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On the topological equivalence between Anosov flows
on three-manifolds

MARCO BRUNELLA

1. Introduction

In this paper we shall be concerned with transitive Anosov flows on a closed,
three dimensional, manifold M. If ¢, : M —» M is such a flow then, by a theorem of
Fried ([Fril]), it admits a surface of section: there exist a compact surface with
boundary 2 and embedding j : ¥ — M such that j(int X) is transverse to ¢,, j(0X) is
a union of closed orbits y,,..., vy of ¢,, and every flowline intersects j(X) in a
uniformly bounded time. If M denotes the blowing-up of M along y,,..., 75 and
@, is the lifted flow, then there exists a fibration ~ ¢ M —S' whose fibres are
transverse to ¢,. Then @, induces a first return map f: £ — X which is topologically
conjugate to a pseudo-Anosov diffeomorphism, with semi-saddle singularities on
the boundary 62 ([FLP], [ Thu]).

A transitive Anosov flow admits many surfaces of section. The genus and the
number of holes of a surface of section are not uniquely defined.

When M is a bundle over S' with fibre T? Plante proved ([Plal], see also
[Arm]), that any Anosov flow is topologically equivalent to the suspension of a
hyperbolic automorphism 4 of T? (A4 represents the monodromy of the bundle).
Recalling that the complement of the boundary of a surface of section is a bundle
over S', our result may be seen as an extension of Plante’s result:

THEOREM. Let ¢, : M —» M be a transitive Anosov flow on a closed 3-manifold
M and let £ ¢ M be a surface of section, with 0Z ={y,,...,yn}. Let Yy,: M > M
be another transitive Anosov flow. Suppose that there exists a homeomorphism
h : M — M and closed orbits j,, . .., 7y of Y, such that for all j =1, ..., N one has
h(y;) = 7; and preserving the orientations given by the flows. Assume further that h
maps the germs along ; of the stable manifolds W (y;) for ¢, to the germs along 7,
of the stable manifolds W7, (7;) for Y,. Then ¢, and y, are topologically equivalent.

The hypotheses of the theorem imply easily that 4 may be chosen so that it
realizes a topological equivalence between the restriction of ¢, to a neighbourhood
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of )/~ 7, and the restriction of ¢, to a neighbourhood of ( J_, 7;, and hence that
Y, is topologically equivalent to an Anosov flow whose oriented orbits on a
neighbourhood of | J\., y; are equal to the oriented orbits of ¢,. Hence we will
assume, without loss of generality, that , and ¢, have the same orbit-structure in
such a neighbourhood.

The proof of this theorem is in the spirit of the proof of the main result of
[Ghy-Ser] (see also [Pla2]). Firstly, using the technique of Roussarie ([Roul],
[Rou2]) we show that a fibre of the fibration X ¢ M —S' transverse to ¢, is
isotopic rel (0M) to a surface transverse to the stable foliation of ,, where \/, is the
lifting of Y, on M. Then we cut A along this surface, obtaining a manifold
diffeomorphic to Z x [0, 1] with a foliation transverse to Z x {0, 1} = d(Z x [0, 1]).
The analysis of this foliation will show that every closed orbit of V, represents a
non-trivial element of w,(S') < m,(M), and a theorem of [Ver], together with
standard facts in three-dimensional topology, will imply that the initial fibration
Z o M—S' is isotopic to a fibration transverse to V/,. Finally, the rigidity of
pseudo-Anosov maps ([FLP]) will complete the proof.

We remark that we require the transitivity of y, (i.e. the density of the leaves of
the stable foliation); this hypothesis is avoided in Plante’s theorem, thanks to the
solvability of =,(M). However, we don’t know counterexamples to a possible
extension of our theorem to the non-transitive case.

I am grateful to A. Verjovsky for introducing me to this subject. I thank also the
referee for useful remarks and for pointing to me an imprecision in the original
proof of lemma 5.

