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Eisenstein cocycles for GL2Q and values of L-fonctions
in real quadratic fields

Robert Sczech

1.1. This îs the first part in a séries of papers devoted to the exphcit construction
of Eisenstein cocycles representing certain Eisenstein cohomology classes m
Hn~\Gy M) with G GLn(Q) m the sensé of Harder [1] In the case n 2 (only
this case îs being considered in the présent paper), thèse cocycles are maps &lt;P G -+M
mto a G-module M satisfying the homomorphism property &lt;P(AB) #04) + A&lt;P(B)

A charactenstic property of the values &lt;P(A) îs that they can be expressed by Dedekmd
sums In fact, the classical reciprocity formula for Dedekmd sums îs only a spécial
case of the homomorphism property of &lt;P In gênerai, one îs interested in the Eisenstein

cohomology for two reasons First, ît represents the most accessible and best

understood part of the group cohomology of G Secondly, but more importantly, the

spécial values of zêta- and L-fonctions in totally real number fields can be expressed

by Eisenstein cocycles Besides îts theoretical importance, this fact has also practical
implications as the cocycle property can be used to design an efficient algonthm for
calculating the spécial values in question exphcitly The construction of the Eisenstein

cocycles has been accomphshed so far only in the case n 2 mainly because of the
combinatonal and analytical problems ansing in the gênerai case Thèse difficultés
are already visible in the simplest case where &lt;P(A) îs the penod

ÇAx

J
Jx

&lt;P(A) £&apos; (mz + n)~2 dz9 A g G (1)
Jx m n

of an Eisenstein séries of weight 2 As îs well known, this séries converges only
conditionally, so some hmiting procédure must be specified Moreover, smce the path
of intégration must completely belong to the upper (or lower) halfplane, the
déterminant ofA must be positive In this paper, we présent a new approach for dealing
with thèse difficultés (for a différent approach, compare the récent paper of Stevens

[14]) Instead of (1), we study the séries

r Ax~x
+ ri)(rm + n)
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which arises from (1) by termwise intégration. This séries has much better analytic
properties than (1). For instance, it still converges for rational t where (1) does not
make sensé anymore. In this way 0{A) is defined for ail A e G, not only for A of
positive déterminant. Although the last séries still converges only conditionally, its
sum can be defined as the limit of the partial sums taken over ail (m, ri) with
\Q(m9 n)\ &lt; t as t approaches oo, where Q is some fixed nondegenerate binary form.
The définition dépends of course on the choice of Q, but as it turns out, the

dependence is a very simple one, cf. Theorem 1. But the main advantage of defining
0 by the second séries is that this construction has a natural generalization for n &gt; 2.

Let At (i 1,. n) be n matrices in G GLnQ, and let AtJ be they-th column of
A,. Then for every nonzero vector x e Un, and every matrix An there is at least one
column AtJ in At such that the standard scalar product &lt;x, AtJ &gt; does not vanish. For
given x ¥= 0, we dénote by AlJt the first column in At with this property, and define

&lt;p(Al9 ,An)(x) - XA? XA&gt;

The map &lt;j&gt; : Gn-+M is a homogenous (n — 1) cocycle for G with values in the
G -module M of complex valued functions on Rn\{0} with the G-action given by
(Af)(x) =f(xA) for x e (R&quot;\{0}, A e G. The Eisenstein group cocycle &lt;P for G is then
constructed by averaging the values of &lt;f&gt; over a coset x + Zn of 1T in U&quot;. This process
requires considérable caution as the corresponding infinité séries converges only
conditionally. It turns out that for a suitable choice of a homogeneous polynomial
Q on M&quot; (essentially a normform in a totally real number field), the following limit
does exist,

&lt;P(AX,..., An)(Q, x) lim £&apos; &lt;KAl9..., An)(m\

\Q{m)\&lt;t

and defines a homogeneous (n — 1) cocycle, called the Eisenstein group cocycle for
GLn Q. As in the classical case n 2, the values of 0 can be expressed in finite (but
complicated) terms using higher dimensional Dedekind sums. Moreover, the cocycle
0 is universal in the sensé that its values parametrize ail spécial values of Hecke

