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Classification of compact homogeneous pseudo-Kâhler manifolds

Josff Dorfmeister* and Zhuang-Dan Guan

Introduction

Compact homogeneous Kahler manifolds hâve been classified by Borel [1] and
Matsushima [11] (see also Borel-Remmert [2]) Together with the flat homogeneous

Kahler manifolds and the bounded homogeneous domains they form the

building blocks of an arbitrary homogeneous Kahler manifold [4] Since the proof
of the Fundamental Conjecture for homogeneous Kahler manifolds [4] the structure

of thèse manifolds îs known We are interested in considenng more gênerai
classes of homogeneous complex manifolds

One of the most natural generahzations of Kahler manifolds are pseudo-Kahler
manifolds (see 1 1 for a définition)

In [5] and [6] we hâve classified ail homogeneous pseudo-Kahler manifolds
admitting a reductive transitive group of automorphisms

In this note we classify ail compact homogeneous pseudo-Kahler manifolds
Note that by an automorphism of a pseudo-Kahler manifold we always mean a

biholomorphic map which leaves the pseudo-metnc invariant We prove

THEOREM A Let M be a compact homogeneous pseudo-Kahler manifold and G

an effective transitive group of automorphisms of M Then G is reductive, and Us

semisimple part is compact

This and results from [5] and [6] then yield the main resuit of this paper

THEOREM B Let M be a compact homogeneous pseudo-Kahler manifold and G

an effective and transitive group of automorphisms of M Then

(a) G C x S where C is a complex torus and S is a compact semisimple Lie

group with trivial center In particular, G is compact

Partialïy supportée by NSF Grant DMS-8705813
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(b) The isotropy subgroup H of a base point in M is contained in S and we hâve

M G/H C x S/H

as a product ofpseudo-Kâhler manifolds where S/H is a rational homogeneous

space.
(c) The pseudo-Kâhler structures on C and S/H are a différence of Kâhler

structures.

To prove that transitive groups of automorphisms of a compact pseudo-Kâhler
manifold are reductive we consider two natural fibrations of M, the Huckleberry-
Oeljeklaus-Tits fibration and the Hano-Kobayashi fibration (see 1.2 and 1.4 for
définitions). We show

THEOREM C. Let M be a compact homogeneous manifold admitting an invariant

volume form. Then the Huckleberry-Oeljeklaus-Tits fibration and the Hano-
Kobayashi fibration of M are the same.

This last theorem is the main resuit of §1. In §2 we prove part of the main resuit
of this paper (Theorem B) under the assumption that M is homogeneous under a

reductive group of holomorphic transformations. In the last section (§3) we show
that transitive groups of automorphisms of a pseudo-Kâhler manifold are reductive
and prove the main resuit quoted above.

Most of this work was done during a visit of the second author at the University
of Kansas. He would like to thank the University of Kansas for its hospitality. Both
authors would like to thank the référée for his remarks, in particular for a

suggestion simplifying the original proof of Theorem 1.9.

§1. Two fibrations

1.1. Let M be a complex manifold and j its complex structure tensor. Let cp be

a (real) closed non-degenerate two-form on M, i.e. (M, cp) is a symplectic manifold.
If cp is y-invariant, the (M, (p) is called a pseudo-Kâhler manifold. In this case

is a non-degenerate sesqui-linear form on M, C-linear in the first argument and

C-antilinear in the second argument.
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A pseudo-Kahler manifold (M, cp) îs called homogeneous if there exists a Lie

group G a Aut (M, (p) that acts transitively on M Hère by Aut (M, &lt;p) we
dénote the group of biholomorphic maps of M leaving cp invariant As usual, if
(M, (o) îs homogeneous we identify M G/H and we say that G acts effectwely if
H does not contain any normal subgroup of G We say G acts almost effectwely if
{g e G, g p =p for ail /? e M} îs discrète in G