2. Preliminaries

As remarked before, we may suppose without loss of generality that the oriented
orbits of ¢, and ¥, on a neighbourhood of ( J'.,y; are equal. The lifted flows
é., ¥, : M - M, where M is the blow-up of M along y,,..., 7y, have the same
orbits in a neighbourhood of the boundary dM, which consists of N copies of T?
(an orbit in the boundary of a surface of section has always an orientable
neighborhood, diffeomorphic to D? x S'). On any component of dM these flows
are Morse-Smale flows, with 4 or 2 closed orbits, depending on the orientability or
non-orientability of the stable and unstable manifolds of the closed orbit of ¢, or
¥, corresponding to the component.

We denote by £ < M the lifting of Z = M. The surface £ is a cross section for
&., and there is a fibration X < M 5 S! transverse to ¢, and with £ = p~'(0). Let
f:2£ -5 be the first return map of @,. Let us remark that f preserves the
components of the boundary 0%
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The lifting #* of the stable foliation #* of ¢, is transverse to £ and defines on
% afoliation (by lines) with semi-saddle singularities on 8Z. The lifting Z* of the stable
foliation %° of y, defines on £ a foliation with singularities .

A small deformation of X (fixing 02) will ensure that the only singularities of ¢
are saddles, centers (both of Morse type) and semi-saddles on 4%, and that there are
no connections between two saddles or one saddie and a semi-saddle ([Fra], p. 82—-84).

LEMMA 1. The foliation with singularities # has no connections between two
semi-saddle singularities.

Proof. Assume that there is a connection /€ ) between two semi-saddles
r, g € 8%. Then (/) is a segment which joins {,(r) and , (). For t = + co the length
of /(1) goes to zero but the distance between /,(r) and i/, (¢) cannot go to zero, hence
we arrive to a contradiction. [

3. Deformation of £ to a surface transverse to Z°

Let 5 be as above and let p € £ be a center for #. Let E = £ be the closure of
the union of leaves of # which are circles bounding on £ a (unique) disk containing
p as unique singularity. As in [Roul], 0F is formed by singularities of 5 of saddle
type or of semi-saddle type and by leaves of J joining these singularities. The absence

of connections between two semi-saddles, or a semi-saddle and a saddle means that
E is bounded only by one or two homoclinic trajectories at a single saddle point g:

5 \
E

type (a) type (b)

In particular, E is contained in int £.
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The foliation 2 has the same number of semi-saddles on 9% as the foliation
induced by £ ¢, which is without singularities in int £. A Poincaré-Hopf argument
shows that if we isotope £ (fixing 0%) in such a way that we eliminate the centers
of s, then automatically we eliminate the saddles.

LEMMA 2. £ is isotopic rel 0F to a surface £’ whose interior is transverse to G°.

Proof. The embedding £ ¢, M induces an injective map =,(Z)-5n,(M), the
foliation #* has no limit cycles ([Nov]), and M is irreducible: every sphere
embedded in M bounds a ball. This is sufficient in order to apply the method of
Roussarie ([Roul], p. 49-52) for the elimination of the centers of type (a). So we
suppose now that all the centers of # are of type (b).

Let p € £ be one of these centers and let E and ¢ be as above. If ,, #, are the
homoclinic orbits at the saddle point ¢, then 5, and #, are not contractible in the
leaf L of ° containing them, because # has no centers of type (a) ((Rou2], p. 109).
In particular, L is a leaf diffeomorphic to a cylinder or to a Moebius strip. We may
deform a little £ in such a way that all the saddles of »# belong to leaves of ¥*
diffeomorphic to planes. Then there are no more centers of type (b), but only
centers of type (a) which can be eliminated as before. [

Remark. Here and in the following we make an extensive use of the observa-
tion by Plante ([Pla2]) that many standard facts in foliation theory (in particular,
the works of Roussarie on isotopies of surfaces in foliated 3-manifolds) are
true also for C' foliations, thanks to the general position argument of [Fra), p.
82-84.