L -functions in totally real number fields which are known to be algebraic numbers

or more generally, algebraic numbers times a power of n. Roughly speaking, spécial
values of Hecke L-functions arise when 0 is evaluated on cycles (representing
homology classes in Hn_l(GLn Z)) which are constructed out of n — 1 independent
units in a totally real number field. The proof of thèse statements for n &gt; 2 will be

given in a future paper. In the présent paper we wish to treat the case n 2 in great
détail as an introduction and motivation for the gênerai case.
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The paper îs organized as follows In section 1 3, we présent a hmit formula
which allows us to control the conditional convergence of ail séries discussed m this

paper In order to îllustrate our basic idea in a simple case, we discuss in section 2 1

an example due to Eisenstein himself The main section îs 2 2 where we construct
a rational cocycle for G By summing this cocycle over the lattice Z2 in two différent
ways, we construct a trigonométrie cocycle in section 2 3 and a Bernoulh cocycle in
section 2 4 In 2 5 we show how thèse cocycles naturally lead to spécial values of
L-functions

Acknowledgement This paper was partly wntten durmg my stay at the Max-Planck-
Institut fur Mathematik (Bonn) in 1989 I wish to thank this institution for the

hospitahty and support I hâve enjoyed there

1.2. Notation

We abbreviate e(x) — exp (2nix), and dénote by ck, k 1, 2, 3, the trigonométrie

function

ck{x)=n k Y; m k (2)
meZ + x

(with summation according to increasing values of \m\ m the case k 1) For
x e C\Z, we hâve c}(x) cot nx, c2(x) sin~2 nx, etc In addition to the ck, ifs
convement to introduce the functions

dk{x)={-\)k-\k-\yck{x) (3)

which satisfy the relation ndk+x(x) =dk(x) for non-integral x Besides the ck and

dk, we use the penodic Bernoulh functions

(again with summation according to increasing values of \m\ if k 1) which

are defined for real y and coïncide with the Bernoulh polynomials Bk(y) for
0&lt;y &lt; 1
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Finally, it is natural to define

0 for x $ T

— 1 for x e Z.

With this définition, we hâve ck{x) ck(x9 0) for ail k ^ 0 where ck(x, 0) is defined

by the meromorphic continuation of

ck(x, s)=n~k Y! m-k\m\-\ Re (s) &gt; 1.

1.3. A limit formula

Let Q(p) be a binary form with nonzero coefficients a7, j?y (real or complex),

We consider for u e C2, v e IR2\Z2 and integers fc, / ^ 1, the absolutely convergent
séries

- 2- ^j^,,/ » 6 W - L nkni -

peZ2+u P\P2 /&gt;eZ2 PlPl
\Q(P)\ &lt; t \Q(p)\ &lt; t

THEOREM 1. The limits S lim,^ £(*), S* lim,^ S*(t) exist and hâve

the value

S 7r&apos;(c*(Ml)c/(K2) + sr(Q))9 S*
^ ^

^2(0 1 -^ Z larg («r/A)I awrf sr(Q) 0 for r &gt; 2.

Hère, arg dénotes the principal branch of the argument function. In particular, for
real a,, J?y, we hâve

A proof of this theorem was given in [8]. For a generalization, see [9].



Eisenstein cocycles and L-fonctions 367

2.1. The addition law

In order to illustrate our basic idea in a simple case, we prove in this section the

addition law for the cotangent function. Interpreted properly, this simple example
already contains ail the key ingrédients for the following more sophisticated
examples. We start with the relation p + q + r 0 where /?, q, r run over Z -f u,

Z + d,Z + w with some fîxed complex numbers w, v w satisfying u + v + w e Z. For
simplicity, we assume u,v,w$ Z. Then /?^r / 0, and we get

1+1 + 1-0. (4)
pq qr rp

Let a, P, y be a tripple of nonzero real numbers such that a -h jS -h y 0. Then

oip — fïq yq —&lt;xr fir — yp. Applying to (4) the summation process

lim £ lim £ lim ]£
&apos;-OO pyq t-*CO qr f-*0O r&gt;/&gt;

|op - l?| &lt; / \yq -otr\&lt;t \fir - yp\ &lt; t

gives immediately

cx {u)cx (v) + c, (v)^ (w) + ci (w)c, (m) + sign (aj?) + sign (yoc) -h sign (/îy) =0. (5)

It is easy to see that the last three signs always add up to —1 (for instance, take

u =v 1/4). This is the well known addition formula for the cotangent function.

