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Minimal isometric immersions of spherical space forms in sphères

Dennis DeTurck and Wolfgang Ziller

Introduction

A number of authors [C], [DW1], [DW2], [L], [T] hâve studied minimal
isometric immersions of Riemannian manifolds into round sphères, and in particu-
lar of round sphères into round sphères. As was observed by T. Takahashi [T], if
# : M -+SN(r) c UN+l is such a minimal immersion, then the components of #
must ail be eigenfunctions of the Laplace operator on M corresponding to the same

eigenvalue. Conversely, if 4&gt; is an isometric immersion such that ail the components
are eigenfunctions of the Laplace operator for the same eigenvalue, then # is a

minimal isometric immersion into a round sphère. Takahashi also observed that if
M is an isotropy-irreducible Riemannian homogeneous space, i.e., if the isotropy
group of a point acts irreducibly on the tangent space, then an orthonormal basis

of each eigenspace automatically gives rise to a minimal isometric immersion into
a round sphère. Thèse are called the standard minimal immersions.

In particular, if M Sn(l) one obtains a séquence of such standard minimal
isometric immersions, one for each nonzero eigenvalue. For the first such eigenvalue

one obtains the standard embedding into Un+\ and for the second eigenvalue
an immersion into Sn(n + 3)/2 ~ l(^/n/(2(n + 1)) which gives rise to the Veronese

embedding of UPn. For odd-numbered eigenvalues the images of the standard
minimal immersions are ail embedded sphères and for even-numbered eigenvalues
the images are ail embedded real projective spaces. E. Calabi [C] showed that every
minimal isometric immersion of the two-dimensional sphère into SN(r) is congruent
to one of thèse standard eigenspace immersions. On the other hand, M. Do Carmo
and N. Wallach [DW2] showed that in higher dimensions there are in gênerai many
minimal isometric immersions of Sn( 1) into SN(r), and that they are parametrized
by a compact convex body in a finite-dimensional vector space.

P. Li [L] generalized this resuit to arbitrary isotropy-irreducible homogeneous

spaces and also claimed that the image of a minimal isometric immersion of an

isotropy-irreducible homogeneous space is still an isotropy-irreducible homogeneous

space. He went on to apply this theorem to the case where M is also a sphère,
and ultimately concluded that the image of a minimal isometric immersion of a
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sphère mto a sphère must be either a sphère or a real projective space This would
of course imply that there exists no minimal isometnc immersion of a lens space or
any other more comphcated sphencal space form into a sphère

That this îs mdeed not correct was first observed by K Mashimo [Mal], who

gave an example of a minimal isometric immersion of S3(l) into S6(£), whose image
îs at least a 6-foid subcover of S3 (but he did not identify the image completely)
Later, in [WZ], M Wang and the second author showed that certain quotients of
S3 (by the so-called polyhedral groups) are in fact isotropy irreducible, and so by
the above-mentioned theorem of Takahashi, the polyhedral manifolds S3/T*,
53/O* and 53/I* admit minimal isometric immersions into sphères Also, the first
author obtained some exphcit minimal isometnc embeddings of certain three-di-
mensional lens spaces This then raises the question of just which sphencal space
forms do admit minimal isometnc îmersions or embeddings into sphères The

purpose of the présent paper îs to give a partial answer to this question We will
show

THEOREM A Every homogeneous sphencal space form admits a minimal
isometnc embedding into a standard sphère {of sufficiently high dimension and

appropnate radius)

Sphencal space forms, îe compact manifolds of constant curvature +1, hâve

been completely classified [W] Only few of them are homogeneous, see [W],
Theorem 2 7 1, for a description It seems hkely that most if not ail sphencal space
forms admit a minimal isometric immersion into a sphère

The mtenor points of the compact convex body parametnzmg minimal isometnc

immersions of sphères into sphères correspond to immersions which use a full
basis of the eigenspace corresponding to a given eigenvalue as the coordinates of
the immersion In [WZ] it was observed that thèse immersions are SO{n + 1)-

equivanant immersions mto IR^*1 (although they are not equivanant mto SN{r))9

and hence their images must be embedded sphères or real projective spaces The

minimal immersions m the above Theorem must therefore correspond to boundary
points in the convex body They are still equivanant immersions, but only with

respect to a proper subgroup G a SO{n + 1) that acts transitively on Sn Their

images are therefore G -homogeneous embedded submamfolds We doubt that there

are any minimal isometnc immersions whose image îs not embedded

Such equivanant immersions, in the case of G 5(7(2) acting transitively on
53(1), are examined in some détail by K Mashimo [Mal], [Ma2], but he does not
attempt to identify their images In [P] F J Pedit constructs U(ri)-equivanant
isometnc embeddings of {In — l)-dimensional lens spaces into sphères, but they are

not minimal
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One should also mention a theorem by Hsiang and Lawson [HL] which states

that every homogeneous space G/H admits a minimal isometric immersion (not
necessarily an embedding!) into a sphère of sufficiently high dimension, with respect
to some G-invariant metric. But in this resuit, the metric cannot be chosen apriori.
In particular, for a homogeneous space forai, there are in gênerai many G-invariant
metrics.

Another question that is interesting in this context was asked by DoCarmo and
Wallach [DW2], Remark 1.6: For a given n, what is the smallest dimension N for
which there exist minimal isometric immersions of Sn(l) into SN(r) which are not
totally géodésie? In this question one can also specify r, i.e. fix the eigenvalue one

wants to consider. A lower bound was given by J. D. Moore [Mr] who showed that
no such immersions exist if N ^ 2n — 1. In [DW2] they guessed the probable answer
to be N n(n -f 3)/2 — 1, which is achieved by the Veronese embedding. That this
is false, at least for n 3, was first observed by N. Ejiri [E] who showed that there
exists a minimal isometric immersion of S3(l) into S6(\) which is not totally
géodésie. He also showed that the immersion is totally real with respect to the

natural almost-complex structure on S6. Notice though that his construction is not
explicit, since it uses the fundamental theorem for isometric immersions to prove
existence. In [Mal] Mashimo constructed this immersion more explicity as an

St/(2)-equivariant immersion. In [Ma2] he shows that it is also an orbit of a

subgroup of G2 acting on S6 and proves that every totally real immersion of S\\)
into S6(\) is congruent to this example. In [DVV] it was observed that the

immersion is a 24-fold cover onto its image. In our paper we will be able to identify
the image as the tetrahedral manifold S3/T\ We can also easily describe it explicitly
as follows. We start with an isometric immersion of 53(1) obtained by sending

(a9b)eS\\a\2 + \b\2=\9 into:

â*E\ \ B\5\a\2 - |ff) + i à\5\b\2 - H2),

aP{2\a\2 - \bf) + â*b(\a\2 - 2\b\2)]9 \ ^15 (|a|2 - |Zf) Im

One easily shows that this isometrically immerses S3(l) into S6(\) c
C3 © R 1R7 and hence is a minmal isometric immersion. This map is clearly invariant

under a(a, b) (w, -ib), P(a9 b)=(-b, a), and y(a, b) (5( 1 + i)(a - b),

5(1— i)(a -h b)). a, /?, and y generate a group of order 24 isomorphic to the binary
tetrahedral group T* and we will see that the immersion defines an embedding of
»S3/T* into S6(\). We will also prove the following uniqueness property of this
immersion:
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THEOREM B. Every SU(2)-equivariant minimal isometric immersion of 53(1)
into S\r) which is not totally géodésie, is congruent to the above immersion of S3(\)
into S6(\), whose image is an embedded 53/T*.

We suspect that this resuit may be true without the assumption of equivariance.
Notice also by Moore&apos;s theorem, six is the smallest ambient dimension for which
53(1) admits a non-totally-geodesic minimal isometric immersion.

In §1 we give some géométrie preliminaries, in §2 we prove Theorem A in the
three-dimensional case and in §4, §5 in the higher-dimensional cases. In §3 we discuss

the moduli space of S£/(2)-equivariant minimal isometric immersions of S3(l) and

prove Theorem B.

Both authors acknowledge the support of the National Science Foundation. The
first author would also like to thank the Institute for Advanced Study for its

hospitality during the course of the research for this work. We would also like to
thank Christine Escher for pointing out several mistakes in an earlier version of this

paper.