4. Half Reeb components and half limit cycles

Let (N, #) be a foliated 3-manifold, with 0N # J and & transverse to ON; if
A is a connected component of dN, we shall denote by (N U, N, ¥ U, %) the
foliated manifold obtained by gluing two copies of (N, &) along A with the identity
diffeomorphism (everything can be done in such a way that & U, & is as smooth
as ¥). .

An orientable (non-orientable) half Reeb component ([Ghy—Ser], [Mou—Rou]) of
F is a saturated set Q < N bounded by a leaf L ~ S' x [0, 1] (L ~ Moebius strip)
and an annulus (a Moebius strip) K < 4 = N with 0K = dL, such that the double
Q Uy Q = N U, N is an orientable (non orientable) Reeb component of & U, £#.

Remark that if Q is a half Reeb component of &, then K is a planar Reeb
component for the foliation induced by & on ON.
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A half limit cycle of & is a differentiable map I' : [0, 1) x [0, 1] = N such that:

(1) Vte[0,1),s+I(t,s) i1s a curve on a leaf L, with ends on a component
A < ON.

(2) s+—TI(0,s) defines a non trivial element of =,(L,, 0L,), but for ¢t € (0, 1)
s > I'(¢, 5) defines a trivial element of =,(L,, L,).

When we pass to the double N u, N we see that a half limit cycle I' deter-
mines a limit cycle I :[0,1) x S' >N u, N. If N is compact, then a half limit
cycle is associated to a half Reeb component Q, with 0Q = L,uUK, K = A. The
following lemma is a relative version of Novikov’s theorem ([Nov], see also
[Roul]):

LEMMA 3. Let y:[0, 1] > N be a curve with image in a leaf L € # such that
1(0), y(1) € A, where A is a connected component of ON; suppose that y represents a
non trivial element of n,(L, OL) and a trivial element of n,(N, A); suppose also that
F has no limit cycles. Then & has a half limit cycle.

Proof. Passing to (N U, N,# u, %) we have a cycle =y U,y on a leaf
which is contractible in N U, N but non contractible in the leaf. Take a disk in
N u, N with boundary 7 and symmetric with respect to A4; this disk contains a
limit cycle by Novikov theorem and the absence of limit cycles of # implies that
this limit cycle is the double of a half limit cycle of #. O

Now we return to our foliation 9° on M. Let £’ be the surface given by
lemma 2; if we cut M along £’ we obtain a manifold £’ x [0, 1] with a foliation
4> on (int £’) x [0, 1] which is transverse to (int £’) x {0, 1}. The foliation *
has no limit cycles, but it may have half limit cycles. It will be useful to avoid that
situation, by an appropriate choice of the surface along which we cut A7.

LEMMA 4. £’ is isotopic rel 35" to a surface £" whose interior is again
transverse to 9° and such that the foliation *" induced on (int £") x [0, 1] has no
half limit cycles.

Proof. Let N be the 3-manifold obtained from £’ x [0, 1] by collapsing to
points the circles ¢ x {t}, where c is a connected component of 85" and ¢ € [0, 1];
N is a compact manifold with boundary equipped with a foliation with “line
prong” singularities ([Ina—Mat]) ¢, induced by . If we pass to the double
N U,y N we obtain a closed 3-manifold ( ~surface x S') with a foliation 2%, with
circle prong singularities, such that every circle injects its fundamental group in
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7, (N U,y N), every separatrix has only one singular end and injects its fundamen-
tal group in that of the corresponding extended leaf. The separatrices of 2%, are
non compact and they may be different from cylinders, furthermore there may be
singular circles of 24, with only one prong.

Suppose that 4* has a half limit cycle, then 2%, has a limit cycle. The same
arguments of [Ina—Mat] show that this limit cycle is associated to a Reeb
component of 29, and hence to a half Reeb component of %,, i.c. of 4*. Hence,
it is sufficient to prove that £’ is isotopic to another surface £”, such that the
foliation 4" has no half Reeb components.