It has the following useful extension valid for ail complex w, v, w with
u + y + H&apos;eZ:

cx{u)cx(v) -f cx(v)cx(w) -f cx(w)cx(u) 1 -h co(u)c2(v) + co(v)c2(w) + co(w)c2(u).

This follows again from (4). For instance, if w e Z, then summing (4) formally as

we did before will lead to an error generated by terms with p 0. In order to

compensate for this error, we hâve to add on the right

çi—i?—¦&quot;&lt;** &lt;&quot;=«»•

which explains the term co(u)c2(v) in the formula above. Finally, we point out that

multiplication of (4) by

e(pu — qv) e(qw — ru) e(rv —pw)
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and summation over ail intégral /?, q, r with p + q + r 0 leads to the &quot;dual&quot;

addition formula for the Bernoulli fonction J^ in the form

which is valid for real u9v,w (not ail of them intégral) such that w + y + weZ.

2.2. The Eisenstein cocycle for GL2

In this section we want to show that the formulas of the previous section are in
fact spécial cases of one universal relation, namely the cocycle relation satisfied by
the Eisenstein cocycle for the group PGL2Q which we are going to introduce now.

As before, we start with a suitable partial fraction identity. Let (j,teC2 be two
column vectors, neither of them the zéro vector. To a, t we associate the rational
function f(a9 t) given by

where m eC2 is a row vector, and &lt;w, a} resp. &lt;m, t&gt; dénotes the usual scalar

product on C2 given by

&lt;*, y} xxyx + x2y2.

Note that /(&lt;r, t) is defined only on the complément of the Unes {m, a} 0 and
&lt;/w5 t&gt; 0. Since

f{te, t) =/(&lt;r, t) =/((7, At) for k e C*,

c and t may be viewed as points on the projective line Px C. As a generalization of
(4), we hâve the following identity:

(6)

This can be proved either by direct calculation, or by noticing that

dz

+ m2)2&apos;
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or by writing the identity in a homogeneous forai as

det Pi

Pi

0.

The last équation is obvious because the first row is a linear combination of the
second and third one. In particular, we hâve f(o&gt; x) —/(t, g). Another obvious

property of/which we will use is

f(A&lt;r, Ax)(m) det(A)f(&lt;r9 x)(mA)

for every matrix A e G -=PGL2C. Let H ç C[jc, y] be the subspace of homogeneous
polynomials P(x, y) of degree k — 0, 1, 2, 3,... For every P(x, y) e H, we define the
function

/(&lt;r, t)(P, m) P(3m t, dm2)f(a, T)(m) (7)

where ômi resp. dm2 dénotes the partial derivative with respect to mx resp. m2. For
fîxed P, this is again a rational function of m which clearly satisfies the identity (6).
Calculating the right side of (7) explicitly, we get

with

We will use this représentation of /(&lt;r, t) in the next section. Let
A (a, 6, c, d) e GL2C, and let n =mA - (am{ + cw2, bmx + rfw2). By the chain

rule, we hâve

(dmi, dm2)f{amx + cm2, bmx + &lt;#w2) (a3ni + WB2, cdnx -h ddn2)f{n).

Let y4P g Z/ be the homogeneous polynomial defined by

AP(x, y) P(ax -h cy, bx + dy).

Then (.4j9)P A(BP), i.e. the map P^AP defines a GL2C action on H from left.
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CLAIM. f(Aa9 Ax)(P, m) det (A)f(&lt;r, x)(&apos;AP, mA).