1. Géométrie preliminaries

Let M be an «-dimensional compact Riemannian manifold, and A be the

Laplacian on L2(M). If &lt;$&gt; : M -? IRN is an isometric immersion of M into Euclidean

space, then the mean curvature vector H of the immersion satisfies

A&lt;t&gt;=nH.

If furthermore, the coordinate functions of the immersion are ail eigenfunctions of
A corresponding to the same eigenvalue À, then we hâve H n(f&gt;/À. Since

(H, d(f&gt;) 0, this implies that &lt;0, d&lt;j&gt;y 0, and hence \(j&gt;f is constant. Thus (/&gt; is

actually an immersion of M into the sphère SN~l whose radius must be y/n/X
because of the value of H. Furthermore the immersion is a minimal immersion into
the sphère, since the mean curvature vector is orthogonal to the sphère. Reversing
the reasoning shows the converse: if &lt;j&gt; : Mn^&gt;SN~x(r) is a minimal isometric
immersion, then A(f&gt; =(n/r2)(j). Thèse results were obtained by Takahashi [T] (see

also [DW1]).
In order to minimally isometrically immerse a manifold M into a sphère, we

must therefore find eigenvalues of the Laplacian of M of sufficiently high multiplic-
ity to provide the coordinate functions of the immersions.

Another resuit of Takahashi [T] is that certain homogeneous Riemannian
manifolds M G/H do admit such immersions, namely those for which the
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isotropy group H acts irreducibly on the tangent space. To see this, we consider the

eigenspace EÀ to a fixed eigenvalue k ¥&quot; 0. On EÀ we hâve the inner product induced
by the one on L2(M), and the group G acts on Ex by isometries. If we let
{&lt;/&gt;,,..., &lt;j)N} be an orthonormal basis of Ex, then I dcj)2 must be a multiple of the
metric on M since both are invariant under G and hence at every point they are
invariant under the irreducible action of H. Therefore, after multiplying the metric
on M by a constant, &lt;f&gt; {&lt;f&gt;x,..., &lt;j&gt;N) : M -* RN is an isometric immersion, which
by the above comments give rise to a minimal isometric immersion into a sphère.
This immersion is called the standard minimal immersion of degree d ïf À is the dth
nonzero eigenvalue. Notice that a différent choice of orthonormal basis for Ek gives
rise to a congruent immersion.

An obvious example of such a homogeneous Riemannian manifold is the
«-dimensional sphère, realized as the homogeneous space SO{n + \)jSO{ri). The

eigenfunctions of Sn are simply the restrictions of harmonie homogeneous polyno-
mials on Un + X to Sn{\). AH the harmonie homogeneous polynomials of degree d
restrict to eigenfunctions on Sn with the same eigenvalue Xd d(d + n — 1) and the
dimension of this eigenspace is equal to Nd (Id + n — \)(d + n — 2)\/(d\(n — 1)!).
For odd d, the standard minimal isometric immersion is a minimal isometric
embedding of Sn into SNd~l(&gt;/nJkd). For even d, ail the components of the
immersion are invariant under the antipodal map, and we get a minimal isometric
embedding of UPn into SNd~\J:nJkd).

In [DW2] the space of ail minimal isometric immersions of Sn{\) into SN{r) was
examined in some détail, and it was shown that for n &gt; 2 there are many minimal
isometric immersions other than the ones described above. If we fix r y/n/Àd9 or
equivalently if we only consider harmonie homogeneous polynomials of degree d,

then thèse minimal isometric immersions (up a rotation of the ambient space) are

parametrized by a convex body in a finite-dimensional vector space, which we will
now describe.

Let &lt;t&gt;0 : Sn(l) -+SNd~x(s/nlkd) be the standard minimal isometric imersion of
degree d. Then any other isometric immersion &lt;p of degree d is given by A o &lt;^0

where A is an Nd x Nd matrix. Since we can write A R o P where R is orthogonal
and P symmetric and positive semidefinite, A o &lt;£0 is congruent to P o &lt;£0. More-
over, one easily checks that P o (f&gt;0 is an isometric immersion if and only if P2 — Id
is orthogonal to Sym2 ((&lt;t&gt;0)*(TSn)) c Sym2 UN&lt;*. If we let Wd be the vector space of
ail symmetric matrices with this property and Bd {P e Wd \ P + Id ^ 0}, then
P o (f)0 is an isometric immersion precisely when P2 — Id 6 Bd. One easily shows that
P e Wd implies tr P 0 and hence Bd is a compact convex body which parametrizes
ail congruence classes of minimal isometric immersions of degree d. An explicit
parametrization is given by P € Bd h-? y/P + Id o $0. In [DW2] it is shown that for
n 2 and any d and for d 2, 3 and any n, the space Bd is a point, i.e. any such
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minimal isometric immersion is congruent to the standard one &lt;j)0. For any other
value of n and d it is shown that dim Bd ^ 18 and that dim Bd grows very quickly
with n or d. It seems to be a very difficuît problem to détermine the dimension of
Bd exactly. In [Mu] Y. Muto showed that dim Bd 18 if n 3 and d 4.

From this description it follows immediately that the interior points of the

convex body Bd correspond to isometric immersions which use a full basis of Ek

as their components. For thèse immersions it was observed in [WZ] that they
are SO(n + l)-equivariant immersions into UNd and hence are embeddings of Sn

for d odd and of UPn for d even. On the other hand, it seems that immersions
using only a subspace of Ek, which correspond to boundary points of the convex
body, hâve not been systematically studied before in the literature. Thèse

boundary-type immersions produce the minimal isometric embeddings in Theorem
A.

There is also a &quot;gauge group&quot; acting on Bd. If g e O(n +1) and if P o &lt;£0 is an
isometric immersion, then P o &lt;£0 o g is another one. The equivariance properties of
&lt;t&gt;0 imply that P o ^0 o g p o p(g) o 0O where p(g) is the orthogonal matrix of the

isometry g acting on the eigenspace EXd with respect to the orthonormal basis

defining &lt;/&gt;0. Since P ° p(g) o &lt;£0 is congruent to p(g) ~x ° P o p(g) o 0O, we hâve that
O(n + 1) induces an action on Bd given by T g Bdv-+ p(g) ~ l o T ° p(g). It follows
that g e O(n + 1) lies in the isotropy group of this action at T e Bd if and only if the

corresponding immersion y/T + Id o (f&gt;0 is equivariant with respect to g. Since p
induces an absolutely irreducible représentation of SO(n + 1) on Ekd, the only
matrix T which commutes with every p(g) are the multiples of the identity, but

aide Bd if and only if a 0. Hence the origin is the only fixed point of the
O(n -h 1) action, corresponding to the fact that 0O is the only O(n -h 1)-equivariant
immersion.

If we fix a subgroup G &lt;= SO(n -h 1), then the set of ail G-equivariant minimal
isometric immersions corresponds to the set of ail T e Bd which commute with

every g e G. This set is a convex sub-body of Bd. Of course, G is contained in the

isotropy group of every point of this sub-body. But notice that if P o &lt;/&gt;0 is

G-equivariant and if g e SO(n + 1)\G, then P°&lt;t&gt;0°g is in gênerai no longer
G-equivariant unless g is in the centralizer of G. On the other hand, P o &lt;/&gt;0 o g is

equivariant with respect to gGg ~l c SO(n + 1).

Our construction of minimal isometric embeddings for space forms will use

G-equivariant immersions, where G is a subgroup of SO{n + 1) that still acts

transitively on S&quot;. Given such a group G, we hâve that S&quot; G/H and we let
VH &lt;= EXd be the subspace on which H a G acts trivially. For every v e VH we

obtain a map &lt;PV : GjH^EXd given by &lt;P(gH) =gv. The image of this map is

obviously contained in the sphère of radius ||t?||, and if we pull back the metric on
EÀ we get a left-invariant symmetric two-tensor on Sn which may or may not
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agrée with the constant-curvature metric. Our goal is therefore to find a vector v
such that this pull-back metric has curvature 1. Then &amp;v will be an isometric
immersion, which by the previous remarks, must be a minimal isometric immersion
of Sn(l) into SN~ \y/nlkd). Hère N is the smallest integer such that &lt;Pt(M) lies in
an JV-dimensional subspace E c Ekd.