Let Q be a half Reeb component of 4%, with 6Q = L U K, where L is a leaf of
%*, K cint £’ x {0} (or int £” x {1}); L has hyperbolic holonomy, and in partic-
ular has non trivial holonomy on both sides. This is enough to guarantee the
existence of an isotopy of £”, fixing the complement of a neighbourhood of K and
moving £’ to a surface £” which does not intersect Q and is again transverse to

gs.

Such an isotopy cancels a half Reeb component. From the point of view
of the foliation on £’ this corresponds to the cancellation of a planar Reeb
component:
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After the cancellation of a half Reeb component it may happen that a new
half Reeb component appears. This is the case if we start from a turbulized half
Reeb component, ie. a saturated set Q which is obtained from a half Reeb
component Q, by a half turbulization ([Ghy—Ser]) along a closed curve contained
in the boundary:

(1=0,00,

i’/

The hyperbolicity (hence, the finiteness) of the limit cycles on £ that bound
planar Reeb components or turbulized planar Reeb components implies that this
phenomenon can occur only a finite number of times and so after a finite number
of isotopies of the previous type we obtain a surface satisfying the conclusion of
the lemma. To this regard, observe also that the elimination of a planar Reeb
component in the foliation on £’ may produce new (perhaps hyberbolic) limit
cycles, but these cycles cannot be in the boundary of other new Reeb components,
because they admit closed transversals. [J

5. Structure of the foliation ¢*

Let £ < M be the surface obtained in the previous section: int £ is transverse
to Z° and the foliation ¢* induced on (int £) x [0, 1] has no half limit cycles (and,
of course, no limit cycles).

LEMMA 5. Let L be a leaf of 9° containing a closed orbit of \J,. Then: (i)
L% is formed by a finite set of lines, and each line does not separate L; (ii) the
leaves of %° originating from L are all diffeomorphic to R x[0, 1}, with
R x {0} cint £ x {0} and R x {1} cint £ x {1}.

Proof. Consider firstly a leaf L € ¢° diffeomorphic to a (open) cylinder; LN %
is a closed, non-empty, 1-dimensional submanifold of L. It is composed of:
(a) circles non homotopic to zero (because they are non homotopic to zero in
5 and 7,(5) o n,(M) is injective);
(b) lines from + o0 to + oo or from — oo to — oo (we denote by + o0 and —
the two ends of L);
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(c) lines from — oo to + oo.

(b) ()

We have to show that (a) and (b) cannot occur.

The density of L in M (due to the transitivity of y,) implies that £ N L contains
at least one line, because £ N L is dense in £ and every circle correspond to a
hyperbolic limit cycle for the foliation induced on £.

Suppose that there are no lines of type (c), then there is a connected component
C of L\(L n%) which is non simply connected and bounded by a finite number
(=1) or a countable set of lines of type (b) and at most one circle:

1
' i
1 |
1 !

This component gives origin to a leaf C of ¢, with C < (int £) x {0, 1}. Take
a path y : [0, 1] - C such that:

(1) y(0), y(1) are on the same line I' = 0C;

(2) y defines a non-trivial element of =, (C, 6C).
Such a y surely exists and represents a trivial element of 7, ((int £) x [0, 1], A)
(which is the trivial group) where 4 =int £ x {0} or int £ x {1} is the component
containing I'. By lemma 3, ¢° would have a half limit cycle, but this is precluded
by the hypotheses.
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Hence there is in £ N L at least one line from — oo to + oo. This implies that
there are no circles.

Assume now that £nL contains a line of type (b), then L\(L nZ) has
a connected component C such that the corresponding leaf C € 4° has at least three
components in the boundary. Then we may find a path y : [0, 1] - C such that:

(1) y(0)erI,,y(1)er,, where I',, I', are two different lines of 6C;

(2) I'y, I', are on the same component of (int £) x {0, 1}.

s

7y represents a non-trivial element of x,(C, dC) (by (1)) and a trivial element of
n, ((int £) x [0, 1], 4), where A =int £ x {0} or int £ x {1} is the component con-
taining I'. We arrive again to a contradiction, by lemma 3, and this means that £ n L
does not contain lines of type (b), and contains only lines from — oo to + 0.