Proof. By définition of/, we hâve

f(Ao9 Ax)(P9 m) P(dmi, dm2)f(A&lt;r, Ax)(m)

P(dmi, 3m2)(det (A)f(cr9 x)(mA))

dct(A)tAP(ôni,dn2)f(a9T)(n)

dct(A)f((;,T)(tAP,mA).

This property of / can be reformulated as follows. Consider the space M of ail
fonctions h : H x C2 h-&gt; C satisfying the homogeneity property

X2h(ÀkP, km) h(P, m), k deg P

for k ^ 0. This property implies that G PGL2C acts on M from the left by

Ah(P, m) det (A)h(&apos;AP&lt; mA) for h e M, Ae G.

Then, for every fixed t, we hâve the map

x, x) -/(t, Ai).

LEMMA 1. (j) is a l-cocycle for G whose cohomology class does not dépend on
the choice of x.

Proof

&lt;t&gt;(AB)(P,m)=f(ABx,x)(P,m)

=f(ABx9 Ax)(P9 m) +f(Ax, x)(P, m)

det (A)f(Bx9 x)(&apos;AP9 mA) + &lt;I&gt;(A)(P9 m),

Le., &lt;f) satisfies the cocycle property &lt;I&gt;(AB) A&lt;j&gt;(B) + &lt;/&gt;(A). If t&apos; is another choice

of t, then t&apos; Bx for some B e G, and we get by repeated application of the cocycle

property,

9 Bx) B&lt;l&gt;(B-lAB)
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which shows that 0T- differs from &lt;j&gt;r only by a coboundary., In other words, the

cohomology class of &lt;j&gt; is independent of the choice of t.
Recall that 4&gt;(A)(P, m) is not defined for &lt;m, t&gt; 0 or &lt;m, At} 0. It will be

convenient to introduce an extension \j/(A) e M of &lt;j&gt;(A) which is well defined for ail
m e C2. To this end let f &apos;(f2, -f,) for t &apos;(t,, t2). We set ij/(A)(Py 0) 0, and
define \//(A) \//(A)(P, m) for m ^ 0 by

:,t) if&lt;w, At}^0, &lt;w,t&gt;#0

&quot;, f) if&lt;m,y4T&gt; 0, &lt;w, t&gt; 0

(the last case arises only if det (At, t) 0). Thus {//(A) equals (f&gt;(A) whenever the

latter is defined. Note that formally, \j/ differs from 0 by a 1-coboundary,

where h ôf(r, f) with ô 1 or 0 according to &lt;/w, t&gt; 0 or ^0. In particular,
Lemma 1 is also valid for ij/.

2.3. The trigonométrie cocycle W

As in section 2.1, we intend to sum the relation

\p(AB)(P, m) il/(A)(P, m) + det (A)il/(B)(&apos;AP, mA)

over ail m e Z2 -h u with some fixed vector u e C2. This will lead to an interesting
resuit only if A, B belong to F PGL2Q. Every élément in F can be represented by

an intégral matrix. We assume that A, B and AB are represented in this way. Then

ZA := det (A)Z2 c LA := J?A

is a sublattice of LA with index |det (A)\9 and we hâve the finite coset décomposition

LA \J (r + ZA) (disjoint union).
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Ignoring questions of convergence for a moment, we can write

£ il,(B)(&lt;AP,mA)= £
m e Z2 + u qe LA + u&apos;

Z

(Note that in the last séries, every /neZ2 + « can be written as m =pA* for some

p with AA * det ^4.) Hence

£ &lt;l,(AB)(P,m)=
m e Z2 + m m e Z2 + w

In order to guarantee the convergence of every individual séries in this formai
identity, the parameter t has to be chosen in PXQ. (The séries converge and can be

evaluated also for % e Px C\P{ U provided A and B hâve a positive déterminant, cf.
[8]. But it is a subtle question whether the séries converge for t ePxU\PiQ; we
shall discuss a spécial case in section 2.5.) Moreover, since convergence is only
conditional, the passage to the limit has to be taken over the (absolutely convergent)

partial sums with |ô(w)| &lt; t resp. \Q{pA*) \&lt;t, t -* oo where Q is a product
of linear forms whose coefficients are linearly independent over Q. For such a

choice of t and g, we define

V(A)(P, Q9 u) n ~2~k Km £ MA)(P, m).