The image $V(M) c E must of course be an embedded submanifold, namely the
orbit of v under the action of G on E. Hence &lt;PV(M) G/H*, where H* is the

isotropy group of v. Of course H c H* and H*/H is finite. Therefore, G/H* is a
subcover of Sn and &lt;PV gives rise to a minimal isometric embedding of GjH* into
SN~~ xi\Jnl^d)&apos; Thus, to find an isometric embedding of a given space form G/H*
we need to find a v e VH such that H* is the full isotropy group of v. We call this

process of manufacturing an isometric minimal embedding the &quot;equivariant

construction&quot; since the embedding is indeed G -equivariant.
We can usually guarantee that N &lt;Nd by the following remark. Although

SO(n + 1) acts irreducibly on EXd, the subgroup G c SO(n + 1) usually does not.
Indeed, if v e VH is a vector which lies in a subspace invariant under G, then the

whole orbit lies in this subspace. Hence, to produce equivariant immersions of
smallest codimension, we choose v in a G-invariant subspace of smallest dimension.

Equivalently we could also consider a class-one représentation of G with respect to
H, i.e. a représentation of G which has a fixed vector when restricted to H, and then
take the orbit of G through such a fixed vector.

Before we proceed, we will need an explicit expression of the metric on EXd, the

space of homogeneous harmonie polynomials on IR&quot; + l of degree d. We first remark
that the action of A e SO(n + 1) on p g R[xl9..., xn+ x] is given by A • p(x)
p(A ~lx) =p(Atx) where x e Un+l. Since this action is irreducible, the metric is

uniquely determined up to a multiple. Now we define

-&apos;(s-)1

which must be a real number since both p and q hâve the same degree. One easily
vérifies that this inner product is invariant under the action of SO(n + 1) (see [V]
for détails) and hence is our desired inner product.

When n + 1 is even, we can also express polynomials in Ekd using complex
notation as p(zt, zt) and, to within a factor 2d, the above inner product is the same

as the one given by

&lt;p(zn zj, q(zn £,)&gt; Re \pl —, — j&lt;? i.
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This last inner product is the one we will use. Note that this inner product is easy
to work with: for monomials, we hâve

unless k, ml and lt nt for ail /, in which case we hâve

We will refer to this as the &quot;unitary metric&quot; on the space of homogeneous
polynomials.

Finally, we list the homogeneous space forais. Each homogeneous spherical
space form must belong to one of the following classes:

(i) M S3/r, where T is a finite subgroup of S3 SU(2) Sp(l);
(H) M S2n-l/Cd, where Cd is generated by e2ni/d and acts on U2n C&quot; by

multiplication on each complex coordinate;
(iii) M S4&quot;&apos; VF, where r is any finite subgroup of Sp(\) acting on U4n Hn

by multiplication on each quaternionic coordinate from the left.

Minimal isometric embeddings for space forms in the first class are produced in
§2, the second one in §4 and the third one in §5.

2. The three-dimensional case

The case of quotients of the three-sphere S3 is separated from the rest because
S3 is itself a group, rather than simply a homogeneous space. We may consider S3

either as the group of unit imaginary quaternions Sp(\)9 or as the spécial unitary
group SU(2). The homogeneous three-dimensional spherical space forms can ail be

written as S3/F where F is an arbitrary finite subgroup of S3. The homogeneous
lens spaces can also be written as quotients of U(2), but the minimal isometric

embeddings one obtains in this fashion (see §4) hâve higher codimension.
We start by listing the possible groups F. As is well-known [W], [Mo], the

following is an exhaustive list of the finite proper subgroups of Sp(\):

(i) the cyclic groups Cd {e2nkt/d: h 0, 1,..., d - 1} for d î&gt; 2;

(ii) the binary dihedral groups DJ C2d^C2J where j is the usual gênerator
of the quaternions over C, for d ^ 1 (note that d 1 gives a cyclic group
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isomorphic to C4, and d - 2 gives what is usually called the &quot;quaternionic

group&quot;, {±1, ±i, ±j,±k});
(iii) the binary tetrahedral group T* Df u [\ ± 1 ± i ± j ± h)} of order 24

(this is the double cover of the group of symmetries of the tetrahedron);
(iv) the binary octahedral group O* T*ue7CI/4T* of order 48 (this is the

double cover of the group of symmetries of the octahedron);
(v) the binary icosahedral group I* T*uxT*ux2T*ujc3T*ux4T*, where

x a + i + (l/a)j and a is the golden ratio (1 + y/S)/2. This group has

order 120 and is the double cover of the group of symmetries of the
icosahedron.

Furthermore, any pair of finite subgroups of Sp(l) which are isomorphic are in fact
conjugate to each other in Sp(\).

Corresponding to each of thèse finite subgroups of Sp( 1), we get a homogeneous
three-dimensional spherical space-form:

(i) the lens spaces L(d; 1) Sp(\)/Cd for d ^ 2 (note that L(2; 1) is the real

projective space UP3);

(ii) the &quot;prism manifolds&quot; 5&gt;(1)/DJ for d £ 2;

(iii) the &quot;tetrahedral manifold&quot; S/?(l)/T*;
(iv) the &quot;octahedral manifold&quot; Sp(l)/O*;
(v) the &quot;icosahedral manifold&quot; S/&gt;(l)/I*.

For later purposes, we list hère ail possible inclusions among thèse groups:

(i)
(ii)
(iii)
(iv)
(v)

cd
cd
c2
c2
c2

cÇ,
cQ
cC4
cC4
czC4

\d\

!rfcC
czT*
dC8
cl*;

ind c D *rf ;

; c3 c c6 c

c O*; C3

C3 cz C6 c

T*; Df c T*;
cC6cO*
: * &gt; C5 cz l

;D2* c=D*c
I*;D2*

O*;
czl*,

D?c:O*;
Dîd*;

T*
Df I*.

To verify thèse inclusions for the subgroups of the binary polyhedral groups, one
first détermines the subgroups of the polyhedral groups T, O, I in 50(3) by
observing that T and I are isomorphic to the alternating groups A4 and A5 and that
O is isomorphic to the symmetric group 54. Under the projection from 5p(l) to
50(3) the inverse image of a polyhedral group is the corresponding binary
polyhedral group, the inverse image of a dihedral group Dd is a binary dihedral

group DJ, and the inverse image of a cyclic group Cd is the cyclic group Q2d. In
addition, for a cyclic group of odd order in 50(3), there exists a cyclic group of the

same order in 5p(l), for which the projection gives rise to an isomorphism. AH this
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follows from the fact that ail subgroups of Sp( 1) contain the center {+1} of Sp( 1),

except for the cyclic subgroups of odd order.
To see the subgroups of Sp(\) as subgroups of SU(2), we simply identify the

quaternion a + bj with the matrix

If a + bj e Sp{\\ i.e. \a\2 + \b\2 1, then the corresponding matrix is in SU(2). Thus
the action of the quaternion a + bj on the polynomial p(z, w, z, h&gt;) is given by

((a -h bj) - p)(z, w, z, h&gt;) /?(&lt;zz — &amp;w, Ez + aw, az — £w, bz +~âw).

Instead of looking at the action of Sp(l) on the full space of homogeneous
harmonie polynomials in four real variables, we only consider the following
subspace. Let Wd be the space of homogeneous complex polynomials of degree d in
two complex variables z, w. If we regard Wd as a real vector space by taking real and

imaginary parts, we obtain a 2{d + l)-dimensional subspace of the (d + l)2-dimen-
sional space of homogeneous harmonie polynomials in four real variables. The
natural action of Sp(l) on z and w induces an action of 5/7(1) on Wd which is the

same as the action of Sp(\) on Ekd restricted to Wd. Hence we only need to find
polynomials /?(z, w) in Wd such that Y is the stabilizer group of p and such that the
orbit Sp(\) - p has constant curvature 1.

We can reduce the codimension of the embedding in some cases, by observing
that, if the degree is even, say 2d, then the irreducible représentation of 5^(1) on W2d

is the complexification of a real représentation of dimension 2d+\. The conjugation
which gives rise to this real subspace is given by the complex antilinear map which
sends zkwd~k to { — \)kzd~kwk. Hence the real subspace R2dcz W2d has as a basis

and Sp(l) leaves this subspace R2d invariant. Hence ifp is a polynomial in R2d, then
the orbit Sp(\) • p also lies in R2d.