The same argument shows that if C is a connected component of L\(L n £) and
C~R x[0,1] €’ is the associated leaf, then the two components of dC are on
different components of d((int £) x [0, 1]), since otherwise we could find a path
v : [0, 1] » C with properties (1) and (2).

This completes the proof in the case of a cylindrical leaf; in the case of a leaf
diffeomorphic to a Moebius strip the proof is completely similar. O

We could prove that any leaf of %° is of the type R x [0, 1], with
Rx{0}cint £ x {0}, Rx{l}cintX x {1}, and then that %° is isotopic
rel (int £ x {0}) to the product foliation # x [0, 1], where # is the foliation (by
lines) on int £ x {0} induced by %* (cfr. e.g. [Rou—Mou]). However, we shall use
the lemma only for the following

COROLLARY. Under the projection n,(M) —n,(S') induced by the fibration
M — S every closed orbit of \, defines a non-trivial element of m,(S"). O
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6. End of the proof

The cooriented surface £ < M defines a cohomology class w € H'(M, Z), which
is also represented by the homotopy class of the fibration p : & — S! (see §2). This
class, by the above corollary, is different from 0 when evaluated on the homology
class represented by a closed orbit of /,.

LEMMA 6. The fibration p : M — S' is isotopic to a fibration q : M — S' with
fibres transverse to J,.

Proof. The above remark on the class w represented by p implies that if £ x R
is the cyclic covering of M defined by p and if {, : £ x R - £ x R is the lifting of
the flow ,, then every orbit of i, which projects to a closed orbit of i, goes from
—o0 to 4+ 00 or from 4+ o0 to —oo. However, as observed by Verjovsky ([Ver], p.
74; the result given there holds also in the case of manifolds with boundary), the
transitivity of , implies that all the orbits of y, go from — oo to + oo (we have
chosen the covering £ x R — M in such a way that the lifting ¢, of ¢, has orbits
from —o0 to + o0).

Then ([Ful], [Ver]) there exists a fibration ¢ : & — S' homotopic to p and with
fibres transverse to /,. A theorem due essentially to Waldhausen ((Wal], cfr. also
[Lau], [Fri2]) implies that g is in fact isotopic to p. Alternatively, p and g define two
cohomologous closed non-singular 1-forms [p*(d6)}, [¢*(d6)], which are isotopic by
[Kup—Qué]. The presence of the boundary does not give any trouble, because the
fibrations induced by p and g on M are clearly isotopic. Hence, we may firstly
isotope p*(df) to a form B equal to g*(df) in a neighborhood of M. Then we
collapse 0M along the fibres of Blsxs = 9*(d0) |5 and we obtain a closed 3-manifold
M, with two closed non-singular cohomologous 1-forms f, and ¢*(df),, equal in a
neighborhood of the set of circles I' = M, arising from dM. Finally, the proof of
[Kup—Qué] gives an isotopy from f, to g*(df), which can be assumed to preserve
I', and hence which lifts to an isotopy from f§ to ¢*(df). O

The isotopy of Lemma 6 may be chosen so that it is equal to the identity on a
neighborhood of dM, hence there is an isotopy of M, equal to the identity on a
neighborhood of 0%, which transforms ¥, in a flow (again denoted by y,) such that
the induced flow on M (again denoted by ,) is transverse to the fibration
p: M-S\

LEMMA 7. §,,, : M — M are topologically equivalent.

Proof. Fix a fibre £ =p~'(0) = M and let f, g : £ — £ be the first return maps
of ¢,,,; f and g are topologically conjugate to pseudo-Anosov diffeomorphisms
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([Fril]). They are also isotopic, because ¢, and \/, are transverse to the fibration and
hence the corresponding vector fields are homotopic within vector fields transverse
to the fibration. So by [FLP] there is 4 : £ — £, homeomorphism isotopic to the
identity, such that h of =g oh. This h generates a homeomorphism A : M - M,
mapping oriented orbits of ¢, to oriented orbits of i, [

Recall that the blow-up projection M — M gives a fibration £, by circles of oM,
which is a union of N tori. A fibre is projected to a point of one of the closed orbits
Yir...,¥Yn. On OM there is another fibration by circles .#,, induced by
5 ¢ M—S'. The homeomorphism / constructed in Lemma 7 preserves ¢, (when
restricted to dM) but not necessarily %Z,.