Teim)i &lt; r

Furthermore, if we define the action of A e F on the space of functions F(P, Q, u)

by

(where A has been represented by an intégral matrix, and A lQ is defined by
(A~lQ)(p) Q(pA~l), then we can summarize our considérations as follows.
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THEOREM 2. For every fixed re^Û, the map W which assigns to A e F the

function Y(A) of the three variables P, Q, w, is a 1-cocycle, Le. it satisfies the relation

Our next goal is to evaluate «F in finite terms. To this end let (t, Ax) be

représentée! by an intégral matrix M with primitive columns t, Ax. Let c det M.
We consider only the case c # 0. Then for u $ Q2, we hâve

Pj(t,Ax)Tj9

\Q{m)\

LlDl V ii f -

\Q{pM*)\ &lt; /

where the trigonométrie function rfy is given by (3) and s2 + k(M~lQ) dénotes the

correction term according to Theorem 1 (note that s2 + k(M~lQ) 0 for k &gt; 0). If
u or uA e Q2, then we hâve to consider the additional tems coming from those m

with &lt;/w, t&gt; 0 or &lt;w, Ax} 0. This can happen only if &lt;w, t&gt; € Z or &lt;w, ^4t&gt; 6 Z.
Let &lt;w, t&gt; e Z. Then &lt;w, t&gt; 0 iff m e T,

Moreover, if &lt;m, t&gt; 0 and m # 0, then writing y4T as a linear combination of x

and f, we get

therefore

?\\2+k
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A similar calculation in the case (u,Ax)eZ resp. c=0 leads to the following
resuit.

THEOREM 3. Let (t, Ax) be represented by an intégral matrix M with primitive
columns. If c det M ^ 0, then

IrsLM/zM

(Ax)&apos;)co({u,

provided the correction term sign (c)P(M)s2(M ~lQ) is subtracted front the right side

in the case k 0. If c 0,

t&apos;)co««, x})c2

We remark that for every fixedy, the sum over r e LM/ZM is a Dedekind sum. This
can be seen as follows. The Euclidean algorithm applied to the columns of M gives
the décomposition

M 1 )R with R e SL2Z.¦C :&gt;

Then, as a set of représentatives for LM/ZM, we can take r (ï, 0)R9 1 ^ i ^ \c\. In
particular, if t &apos;(1,0), then

H &gt; -—G ï) — C î)
thus r (ï, ai), 1 ^ i: ^ \c\ gives the classical Dedekind sum



Eisenstein cocycles and L-functions 375

As a closing remark, we wish to point out that the addition formula for
the cotangent function as discussed in section 2.1, can be rewritten as

W(AB) - W(A) - AW(B) 0, where

-G)
and P 1, Q(x, y) =ccx — fiy. This can be easily verified using the above theorem.

2.4. The Bernoulli cocycle &lt;P

We constructed the cocycle V by summing the values \j/(A)(P, m) for ail
m eZ2 + u. Alternatively, we can multiply i//(A)(P, m) by the additive character

e(mv) :=exp (2ni(m, v}),

and sum e(mv)il/(A)(P, m) over ail lattice points m in Z2. But there is an important
différence between thèse two approaches. Whereas in the former case u could range
in C2, for reasons of convergence we are now forced to assume that y is a point of
the real torus T2 U2/Z2. This restriction is compensated by two advantages. First,
for v in Q2/Z2 the values of the resulting cocycle # are rational (assuming P has

rational cofficients). Secondly, if v ^ 0 or k deg (P) &gt; 0 then # does not dépend

on the auxiliary form Q chosen for the limit defining the sum. In the following
discussion, points in T2 will be represented by column vectors. For v e T2, and

A eT PGL2Q, let

v) (2ni) &quot;2 &quot;Mim £ e(mt#G4)(P, m).