It is a fact (see [Mi] for a résumé and [K] for a beautiful classical exposition) that
the subalgebra of C[z, w] left invariant by the action of any finite subgroup of Sp( 1)

is generated by three homogeneous polynomials which satisfy one algebraic relation.
We list thèse polynomials and relations for each of the above groups:

(i) For the cyclic group Cd the algebra of invariant polynomials is generated

by p zd, q wd, and r zw, with the obvious relation pq rd.
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(ii) For the binary dihedral group DJ, the algebra of invariant polynomials is

generated by P z2d+w2d, Q z2d+lw-w2d+lz, and R=z2w2. The
relation is given by P2R -Q2- 4Rd+1 0.

(iii) For the binary tetrahedral group T*, the algebra of invariant polynom¬
ials is generated by a zw5 — wz5, jS z8 + 14z4w4 -f w8 and y z12 —

33z8w4 - 33z4w8 + w12. The relation is 108a4 - jS3 + y2 0.

(iv) For the binary octahedral group O*, we can express the gênerators in ternis
of those of T*, since T* c O*. The generators are /?, a2 and ay, and the

relation is (a2)(j?)3 - 108(a2)3 - (ay)2 0.

(v) Finally, for the binary icosahedral group we discover that the realization of
I* as a subgroup of Sp(l) given above, while easy to describe, is not so

convenient for Computing the invariant polynomials. For example, the

gênerator of lowest degree has degree 12, and is 22(5 -f 8a)a2 — (11 + 180)7,

in terms of the generators of T* given above. For convenience later, we

perforai a conjugation in Sp(\) (which places a vertex of the icosahedron

on the z-axis in (R3, as opposed to a vertex of the dual dodecahedron), to
realize the binary icosahedral group as the following set of quaternions:

u &lt;^p ((£4 - €)e&quot; + (e2 - e&apos;)e ~»j): /z, v 0,..., 4J

where e=e2m/5. For this présentation of I*, the algebra of invariant
polynomials is generated by A zw(z10 + 1 \z5w5 - w10), B (z20 -h w20)

-228(z15w5 - z5w15) + 494z10w10 and C (z30 + w30 + 522(z25w5 - z5w25)

-10,005(z2Oh&gt;1o + z1oh&gt;20). Thèse are algebraically related by the équation
C2-B3+ 1728/4 5 0.

Armed with the generators of the algebras of invariant polynomials for each of
the finite subgroups of Sp(\), we are now in position to carry out the &quot;equivariant

construction&quot; of minimal isometric embeddings. One should be careful in applying
the above description of invariant polynomials since it dépends completely on the

embedding of the subgroup F chosen. If we change the embedding by a conjugacy
in Sp(l), then the description of the set of invariant polynomials changes corre-
spondingly. This applies in particular when we claim that a given group F is the full
isotropy group of a polynomial p: It is not enough that p is simply not on the list
of invariant polynomials for a bigger group; rather, we must check that p is not
conjugate to anything on the bigger group&apos;s list.
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CASE I: THE CYCLIC GROUPS Cd. The quotients S3/Cd are the lens spaces

L(d; 1). By the results of the previous section, we need to find a homogeneous
polynomial p(z, w), invariant under the action of Cd, so that the metric induced by
the &quot;unitary metric&quot; on the orbit of p agrées with the constant-curvature 1 metric
at p. The tangent space to SU(2) dit the identity is the Lie algebra su(2), and an
orthonormal basis for su(2) in the constant-curvature 1 metric is given by the
matrices:

If &lt;Pp : SU(2) -&gt; C[z, w] is the map &lt;Pp(a + bj) p{âz — bw, Ez -h aw), then one easily

computes that for p{z, w) zawb,

^p3|e07) -i(aza~lwb+l+bza+lwb-1).

Any invariant polynomial for Qd consists of sums and products of zd, wd, and zw.
One easily checks that none of the polynomials czkd, cwkd9 c(zw)k, cxzd + c2wd give
rise to an isometric immersion. If we set f2d(z, w) cxz2d + c2zdwd9 then

&lt;Pf2d*(U) -2c,dz2d~ lw -h c2d(zd+ lwd~l - zd~ lwd+ ]),

-i(2c{dz2d- lw + c2d(zd~ lwd+ l + zd+ lwd~

Provided d ^ 3, thèse three polynomials are orthogonal with respect to the &quot;unitary

metric&quot;. If d ^ 3 we hâve

If we set

| ~ and |C2&apos; -
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then the push-forwards of Z, U and V will be orthonormal, and the Sp(l) orbit of
f2d will provide an isometric minimal immersion of the lens space L(d; 1) into the

4^-f 1-dimensional sphère of radius yj3/(4d(d+ 1)). The polynomial f2d is of
course also invariant under C2d and by equating the coefficients of w2d and zw2d~l
in gfid —fid f°r S e SU(2), a calculation shows that the isotropy group of f2d is in
fact equal to C2d. Hence &lt;P/2d gives rise to a minimal isometric embedding of
L(ld\ 1), d î&gt; 3, into SAd+l(y/3/(4d(d+ 1))). As we will see shortly, the codimen-
sion can actually be improved if d ^ 4.

Since we only need the absolute value of cx and c2, it seems that we hâve a

two-parameter family of solutions. But one parameter is due to the ambient

congruence of W2d which takes ct to eidct. The other parameter is due to the fact

that if f2d is a solution, then so is \f2d (â2dcl)z2d + c2zdwd. Hence the
L° aJ

solutions give rise to a one parameter family of orbits of constant curvature one, ail
of which are congruent to each other. Each of thèse orbits corresponds to the same

three-parameter family of solutions in the moduli space B2d, where ail the members

of this family are équivalent to each other with respect to the gauge group.
For d 2 not ail of the ternis in the polynomials 4&gt;f2d*(U) and ^/^*(^) are

orthogonal to each other. In fact, for L(4; 1) we will see in §3 that we cannot
define an isometric embedding using degree 4 or (real) degree 6 polynomials. But
one can easily find one using degree 8 polynomials. In fact, the polynomial
ps cxzs + c2z2w6 gives rise to an isometric embedding if and only if \cY\

1/(480^/21) and \c2\ y/î/(240^/6). A calculation again shows that the isotropy
group of p8 is equal to C4 and hence we obtain a minimal isometric embedding of
L(4; 1) into Sl7(^/%). One can also improve the codimension by using real degree
10 polynomials.

To obtain a minimal isometric embedding of L(d; 1) for d odd, we must use a

polynomial of degree 3d. In particular, if we set

one shows as above that the orbit through k3d has constant curvature 1 if and only
if

||aa and h=1 l] 4d2(3d + 2)(3d)l
&apos; 2| 4d2(3d + 2)(d\)(2d)l

&apos;

Furthermore, the stabilizer group of k3d is equal to Cd and hence we get a minimal
isometric embedding of L(d; 1), for odd d ^ 3, into 5M+ l(y/\/(d(3d-\-2))).
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CASE II: THE BINARY DIHEDRAL GROUPS DJ. The quotients 53/DJ
are usually called &quot;prism manifolds&quot; (see [Mo]). One easily checks that powers of
the invariant polynomials P, Q and R do not give rise to isometric immersions,
hence we need to take linear combinations. If d is even, then the polynomial
g2d(z, w) — cx(z2d + w2d) + c2zdwd is invariant under the dihedral group action, and
we calculate:

&lt;Pg2d*(U) ~2cxd(z2d~ lw - w2d~ xz) - c2d(zd~ xwd+ l - zd+ lwd~ &apos;

-i(lcxd{z2d- xw + w2d~ 1z) -h c2d(zd~ [wd+ l + zd+ lwd

Provided d &gt; 3, thèse three polynomials are clearly orthogonal. This is the case even
for d 2, but notice that for d 2 not ail of the polynomials in the image of U (or
V) are orthogonal to each other. Hence if d ^ 3 we compute

II2 «h^ - 1)! + 2\c2\2d\d - \)\{d + 1)!.

