsingular matrix $\left(\partial h_{i} / \partial \lambda_{j}\right)(\underline{\lambda})$ is the product of $\left(u_{i, k}\right)(\underline{\lambda})$ and $\left(\partial H_{k} / \partial \lambda_{j}\right)(\underline{\lambda})$. Hence the latter is also nonsingular.

Again, the result generalizes the squarefreeness of Deuring's polynomial (see (4.4)).

7. Examples and complements

Recall that $\Sigma(r, \not h, q, s)$ corresponds bijectively to the subset of those left ideal classes (k) of a fixed order B in $D=D(r, \npreceq)$ for which $w(k)=\left(q^{s}-1\right) /(q-1)$, or, equivalently, for which the order B^{ℓ} has a unit group isomorphic with $\left(\mathbb{F}_{q}\right)^{*}$. In such situations, one usually doesn't know which unit groups actually occur. In our case, the answer is given by
7.1. COROLLARY. Let $d=\operatorname{deg} \nless 1$. Then for each divisor s of r_{1}, there exists a (maximal) A-order B in $D(r, \not \subset)$ whose unit group is isomorphic with $\left(\mathbb{F}_{q}\right)^{*}$.

Proof. From the above, we have to show that $\sigma(r, h, q, s)$ is positive. This follows by an easy estimate from (5.13)
7.2. EXAMPLE. In the missing case $d=1$, our formula gives $\sigma(r, h, q, s)=0$ if $s<r$ and 1 if $s=r$, so the class number $h(D)$ is one. Of course, this can be seen directly, using a well known construction. Assume, without restriction, that \nsim is the ideal (T). Then D may be constructed as the full quotient ring $B \otimes K$ of $B=L\{\tau\}$, where L is the extension of degree r of $\mathbb{F}_{\boldsymbol{k}}=\mathbb{F}_{q} . \boldsymbol{A}$ is embedded in B by mapping T to τ^{r}, which makes B into a projective A-module (left or right) of rank r^{2}. Moreover, B is a maximal A-order in $B \otimes K$. Since $L\{\tau\}$ is left euclidean, its class number is one.
7.3. EXAMPLE. Let $r_{1}=1$, i.e., each prime divisor of r divides d. Then

$$
h(D(r, \not p))=(q-1) \Theta(r, \not p, q)=\prod_{1 \leq i<r} \zeta_{K, S}(-i)
$$

7.4. EXAMPLE (see also [4]). If r is prime then

$$
h(D(r, \not p))=\begin{array}{ll}
(q-1) \Theta(r, \not p, q) & (d \equiv 0(r)) \\
(q-1) \Theta(r, \not p, q)+\left(q^{r}-q\right) /\left(q^{r}-1\right) & (d \neq 0(r))
\end{array}
$$

In principle, the Drinfeld module description of $D\left(r, \not _\right)$also allows the determination of the type number. Namely
7.5. PROPOSITION ([12], Prop. 4.6). (i) Each element of $\Sigma(r, \npreceq)$ is isomorphic to one defined over the extension L of degree r of \mathbb{F}_{\neq}. (ii) The bijection of (2.4) (iii) induces a bijection of the set of conjugacy classes of maximal orders in D with the set of orbits of $\Sigma(r, \nprec)$ under $\operatorname{Gal}\left(L \mid \mathbb{F}_{\neq}\right)$.

This latter set may be studied geometrically, using the description given in the last section. Its cardinality is related to class numbers of certain abelian extensions of K . We limit ourselves to give the result in the least complicated case where $r=2$ and char $\left(\mathbb{F}_{q}\right) \neq 2$. Here, $D(r, \nprec)$ is the quaternion algebra over K ramified in $\not p$ and ∞.
7.6. THEOREM ([12], see also [10]). Let the characteristic be different from 2. The type number of $D=D(2, \not)$ is given by

$$
t(D)=\begin{array}{ll}
\frac{1}{2}\left[\frac{q^{d}-q}{q^{2}-1}+1+\frac{1}{2}\left(h_{1}+h_{2}\right)\right] & (\text { d odd }) \\
\frac{1}{2}\left[\frac{q^{d}-1}{q^{2}-1}+\frac{1}{2} h\right] & (\text { d even }) .
\end{array}
$$

Here, h_{1}, h_{2}, h are the class numbers of the rings of A-integers in the quadratic field extensions of K, namely:
h_{1}, h_{2} : the two extensions ramified in \nless and ∞;
h : the unique extension ramified in $\not \subset$ and inert at ∞.
Note that $t(D)$ is less stable than $h(D)$ in that it depends effectively on \nprec and not only on its degree d.
(7.7) In determining the class number of D, our basic ingredients were the transfer principle 3.5 and the mass formula 5.11 (or 2.5 . (iii)). It seems possible that
one can prove similar mass formulas in the general case, where A is any ring as described in Section 2, i.e., a function ring with one place at infinity. Having both ingredients available, the proof scheme of Theorem 5.13 could be applied. Also, the transfer principle might turn out to hold for a larger class of algebras D than those of Drinfeld type. Together with the properties of the zeta function of D [3], [4], this would yield a method to attack the class number problem for that larger class.

REFERENCES

[1] P. Deligne and D. Husemöller: Survey of Drinfeld modules. Contemp. Math. 67, 25-91, 1987.
[2] P. Deligne and M. Rapoport: Les schémas de modules de courbes elliptiques. Lecture Notes in Mathematics 349. Springer 1973.
[3] M. Denert: Affine and projective orders in central simple algebras over global function fields. Ph.D. Thesis Gent 1987.
[4] M. Denert and J. Van Geel: The class numbers of hereditary orders in non-Eichler algebras over global function fields. Math. Ann. 282, 379-393, 1988.
[5] M. Deuring: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Hamb. 14, 197-272, 1941.
[6] V. G. Drinfeld: Elliptic modules (Russian). Math. Sbornik 94, 594-627, 1974. English Translation: Math. USSR-Sbornik 23, 561-592, 1976.
[7] V. G. Drinfeld: Elliptic modules II. Math. USSR-Sbornik 31, 159-170, 1977.
[8] M. Eichler: Über die Idealklassenzahl total definiter Quaternionen-Algebren. Math. Z. 43, 102109, 1937.
[9] M. Eichler: Zur Zahlentheorie der Quaternionen-Algebren. J. reine angew. Math. 195, 127-151, 1955.
[10] E.-U. Gekeler: Über Drinfeld'sche Modulkurven vom Hecke-Typ. Comp. Math. 57, 219-236, 1986.
[11] E.-U. Gekeler: Drinfeld modular curves. Lecture Notes in Mathematics 1231. Springer 1986.
[12] E.-U. Gekeler: On finite Drinfeld modules. J. Algebra 141, 187-203, 1991.
[13] E.-U. Gekeler: Sur les classes d'idéaux des ordres de certains corps gauches. C. R. Acad. Sci. Paris, t. 309, 577-580, 1989.
[14] E.-U. Gekeler: Sur la géométrie de certaines algèbres de quaternions. Séminaire de Théorie des Nombres de Bordeaux 2, 143-153, 1990.
[15] D. Goss: π-adic Eisenstein series for function fields. Comp. Math. 41, 3-38, 1980.
[16] J. I. Igusa: Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sc. 44, 312-314, 1958.
[17] I. Reiner: Maximal Orders. Academic Press 1975.
[18] A. Weil: Basic Number Theory. Springer 1967.
Universität des Saarlandes
Fachbereich Mathematik
6600 Saarbrücken
Federal Republic of Germany
Received August 12, 1991

[^0]: * During the preparation of the paper, the author has been supported by a Heisenberg grant of DFG.