\Q{m)\ &lt; t

It follows from Theorem l that the limit on the right dépends on the chosen

form Q only in the case k 0 and v 0. As in the previous section, one can show

that ^ is a l-cocycle for F, and dérive a finite formula for T. There is no need to
repeat ail the détails except one gênerai remark. In order to evaluate the sum

Z ij/(A)(P, m), we used the coset décomposition

q e LM r e LMjZM q e r + Zm
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By duality, this translates into the character relation for the finite group LM/ZM in
the forai

|detM|= £ X eiqM-&apos;r).

qeZ2

Applying this observation systematically, we get the following resuit.

THEOREM 4. The map 0 which assigns to A e F the fonction &lt;P(A) of the three
variables P, Q, v, is a 1-cocycle, Le. it satisfies the relation &lt;P(AB) &lt;P(A) +A&lt;P(B).

The action of A e F is given by

A&lt;P(B)(P9 Q, v)=sA £ &lt;P(B)(&apos;AP, A-lQ,A-l
r e Z2/AZ2

where sA sign (det A), and A is représentée! by an intégral matrix. Let M (t, Ax)
be an intégral matrix with primitive columns t, Ax. If det M # 0, then

except the case v 0 and k 0 where the additional term sMP(M)s2(M~lQ)/4 has

to be added to the right side. If det M 0, then

*(A)(P, Q, v) -KAKP tO
*2+ V&gt;)

It should be noted that this theorem gives a rational expression for *P(A)(P, Q, 0)

(2i)2 + k&lt;P(A)(P, Q, 0). As in the case of Theorem 3, the sum over r e Z2/MZ2 is

again a Dedekind sum: Writing

:R(l *) vnthReSL2Z,
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we can take r =R &apos;(0, î) with 1 ^ / ^ \c\ as a set of représentatives for Z2/MZ2. In
particular, if t &apos;(1,0), then we can choose R 1 since in this spécial case

-G:) —(::&gt;
thus

T6Z2/A/Z2 lS,S|c|

The right side is the familar Dedekind sum. Except for small values of |c|, this

expression is not very suitable for explicit calculations. A much more efficient way
to calculate &amp;(A) in the case t &apos;(1, 0), is to apply the Euclidean algorithm to the

rows of A and use the cocycle property of # as described in the following algorithm.

1. Set # 0.

2. If c 0, then output # + &lt;P(A) and stop.
(\ x\

3. Set T j, x [a/c]. Replace &lt;P by ^ + ^(7), and (4, P, g, y) by

(TlA,&apos;TP,T-lQ,T-lv).

4. Set S (° ~~l\ Replace 0 by ^ -h ^(5), (^, P, g, r) by

(S-lA9&apos;SP,S-lQ9S-lv).
5. Go to step 2.

Except ^(S), only the values of # on upper triangular matrices (for which

det M 0) are required in this algorithm. Note that for thèse values, Theorem 4

provides a very simple expression not involving any Dedekind sums. For &lt;P(S)9 the

corresponding Dedekind sum has exactly one term as M is the identity matrix in
this case. Of course, the same algorithm can be used to calculate the values of the

trigonométrie cocycle V. It is also worth pointing out that the calculation of A&amp;(B)

in the case |det A | &gt; 1 is best accomplished by calculating the right side in
A&lt;P(B) &lt;P(AB) -