If we set

then the push-forwards of Z, U and V will be orthonormal, and the Sp( l)-orbit of
g2d will provide an isometric minimal immersion of the prism manifold *S3/D5, d
even ^ 4. If cx and c2 are real, the polynomial gld also lies in the real subspace

R2d a W2d (since d is even) and hence &lt;Pg2d provides a minimal isometric immersion
into the 2d-dimensional sphère. We now need to see whether DJ is the full isotropy
group of g2d. If d 4, this is actually not the case, since the polynomial is identical
to one of the invariant polynomials of O*. To see whether there exists an invariance

group K for g2d with DJ c: K in any of the other cases, we use, besides the list of
possible inclusions among the finite subgroups of Sp(l), the fact that the orders of
DJ must divide the order of K, that K must hâve an invariant polynomial of degree

2d, and that the invariant polynomials for K must occur in a degree for which DJ
also has an invariant polynomial. Thèse conditions already exclude ail but the

possibility that K Dj^, but this can easily be excluded since the only invariant
polynomial for D^ in degree 2d is zdwd and we already saw that this polynomial
does not give rise to an isometric immersion. Hence &lt;Pg2d provides a minimal
isometric embedding of 53/DJ into S2d(y/3/(4d(d + 1))) for even d ^ 6.
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To obtain an isometric embedding for S^/DJ, instead of choosing cx and c2 real
in the polynomial g8, we can choose e.g. cx real and c2 imaginary. Indeed, one

shows, by equating the coefficients of z8 and w8 in _ Ig8 g8&gt; that cjc2

must be real if ab # 0 for some élément of F, and that ab 0 for ail éléments of F
implies that the invariance group is DJ. Hence, if cx \c2 is not real, the invariance

group of gs is equal to DJ. Of course, in this case the polynomial no longer lies in
a real subspace and hence we obtain an minimal isometric embedding of S3/Df into

If d 2, then the correct formula for the lengths of the images of Z, U and V
is given by

They will be orthonormal if cx 1/(16^/3) and c2 //8. By equating coefficients

again, one shows that the invariance group of g4 is equal to Df and so we get a

minimal isometric embedding of S3/Df into S9(y/l).
One can actually improve the codimension of the latter embedding somewhat.

The orbit of the polynomial \//s c,(z8 -h w8) + c2(z6w2 + z2w6) + tz4w4 has
constant curvature one if we set cx -1/(512^/35) and c2 =-&gt;///(384^/5) and t
y/ï/(76Sy/5). The only possible invariance groups for this polynomial are Df and
O* (since T* and DJ hâve the same invariant polynomials in degree 8), but then the

orbit of ^8 would hâve to go through the &quot;standard&quot; invariant polynomial for O*
and one easily shows that this is not the case. Hence one obtains a minimal
isometric embedding of 53/Df into S\yj%).

In the case of d even ^ 4, we can consider the orbit through g2d for ail allowable
values of cx and c2 to obtain a two-parameter family of solutions. One parameter
is again due to the ambient congruence which takes ct to el0ct. But changes in the

other parameter, namely cx/c2, cannot be accounted for by congruences, or the fact
that the polynomials lie on the same orbit. In fact, we obtain a one-parameter
family of distinct orbits parametrized by cx/c2 (note that |ci/c2| is fixed). The orbits
of the polynomials with cx/c2 real lie in a 2rf-dimensional sphère, and those for cx/c2

not real lie in a (4d + l)-dimensional sphère. Furthermore for d 4, the orbit for
cx/c2 real is actually an embedded S3/O*.

More generally, we can consider the orbit through cxz2d+ c2w2d+ c3zdwd.

It has constant curvature one if and only if |ci |2 + |c2p l/(4^2(2rf)!) and |c3p

(2d — \)/(4d2(d\)(d + 1)!), and one shows that this gives rise to a two parameter
family of non-congruent orbits. For |c,| |c2|, we can assume that cx c2 and
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recover the previous solutions. For |c,|#|c2| one can show that the orbits are
embedded lens spaces in a (4d + l)-dimensional sphère.

We can consider the polynomial g2d for d odd ^ 3. With the above values for cx

and c2, g2d stiM gives rise to an isometric immersion, but the invariance group is no
longer DJ (at least not for our chosen embedding of DJ in Sp(l)). g2d is clearly
invariant under C2d. If d 3, we will see in §3 that the invariance group is equal to
T* (but with respect to a différent embedding of T* than the one chosen earlier)
since there is only one orbit of constant curvature one in R6. On the other hand, if
d odd &gt; 5, we can exclude a bigger invariance group than C2d as we did in the case

of g2d, for even d ^ 6. If we choose cx real and c2 purely imaginary, g2d lies in R2d

and so we get a minimal isometric embedding of L(2d; 1), for odd d ^ 5, into

If d is odd, then the polynomial h2d+ 2(z, w) cx (z2d H lw - w2d+ lz) +
c2zd+lwd+l is invariant under the dihedral group DJ, and one easily shows that
the pushforwards of Z, U and V are orthonormal if and only if

I p_
1

and I 12 (2d+\)(d-2)
1 ll Sd2(2d+l)\

&apos; 2| 4d2(d+l)(d+l)\(d

Hence the Sp(l) orbit of h2d+2 will provide an isometric minimal immersion of the

prism manifold 53/DJ, for d odd and ^3. If d 5 and cx\c2 is real, then the

polynomial hX2 is actually the same as the one for I* and if d 3 there exists an
invariant polynomial for O* of the same degree as h%. But if d odd ^ 7, and if we
choose cx and c2 real, then we obtain a minimal isometric embedding of Sf3/DJ into
S2d+ 2(^/3/(4(d + \)(d + 2))). For a? 3 and &lt;/ 5 we can again choose cx real and

c2 imaginary to obtain a minimal isometric embedding of 5r3/DJ into a (4rf-f 1)-
dimensional sphère.

For §3 it will actually be of interest to look at the case d 3 in more détail.
We will show that Df is the full invariance group of hs. Indeed, we only need to
exclude the possibility that the invariance group of h% is O*. But the only
invariant polynomial for O* (with respect to the standard embedding) is equal to
q =c(z8 + h&gt;8+ 14z4w4) which for an appropriate choice of c gives rise to a

constant curvature one orbit. If the invariance group for hs were gO*g ~ l for
some g g SU{2), then gh% would hâve invariance group O* and hence gh% q.
But, by equating coefficients of z7w, z6w2, and z5w3 in ghs q, one can show that
there exists no such g. Hence we obtain three distinct curvature one orbits among
the degree 8 polynomials in Rs, an embedded 53/Df, an embedded S3/O* and an
embedded S3/D$. Hence they cannot be congruent to each other and we obtain
three distinct orbits in the moduli space.
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Finally, we can consider the polynomial h2ii+2 f°r d even. For d 2 this
polynomial is the same as the invariant polynomial for T*, but for even d ^ 4 one
can show, by choosing cx real and c2 imaginary, that this gives rise to a minimal
isometric embedding of L(ld\ 1) into Sld+\jy(4(d + \)(d + 2))

CASE III: THE POLYHEDRAL GROUPS T*, O* and I*. Because the
three-dimensional polyhedral manifolds are isotropy irreducible (i.e., the adjoint
actions of T*, O* and I* are irreducible on the Lie algebra sp(l), see

[WZ]), Takahashi&apos;s resuit tells us that the orbit of any nonconstant homogeneous
harmonie polynomial invariant under a polyhedral group will yield a minimal
isometric immersion of the corresponding polyhedral manifold. However, for later

purposes we need the exact polynomial that induces a constant curvature 1 metric.
With a calculation similar to the lens spaces one easily vérifies the following
assertions.

For the binary tetrahedral group T*, the SU(2) orbit through the polynomial
a (1/(16.n/T5))(zh&gt;5 — wz5) gives rise to a minimal isometric embedding of S3/T*
into S6(\). This example realizes the smallest codimension of ail our examples.

For the binary octahedral group O*, the orbit through the polynomial fi
(l/(384&gt;y/35))(z8 + 14z4w4 + w8) gives rise to a minimal isometric embedding of
S3/O* into 58(Vl).

Finally, for the binary icosahedral group I*, the orbit through

Âl(zuw + l\z6w6 - zwlï)Â=
7200^154

gives rise to a minimal isometric embedding of S3/l* into
To see that thèse immersions are actually embeddings, we observe that O* and

I* are maximal subgroups in SU(2). Furthermore, for T* we are using a degree 6

polynomial and, although T* is contained in O* and I*, they hâve no invariant
polynomial of degree 6.