On M there is also a foliation given by the orbits of @, (equal to ,); this
foliation is transverse to %, and to .#,, and it is preserved by Flm. It is then
possible to compose A with a homeomorphism k of the form k(x) =¢~,(x)(x),
x€M,t: M- R a suitable function, in such a way that k o £,;; preserves £,
instead of &,.

Then A" =k - ki is again a topological equivalence between @, and ,, and the
preservation of %, allows to “blow-down” A’ to a homeomorphism A : M - M
realizing a topological equivalence between ¢, and ,.

REFERENCES

[Arm] P. ARMANDARIzZ: Codimension one Anosov flows on manifolds with solvable fundamental
group, Thesis, Univ. Izpapalapa, Mexico.

[FLP] A. FATHI, F. LAUDENBACH, V. POENARU: Travaux de Thurston sur les surfaces, Astér-
isque (1979), 66-67.

[Fra] J. FRANKS: Anosov diffeomorphisms, Proceedings Symp. Pure Math. X7} (1970), 61-93.

[Fril] D. FRIED: Transitive Anosov flows and pseudo-Anosov maps, Topology 22,3 (1983),
299--303.

[Fri2] D. FrIED: Fibrations over S with pseudo-Anosov monodromy, in [FLP], exposé 14.

[Ful] F. B. FULLER: On the surface of section and periodic trajectories, Amer. Jour. of Math. 87

(1965), 473-480.

[Ghy-Ser] E. GHYs, V. SERGIESCU: Stabilité et conjugaison différentiable pour certains feuilletages,
Topology 19 (1980), 179-197.

[Ina—Mat] T. INABA, M. MATSUMOTO: Nonsingular expansive flows on 3-manifolds and foliations with
circle prong singularities, Japan. Jour. of Math. 16,2 (1990), 329-340.

[Kup—Qué] I KupPkA, N. V. QuUE: Formes différentielles fermées non singuliéres, Lect. Notes in Math.
484 (1974), 239-256.

[Lau] F. LAUDENBACH: Topologie de la dimension trois: homotopie et isotopie, Astérisque 12
(1974).

[Mou-Rou] R. Moussu, R. ROUSSARIE: Relations de conjugaison et de cobordisme entre certains
Seuilletages, Publ. IHES 43 (1974), 143-168.

[Nov] S. P. Novikov: Topology of foliations, Trans. Moscow Math. Soc. 14 (1965), 268—234.

[Plal] J. F. PLANTE: Anosov flows, transversely affine foliations and a conjecture of Verjovsky,
Jour. of London Math. Soc. 23 (1981), 359-362.



470

[Pla2]
[Roul]
[Rou2]
[Thu]
[Ver]

[Wal]

S.I1.5.S.A.

MARCO BRUNELLA

J. F. PLANTE: Foliations of 3-manifolds with solvable fundamental group, Inv. Math. 51
(1979), 219-230.

R. ROUSSARIE: Sur les feuilletages des varietés de dimension trois, Ann. Inst. Fourier
21,3 (1971), 13-81.

R. ROUSSARIE: Plongements dans les varietés feuilletées et classification de feuilletages sans
holonomie, Publ. IHES 43 (1974), 101-141.

W. THURSTON: On the geometry and dynamics of diffeomorphisms of surfaces, Bull. AMS
19,2 (1988), 417-431.

A. VERJOVSKY: Codimension one Anosov flows, Bol. Soc. Matem. Mexicana 19,2 (1974),
49-77.

F. WALDHAUSEN: On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87
(1968), 56-88.

Strada costiera 11
I-34014 Trieste

Received August 15, 1991; October 8, 1991



	On the topological equivalence between Anosov flows on the three-manifolds.