2.5. L-functions in real quadratic fields

Let A e SL2Z be a hyperbolic matrix (i.e. tr (A)2 &gt; 4). Then we can write

A-WEW-* f \\0 &apos;J&apos; \œ2e&apos;J&apos;
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where e is a unit in the real quadratic field K Q(y/d d tr {A)2 — 4, and coJ9 œ&apos;j

are some conjugated numbers in K with the property that co û&gt;1/g&gt;2 and co&apos; co&apos;l/

co&apos;2 are the two fixpoints of A acting via fractiona! linear transformation. Applying
the non-trivial automorphism of K/Q to this équation interchanges e, e&apos; and œJ9 co&apos;J9

while replacing A by A~l interchanges e and e&apos; only. Thus there is no loss of
generality in assuming det(JF) &gt;0 and \e\ &gt; 1. Moreover, replacing A by —A if
necessary, we can even assume e &gt; 1. For the quadratic forms Q and g*,

g(&quot;0 N{mxcox + w2co2), (?*(&quot;*) -N(mlœ2 - ^coj/det (W)2,

we hâve in our earlier notation AQ Q and *AQ* Q*. Note that replacing ^4 by
the transpose matrix &apos;A interchanges Q with Q*. Let u g Q2, and suppose A acts on
Z2 + w (if not, then some power ,4* will do). Since e # ±1, every orbit of y!

contains infinitely many éléments in Z2 + u. In other words, we hâve the formai
identity

meZ2 + u n JceZ

where n # 0 runs over a set of représentatives for the orbits of A. For P (Q*)S~\
s 1, 2, 3,..., we can use the cocycle property of \j/ to evaluate the (absolutely
convergent) inner séries over k as follows.

X nAk) X t(A)(&lt;AkP, nAk) £ [^*+ &apos;) - t(Ak)](P9 n)
keZ keZ JteZ

lim f(Akz,A-kT)(P,n).

If t co or et/ (one of the fixpoints of ^4), then every term vanishes in this identity.
But for ail other te^C, the séquence (Akx, A ~*r), k 1, 2, 3,..., converges
exponentially fast to the limit (&lt;w, co&apos;). Therefore, for r #&lt;y, co&apos; we always hâve

n). (9)
JfceZ

The expression on the right can be simplified considerably. A straightforward
calculation using (8) leads to the resuit

(10)



Eisenstein cocycles and L-fonctions 379

In this way we get the identity

lim £ ij;(A)(P, m) ((s - l)!)2 d(W)L(A9 u9 s),
hO°m6Z2 + u

\Q(m)\&lt;t

L(A, u, s) =\im £ ô(&quot;)~5&apos;

/-QO „
|G(«)| &lt; &apos;

where « runs over the (nonzero) orbits of A in Z2 + m. For TeP,Qwe know that
the left side converges. Since the right side does not dépend on t, it follows that the

left side converges for ail t e Px C différent from œ, œ&apos; to the limit n2sW(A)(P, Q, w),

but vanishes identically for t =a&gt;, a/. We note that the séries defining L(,4, w, s)

converges absolutely for s &gt; 1, i.e. the limiting condition \Q(n)\ &lt; t is only necessary
for 5 1. In order to identify L(A, u, s) as a value of a Hecke L-function, let

9Î Zco! + Zco2, p ulcol + u2oj2, U {ek \ k g Z}.

Then 5H is a fractional idéal with respect to an order in K, and U is a group of units
which acts on W-hp. To the orbit space W-hp/U belong the two Hecke L-series

G 0,1),

s) -
whose halfplane of absolute convergence is at Re(^) &gt; 1. The considérations above

lead to a closed formula for the values of L,($R + p, s) at positive intégral values of
s =j(2) in terms of the cocycle W.

THEOREM 5.

((s - \y.)2d(w)
%2s

fors=j(2), s&gt;0.

As we hâve seen, the right side is independent of the choice of t e Pi Q in the

définition of W. Another non-obvious corollary to this theorem is the observation

that the left side is a cyclotomic number.
The L-function L7(9Î + p, s) has an analytic continuation to the whole complex

plane. Let

5R* {fi e K | tr Qiv) e Z for veiR}
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be the dual (complementary) idéal of % and let for y 0,1,

According to a well known resuit of Hecke, cf. [4, 10], we hâve the relation

£G(5)L,(M + p9s) G(l - 5)L* (* + p, 1 - 5),

£ -1V|det (W)\, G(s) n &quot;^(

which gives the analytic continuation of L3 and L * to the halfplane Re (s) &lt; 0. In
particular, for s 1, 2, 3,..., we hâve