To obtain the explicit form of the isometric embedding of 53/T* mentioned
in the introduction, we take the map which sends (a, b) to &lt;Pa(a -t- bj)
5.{àz — bw, Ez H- aw) for S (l/(16N/l5))(zw5 — wz5) and express the resuit as a

linear combination of the orthonormal basis

{(z6 + w6)/l2^/ÎÔ, i(z6 - H&gt;6)/12yïÔ, (z5w - zw5)^^, i(z5w -h

(z4w2 + z2w$)/4y/6, i(z4w2 - z2w4)/4y/6, iz3w3/6}.

The coefficients are then the components of the embedding.
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To summanze the results of this section, we présent the following table. For
each homogeneous three-dimensional spherical space form, we hst the polynomial
whose orbit provides the minimal isometric embedding of smallest codimension.
The constants cx and c2 are real.

Space

L{d, 1),

L(d, 1),

L(d, 1),

^(4, 1)

£(6, 1)

s37D3,

S3/D$

S3/Df

S3/D?

d As

d&gt;%

d 4s + 2

&lt;/£ 10

Jodd

d even

d*6

dodd

d^l

Polynomial

hd+2-c](zd+lw + wd+lz)

+ ic2z2s+lw2s+l

+ w2z2s+lw2s+l

k5d C]z3d+c2z2dwd

480^21 240^6

gm-c^+w2&quot;)

+ c2zdwd

h2d^2 ci(z2d+lw-w2d+lz)

+ c2zd+lwd+l

^g c{\4z4w4 + 28(z6w2 + z2w6)

-3(28 + W8)}

hg c](z1w — w1z) + c2z4w4

Coefficients

1

2&lt;/V+D&apos;

2
8^2 - 6s - 2

^2
&lt;/2(2j + 1)(2j + 1)&apos;(2j + 2)&apos;

C]~2d2di

2
4^ + 1

C2
^2(2j + 1)&apos;(2j + 2)&apos;

2 (rf+1)
M 4&lt;/2(3f/ + 2)(3&lt;/)&apos;

&quot;2

4&lt;/2(3J + 2)fi&apos;(2f/)&apos;

1

1
8(/2(2&lt;/)&apos;

2&lt;/-l
&quot;2

4&lt;/2(&lt;/+l)&apos;£/&apos;

r2M 8&lt;/2(2&lt;*+l)&apos;

C2
4JV+l)(&lt;/+l)&apos;(^ + 2)&apos;

1

1536v/35

1 «v/7

Cx~12y/%*
C2&quot;

288^5

Target

5&quot;+2^ / 3 ^
&quot;

vV(^ + 2)(t/+4);

W^+2);

\yjd(3d + 2)j

-G)

sut r1^)\^4d(d+\)J

s»**( 1 3
&quot;l
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Space

S3/DJ

S3/D?

S3/T*

S3/O*

53/I*

Polynomial

g8-c(z* + \4iz4w4 + w*)

hy2 c(zuw-wuz + Uiz6w6)

« — (zws - wz5)
16^15

P c(z* + \4z4w4 + w8)

Â c(zllw + nz6w6 zwu)

Coefficients

î

384^35

1

7200^154

1

384 y/Ï5

1

7200^/154

Target

-($
-G)

3. The equivariant moduli space for S3

The moduli space of equivariant minimal isometric immersions has some spécial
features in the case of the 3-sphere. The isometry group of S3 can be described by
the action of Sp(\) x Sp(\) via left and right multiplication of unit quaternions.
Any minimal isometric immersion which is equivariant with respect to some
transitive group action is also equivariant with respect to either the left or right
action of Sp(l) on S3. The two actions are équivalent to each other under the

orientation reversing isometry given by quaternionic conjugation, and hence it is

sufficient to look at ail minimal isometric immersions equivariant with respect to
the left-S/?(l) action. In this section we will examine this set in some détail. As

explained above, if p is some polynomial, then the immersion corresponding to p
(Le., the orbit of p) is given by g e SU(2) i-+ gp. The gauge group SO(4) acts on
thèse immersions in two ways. The left multiplication by a unit quaternion h gives
rise to the immersion g i—? hg !-? hgp which is clearly congruent to the original one.
The right multiplication by h gives rise to the immersion g *-&gt; gh t-+ ghp which is the

same as the immersion given by the polynomial hp.

As was mentioned in §1, the SU( 2) -equivariant minimal isometric immersions of
S3 and of degree d forms a convex sub-body of the set Bd of ail isometric minimal
immersions of degree d. Let us first examine what the possible codimensions of such



Minimal isometnc immersions 447

equivariant minimal immersions are. To see this, we need to détermine the

respresentations of SU(2) on the full eigenspaces Ekd. The full isometry group,
5*0(4), is locally isomorphic to SU(2) x SU(2) and the représentation of S0(4) on
EXd is isomorphic to [Wd®Wd]u. Hère Wd is the irreducible représentation of
SU{2) of (complex) dimension d + 1 and the tensor product, being a représentation
of real type, is the complexification of a real représentation (denoted by [ ]R) of real
dimension (d -h l)2. Hence the restriction from S0(4) to SU(2) is isomorphic to
(d + \)[Wd]R (d+ \)Rd if d is even and to (k + \)Wd if d 2k + 1 is bdd. Recall
that Wd is a représentation of real type if d is even and a représentation of
quaternionic type if d is odd. If we consider a polynomial p e EXd whose orbit
SU(2) - p lies in a subspace E c Ekd of smallest possible dimension, then E must
also be invariant under SU(2). Hence the possible ambient dimensions of full
minimal isometric SU( 2) -equivariant immersions are s(d +1), 1 ^ s ^ d + 1 if d is

even and equal to 2s{d -h 1), 1 &lt; s &lt; k + 1 if &lt;/ 2k + 1 is odd.
We first discuss, for each d, the smallest possible ambient dimensions. K d 2

or 3, then there exists a unique minimal isometric immersion, which is equivariant
with respect to the action of S0(4) (and hence SU(2)-equivariant), but only goes
into the full eigenspace (ambient dimensions 9 and 16, respectively). If d 4, then
there exists no minimal immersion with ambient dimension 5, as follows from
Moore&apos;s theorem, but we saw in §2 that there exists one (for p =g4) with ambient
dimension 10 (and image 53/Z)J). If d even ^ 6, we saw in §2 that there exist
minimal immersions (withp gd) with ambient dimension d + 1 (whose images are
S3/T*, S3/O*, 53/DJ/2, or L(d; 1) depending on the value of d). If d is odd and
divisible by 3, we gave examples of minimal immersions with ambient dimension

2(d + 1) for certain values of d in §2 (embeddings of the lens spaces L(d/3; 1) via

kd). To give examples for ail odd d 2k + 1 ^ 5, let 4&gt;d — cxz2k + x + c2zkwk+l. One

easily shows that the orbit through cj&gt;d has constant curvature one if and only if

2fc* + 3fc + 2
|2 ___L__111 (A + 1)(2* + 3)(2k -h l)2(2k + 1)!

&apos; &apos; 2| (2k + 3)[(k + l)!]2
&apos;

The image in this case turns out to be always an embedded sphère. Hence the
smallest ambient dimension AT of a degree d minimal 5(7(2)-equivariant immersion
satisfies: N 9 if d 2, N 16 if d 3, N 10 if d 4, W 2k 4- 1 if d 2k ^ 6,

and N 4A:+4if*/ 2£ + l&gt;5. ^hat thèse are the smallest ambient dimensions
for SU(2)-equivariant minimal isometric immersions was already observed in
[Ma2], but he did not discuss the nature of the image.

We will now prove some uniqueness theorems for equivariant minimal immersions.

For this purpose we first dérive the gênerai équations that such immersions
satisfy. Let p £jL0 ckzd~kwk be a gênerai polynomial in the représentation Wd.
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One easily shows, with the methods developed in §2, that the orbit through p has

constant curvature iff the following équations are satisfied

£ (2k-d)2(d-k)\k\\ck\2=h

(d-2k- \)(k + !)!(&lt;/ - k)lckck+l 0.
k 0

Thèse are six real équations in the 2(d + 1) real unknowns Re (ck), Im (ck).
For d even, if we want the orbit SU(2) • p to lie in the real subspace R2d c

then we also need to assume that

r — p r — p — — \\d+x? n — idtL2d — Cq, t2d_ i — c\9 &apos; &apos; &apos;

&gt; Ld+ \ — V l) Ld— 1 &gt; Ld — l l

where t is real. Hence the orbit through

p c0z2d+ cow2d+ cxz2d~ lw - cxzw2d~ x + * * • + idtzdwd

has constant curvature 1 if and only if

d- 1

Y 2(2* - 2d)\2d - *)!*!|cJ2 1,

-2k- l)(k + l)\(2d-ky.ckck+, + (-i)dd\(d + l)!c,_,t 0.

Thèse are six équations in the 2d — 1 unknowns ^!,..., cd_ x, t.
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We first examine thèse équations for d 4 and show:

PROPOSITION 1. Up to congruences of the ambient space, among the SU(2)-
orbits ofpolynomials in IR10 W4 there exists a unique one of constant curvature one,
which is isometric to 53/DJ.

Proof The équations for p c0z4 + - - - + c4w4 become:

24\co\2 + 6\cx |2 + 4|c2|2 + 6|c3|2 + 24|c4|2 ±,

4c0c2 + 3c, c3 + 4c2c4 0,

6cocx + c,c2 — &lt;~2c3 — 6c3c4 0.

To simplify the équations we use the following observation from [Ma2]. If
Ox SU(2) - px is one orbit in R10, let N be the linear subspace of IR10 normal to the

tangent space of Ox at px. Then any other orbit O2 must pass through N. Indeed,
ail orbits are constant distance apart, and hence there exists a minimal géodésie of
IR10 from Ox to O2 perpendicular to Ox at px. Hence O2nN ^ 0. In our case let

px z4. Then the tangent space to SU(2) • px at px is spanned by /z4, z3w, and iz3w9

and so the condition that p2e N in particular implies cx 0. By multiplying p with

I we can also change the variables c0, cx, c2, c3, c4 to â4c0, â2cx, c2, a2c3, a4c4

and we can also apply the ambient congruence which takes ct to e&apos;ect. Both
opérations préserve the condition cx 0 and hence we can assume, in addition to
cx 0, that two of the remaining variables are real.

If c, 0 the last two équations become c0c2 — c2c4, c2c3= —6c3c4. If c2 ^ 0,

c3 / 0 we can assume that c2 and c3 are real and obtain c0 — c4, c2 — 6c4. The
first two équations then become |c3|2 + 32|c4|2 -^ and 2|c3|2 + 64|c4|2 ^ which

clearly has no solutions.

If c3 — 0, we can assume that c4 is real and c2 is imaginary. Then c0 c4 and one
obtains the solution g4 (1/(16v/3))(z4-f w4) +(i/8)z2w2 the orbit of which, is,

according to §2, the dihedral manifold 53/Df.
If c2 0 and c3 # 0 we need c4 0 and the first two équations become

16|co|2 + |c3|2 2^ and 8|co|2 + 2|c3|2 2V Since we can assume that c0 and c3 are
real, we obtain the solution q £z4 + (ll(6y/2))zw3. We claim that the St/(2)-or-
bit through q is congruent to the 5(7(2)-orbit through g4. To see this consider
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q. By looking at the coefficients of z3w and zw3 one easily shows that

there exists a polynomial in the orbit of q whose coefficients of z3w and zw3 are 0

and is hence of the form c0z4 + c4w4 + c2z2w2. But the argument in the case of
Cj c3 0 now implies that, up to congruence, the orbit through this polynomial is

the same as the orbit through g4.

PROPOSITION 2. Among the SU(2)-orbits ofpolynomials in U7 [W6]R there

exists a unique one of curvature one, which is isometric to 53/T*.

Proof The équations for p c0z6 + c0w6 + cxz5w — cxzw5 + • * •— itz3w3 be-

come

10coc2 + 2c| + 5ic,/ =0,

25coëi + 5c, c2 -f ic2/ 0.

As in the proof of Proposition 1, we first simplify the équations. This time we
consider the orbit through z3w3. The tangent space of this orbit is spanned

by z4w2 + z2w4 and i(z4w2 — z2w4)9 and so the normal space coïncides with
c2 0. Since every orbit intersects the normal space, we can assume c2 0.

With this assumption, the last two of the above équations become cQcx =0 and

c, t 0. If c{ 0, they are automatically satisfied. By modifying the polynomial,

we can assume that c0 is real and hence we obtain the solution q

(l/(72yïÔ))(z6 + w6) - /(v/5/72)z3w3.
If cx ^ 0 we need c0 t 0 and we get the solution £ (l/(\6y/Ï5))(z5w — zw5)

whose orbit is the tetrahedral manifold 5&quot;3/T*. We now claim that q lies in the

Si/(2)-orbit of a. Indeed, considering r _ • a one easily shows that one

can choose a and b so that the coefficients of z5w and z4w2 in r are 0 and hence r
is of the form c0z6 + c0w6 — itz3œ3. We can furthermore assume that c0 is real, but
since the orbit must hâve constant curvature one, it must agrée with q.

Finally, we give some (partially) heuristic arguments as to the dimension of the

set of 5C/(2)-equivariant minimal isometric immersions. We start with degree 4. As

explained earlier, the first time we can expect solutions is if the ambient space is
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2^4= W4. One obtains 6 équations in 10 unknowns and hence a 4-dimensional
soution set. (In fact, at a spécifie solution one easily checks that the équations hâve
maximal rank). But one has a one-dimensional family of ambient congruences
coming from cl-^eiecl, and so there is at most a three-dimensional family of
solutions in the moduli space B49 which agrées with the resuit in Proposition 1 that
there is only one orbit up to congruence. If we consider orbits in kR4, 3 ^ k &lt;&gt; 5 of
constant curvature 1, we obtain 6 équations in 5k unknowns giving rise to a

(5k — 6)-dimensional solution set. However, we obtain a large group of ambient

congruences from the group of orthogonal transformations on kR4 which commute
with the représentation of SU(2) on kR4. This group is isomorphic to SO(k) since

R4 is absolutely irreducible. Hence in 3R4 we obtain a 6-dimensional solution set, in
4R4 an 8-dimensional solution set, and in 5R4 — EÀ4 a 9-dimensional solution set of
equivariant solutions in B4. Recall that dim B4 18.

For d 5, we consider orbits in kW5, 1 ^ k ^ 3. In this case the group of
orthogonal transformations commuting with the action of SU(2) is isomorphic to
Sp(k) since W5 is a quaternionic représentation. Hence a calculation as above shows

that among the orbits in W5 we obtain a 3-dimensional solution set, in 2W5 an
8-dimensional solution set, and in 3W5 EXs a 9-dimensional solution set. This

argument at least shows that the orbit of &lt;f)5 in W5 discussed at the beginning of this
section is isolated among ail equivariant solutions.

Similar calculations can be carried out for larger values of d. The only other

cases where one obtains a 3-dimensional solution set and hence an isolated (if not
unique) orbit is for d 6 and orbits in R6 (corresponding to the unique solution in

Proposition 2) and for d S and orbits in Rs. In the latter case we hâve three

solutions from §2, the orbit S3/O* of /T, the orbit S3/D* of h%, and the orbit S3/D$

of ij/s. One easily checks the maximal rank condition at thèse three solutions and
hence it follows that they are isolated among the equivariant immersions. They
cannot be congruent since their images are distinct. We doubt that there are any
other solutions for d 8.

We suspect that in gênerai the only congruences that one obtains between orbits

of the same représentation are orthogonal transformations which commute with the

représentation. It would then follow that the set of SU( 2) -equivariant minimal
isometric immersions of degree d form a convex body of dimension 2k2 + 3k - 5 if
d 2k + 1 or d 2k.