The last expression is equal to

lim X e(m ^(r-oo meZ2
|G*(m)| &lt; t

To prove this identity, it&apos;s enough to replace (A9 Q, Q*, W) in (9) and (10) by

THEOREM 6. L,(« + P, 1 - s) 4&lt;f&gt;(&apos;y4)(g&apos;
&quot;

&apos;, Q*, &apos;&quot;) &gt;r s 1, 2, 3,... wïïA

The last équation can be brought into a somewhat nicer shape by introducing the

partial zêta function

N(v)-9 Rc(5)&gt;l.
v e 9t 4- p/U

v»0

Then as a corollary from the Hecke functional équation [10], we hâve for
s 1,2, 3,... with y&apos;=

This équation together with the algorithm discussed at the end of the pre-
vious section provide an efficient method to calculate the rational numbers

+ p, 1 — s), s 1,2, 3, In applications, very often only 9t -h p is given, and
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one needs to détermine a generator e of the unit group U first. The dassical solution
to this problem involves the réduction theory (continued fraction method) which is

essentially another version of the algorithm described at the end of section 2.5. For
that reason, the calculation of e as well as $ can be combined into one algorithm
which requires as input only a Z-basis for 9î and the coordinates u of p with respect
to this basis. One advantage of this procédure is that it avoids the calculation of the
matrix A whose entries can become very large even if ail other numbers involved are
small. In any case, the amount of work necessary to calculate the numbers
£(914- p, 1 — s) is directly proportional to the amount of work involved in calculat-
ing a generator e for U.

The results of this section can be used to calculate (for intégral s) the values of
a L-funtion L(x, s) attached to a ray class character x in K which is either totally
ramifîed j 1) or totally unramified (j 0) at ail infinité places (i.e. %((v)) Xj(v)
for v 1(/), / the conductor of #), and satisfying the parity condition j s(2) if
s &gt; 0. We hâve for s 1, 2, 3,...,

L(X, s)=^X(b)N(b)-%(fb-1 + 1, s),

L(X, l-s)=Zx(b)N(by-K(fb-1 + 1, 1 -s),
b

where b runs over a set of intégral représentatives for the narrow ray classes mod/
and the unit group U is generated by the smallest totally positive unit e &gt; 1

satisfying the congruence e

2.6. Historical remarks

The proof of the addition formula for the cotangent function in section 2.1 goes
back to Eisenstein, cf. [16]. The function/(a, t), which is at the center of our
considérations, was already studied by Hurwitz [5] in connection with a class number
formula for quadratic forms. Dedekind sums were introduced for the first time by
Dedekind in connection with the logarithm of the Dedekind-eta-function rç(t). That he

was in fact studying a spécial case of Eisenstein cohomology, follows from the identity

log &gt;y(T) - log ti(Ax) -L [AX X £&apos; (mz 4- ri) ~2 dz,

valid for A s SL21 and Im (t) &gt; 0. Periods of Eisenstein séries of weight 2 were

investigated systematically for the first time by Hecke in [3] where he identifies thèse

periods with values of L-functions in real quadratic fields at s 1. An explicit



382 ROBERT SCZECH

formula for the cocycle &lt;P m terms of Dedekind sums was established by Schoeneberg
[13], who considérée the case F SL2I.. His resuit was extended to F GL2Q+ in
a récent paper of Stevens [14, 15]. The trigonométrie cocycle W was introduced in
[7] in connection with a topological invariant arising from the Atiyah-Singer index
theorem. The calculation of L-values began with Hecke [2], and was completed by
Meyer [6] and Siegel [11]. Our approach in 2.5 solves a problem raised by Siegel in
his last paper [12], namely to sum the L -séries (at s 1, 2, 3,...) using only methods
of real analysis. In some sensé, our paper is a natural extension of the ideas Siegel
introduced in this paper. However, the ultimate crédit should be given to Eisenstein
who used this circle of ideas for the first time in his classical paper &quot;Genaue

Untersuchung der unedlichen Doppelprodukte...&quot;, cf. [16].
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