4. Higher-dimensional lens spaces

To realize the higher dimensional lens spaces as homogeneous spaces we write
S2n~l as U(n)/U(n - 1) where U(n - 1) is the subgroup of n by n unitary matrices
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with a 1 in the upper left hand corner. The subgroup Cd generated by

e2m/d

0

0

0 0

commutes with U(n — 1) and the homogeneous space U(n)/(Cd x U(n — 1)) is

the lens space L(d\ 1,..., 1) S2n~ l/Cd where Cd acts on U2n C&quot; by
multiplication on each coordinate. This homogeneous space is reductive, i.e. there
is an ad-u(fl — 1)-invariant subspace of u(«), namely, the subspace m of skew-

hermitian matrices whose only nonzero entries are in the first row and column.
We can identify m with the tangent space to S2n~l at (1,0, ...,0) and a

left-invariant metric on the lens space with an ad-u(« — 1)-invariant inner

product on m. One easily vérifies that for the inner product on m which gives
rise to the constant curvature 1 metric on the lens space, the following is

an orthonormal basis (each of the vectors in the basis is a skew-hermitian
matrix A, and only the nonzero entries of A are given, the rest being assumed to
vanish) :

Z: a,i=/,

Xk: alk= -akl l, k 2,...,«,

Yk : alk =akl i, k 2,..., n,

The homogeneous harmonie polynomials in the 2n real variables we write again
as polynomials in the complex variables zk9 zk (k 1,...,«). As before, for any
polynomial in the variables z,, the real and imaginary parts are automatically
harmonie, and the action of U(n) c SO(2n) on the space of harmonie polynomials
restricts to the action of U(n) on C[zu... ,zn] where A e U(n) acts on

p e C[z,,..., zn] by replacing zt by A ~l acting on zt.
For any Cd x U(n — l)-invariant homogeneous polynomial p e C[zl9..., zn9

zx,..., zn] we define the map

?p : U(n)/(Cdx U(n-\))-+C[zl9 ...,zn9zl9... ,zm]

given by

*,(«(€, xtf(n-l)))=«p
which we will try to make into an isometric embedding.
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One easily shows that for pa{zx,. zn) (l/Ca^/ôï»? we hâve

(Xk)=^Lzarlzk, k=2,...,n9
Ja\

Thèse polynomials are orthogonal, but their norms are not equal, in particular

Note that &amp;Pa*{Xj) and &lt;PPa*(Yj) are shorter than &amp;Pa*(Z).

We need another Cd x U(n — 1)-invariant polynomial. To be U(n — ^-invariant,

the only way it can dépend upon z2,...,zw is to be a function of
&lt;t |z2|2H H|zw|2. We thus search for harmonie homogeneous polynomials
which are fonctions of a and p |z,|2. A calculation shows that the unique such

polynomial (up to scaling) of degree 2c is given by

where ak (£)(&quot;+*~2)- We then calculate that

-l)*ff&apos;-*&quot;lpk(zkzt + z.zMa^c -k)+ ak+l(k + 1)),

*f**(Yj) S (-l)*«re-*~ V(z*«i -z,z*X(«*(c -*) +a*+i(^ + 0),

and hence

||^2c*(Z)| 0, || ||
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Using this, we see that the three polynomials $F2d+(Z\
&amp;F2d*(Xk) are orthogonal, and they are orthogonal to the images under
Since 4&gt;F2d*(Z) 0, we see that we can make up for the deficiency in the length of
&amp;P2d*(Xk) and $p2d*(Yk) by adding the appropriate multiple of F2d to p2d. The

correct choice of scale factors will then provide us with a minimal isometric
immersion of L{ld\ 1,. U(n)/(C2d x U(n — 1)) into the N2d — 1-dimen-
sional sphère of radius v/(2/i — l)/(4d(d + n — 1)). One also easily shows that C2d

is the full isotropy group of this polynomial and hence this immersion is an
embedding.

We can improve our measure of the codimension of the embedding if we recall
that the représentation of U(n) on the space Hn of homogeneous harmonie

polynomials in zl9..., zn, z,,.. zn is reducible. In fact, the irreducibie pièces are
the spaces Hkl (with k -h / n) of harmonie polynomials which are bihomogeneous
of degree k in z,,.. zn and degree / in z,,..., zn (see [G]). The real dimension of
HkJ is 2((&quot; + É-1)(&quot; + {-1) -(nî-T2X;î-T2)). Since p2deHw and F2deHd^ the

orbit of their weighted sum is contained in H2dQ®Hdd.
For d odd one shows that the orbit through the harmonie homogeneous

polynomial

provides, for appropriate choice of cx and c2, a minimal isometric embedding of
L(d; into sphère of radius y/(2n - l)l(3d(3d + 2n- 2)) in H3d0®H2dd.

5. Space forais of dimension An — 1

Finally, we turn to the spherical space forms which are realized as homogeneous

spaces of the symplectic group Sp(n). Recall that the sphère S4n~l can be realized

as the homogeneous space Sp(n)/Sp(n — 1), where Sp(n — 1) acts on the last n — 1

variables. Then, any finite subgroup F of 5^(1) (thèse were listed in §2) can act on
the first component of the quaternionic Euclidean space H&quot;, yielding a homogeneous

space Sp(n)/(r x Sp{n — 1)). This manifold is also equal to S4n~l/F where F
acts on H&quot; in each variable by multiplication on the left.

The Lie algebra sp(n) has the ad-sp(w — 1)-invariant splitting sp(tf)
sp(w — 1) ©m, where an orthonormal basis of m is given by the following set of
An — 1 quaternionic matrices (in each case, the matrix is given in the forai A + Bj,
where A is a skew-hermitian and B is a symmetric complex matrix. Only the
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nonzero éléments of A or B are hsted, and ail other éléments of A and B are taken
to be zéro)

Identifying C2n with HM via

(ZU 9Zn,Wl9 &gt;Wn)-*(?\ + W\h &gt;Zn + Wnj\

Sp(n) becomes a subgroup of U(2n) where A + Bj e Sp(n) becomes

r a b

l-B A

We now need to flnd F x Sp(n — 1)-invariant polynomials in the 2n complex
variables zk and wk (k 1, n), where of course, an élément A + Bj of Sp(«) acts

on p(zk, wk) by replacing zk and w^ with

A1

actmg on (zl5 ,zn,wl9 ww) Given such a polynomial p, we get a map

*p 5/Kw)/(r x 5/K/i - 1)) -&gt; C[zfc, wfc]

and we compute that, for pab(zk&gt;wk) z&quot;wu

&quot; &apos; wf - &apos;,

fa,
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where k always runs from 2 to n. It turns out, as for the lens spaces, that we will
need a polynomial that dépends onp |z, |2 + \wx p, and a \z2\2 + \w2\2 + • • • +
\zn |2 + \wn \2&gt; A calculation shows that a harmonie polynomial of degree 2d that
dépends on p and a is

F2d= i (-i

where

As in the case of the lens spaces, one now easily checks that &lt;PF2d*(Zk),

^F2d*(^k)anc* $F2d*(Wk) are orthogonal to each other and to the images under any
&lt;PPab* as long as a + b 2d. Furthermore $F
and

the latter simply following from the fact that F2d is invariant under the action of
Sp{n — 1) and Sp(n - 1) acts transitively on the subspace generated by Zk, Uk9 Vk9

Wk9k&gt;2.
We now need to add to the polynomial F2d one of the polynomials q{zu wx)

invariant under F, as described in §2. Since ail such q are linear combinations
of pab with a + b 2d, it follows from the above that ail the images under

$F2d* anc* $q* are s^ orthogonal to each other and by the construction in §2,

we hâve ||^*(^i)|| ||^*(f/,)|| ||^*(Fi)|| 1. Hence we only need to check

that

(The equality of the length of thèse vectors is again clear from the fact that q is

invariant under Sp(n — 1).) It will then follow that, for appropriate choice of cx

and c2, cxF2d + c2q provides a minimal isometric immersion of S4n~l/F into the

N2d — 1-dimensional sphère of radius y/(4n — l)/(4d(d + 2n — 1)). The fact that
this immersion is an embedding then follows as in §2.
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We now check the deficiency m length of the images under &lt;Pq* One easily
shows, using the explicit formulas for q in §2, that the length squared L2 of thèse

images îs as shown in the followmg table

Space

L(d, 1), d 4s ^ 8

L(d, 1), d 45 + 2 ^ 10

L(rf, 1), rf odd
L(4, 1)

L(6, 1)

53/DJ, even ^ ^ 6

S3/DJ, oddt/^7
S3/D2*

53/DJ
53/D4*

53/D5*

53/T*
S3/O*
S3/I*

Polynomial

^+2

k3d

Pz

Â
Sid
h2d + 2

ij/8

hs

Es

hl2
à

p
Â

L2

3/(d + 4)

3/(d + 2)

3/(3&lt;/ + 2)

3/10
3/8
3/(2&lt;/ + 2)

3/(2t/ + 4)

3/10
3/10
3/10
3/14
3/8
3/10
3/14

Thus in ail cases, L2 &lt; 1, which also fimshes this case and fimshes the proof of
our Theorem
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