1 2 In this section we recall some basic results on a generahzation of the Tits
fîbration, introduced by A Huckleberry and E Oeljeklaus [9] It coïncides with a

fibration considered by Hano [7] in case the isotropy group îs connected Using the

initiais of the authors involved in the development of this fibration we will talk
about the HOT-fibratwn (mstead of the g-anticanonical fibration [9])

Denotmg by Ho the connected component of the îdentity in H and by
NormG (Ho) the normalizer of Ho m G we hâve

THEOREM ([9]) Let G be a connected real Lie group acting almost effectwely
and transitwely as a group of holomorphic transformations on the complex manifold
M G/H and let G/H -? G\J be the HOT-fibratwn

Then

(a) / {JfceNormG (Ho), R(k) G/Ho-+G/Ho, gH0-+gkH0, is holomorphic}
where G/Ho carnes the complex structure induced by G/H0^G/H
In particular we hâve J a NormG (Ho)

(b) J/Ho is a complex Lie group and G/Ho -+G/J is a holomorphic J/H0-pnncipal
fiber bundle

In particular, the fibenng G/H -&gt;G/J is locally holomorphically trivial
(c) IfGisa connected complex Lie group and H a closed complex subgroup, then

J NormG (Ho)
Thus for a complex Lie group G the HOT-fibratwn coïncides with the Tits

fibration

1 3 For later use we will recall Tit&apos;s resuit on the fibration of compact homogeneous

spaces

THEOREM ([13]) Let G be a connected complex Lie group and H a closed

complex subgroup such that G/H is compact
Then G/Norm^ (Ho) is a ratwnal homogeneous space and NormG (Ho)/H is

connected and parallelizable Moreover, ifG/H -&gt;G/R is a holomorphic fibration with

parallelizable fiber R/H, then i?cNormG(//0), if in addition the base G/R is

ratwnal homogeneous, then R NormG (Ho)
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For définitions and results on rational homogeneous spaces we refer to the
literature cited in [13]. We would like to point out however, that rational homogeneous

spaces are simply connected. Moreover, if G is a real Lie group such that
G/H is a compact complex manifold with G acting holomorphically, then there
exists a connected complex Lie group Gc such that G aGc and G/H Gc/Hc.

We would like to point out that in gênerai Gc is not a complexification of G.

But we can - and will - assume from now on that Lie Gc Lie G +i Lie G holds.
From the définition of the HOT-fibration [9; §1.7] it is easy to see that G/H and

Gc/Hc hâve the same HOT-fibration. We rephrase this more precisely in

PROPOSITION. Let G be a connected real Lie group acting almost effectively
and transitively as a group of holomorphic transformations on the compact, complex
manifold G/H s Gc/Hc.

Let G/H-^G/J dénote the HOT-fibration ofG/H. Then the action ofGc on G/H
préserves thisfibration. Moreover, let Gc/Hc-+Gc/Jc dénote the Titsfibration. Then

J JcnG, Le., G/J^GC/JC. Thus for compact G/H the HOT-fibration and the

Tits-fibration are the same. In particular, J is connected and G/J is rational
homogeneous.

1.4. Next we want to discuss the Hano-Kobayashi fibration. We will call this
the HK-fibration. Let M be a complex manifold and co a volume form on M. Then

locally we hâve œ K(z, z) dzx a • • • a dzn a dzx a • • • a dzn. We also set

&lt;5Mogtf
tJ dz&apos;d?

and

Then x is called the Ricci form of M. For later use we recall the main resuit on the

HK-fibration for homogeneous complex manifolds.

THEOREM ([8]). Let M be a connected complex manifold and G a connected

real Lie group acting holomorphically on M. Assume moreover that M G/H admits
a G-invariant volume élément co and dénote by x the associated Ricci form of M.

Then there exists a unique closed subgroup I of G containing H and a non-degen-

erate closed two-form x on G/I such that

(a) G/I is a homogeneous symplectic manifold with respect to x and the projection
G/H-+G/I is G-invariant.
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(b) Thefiber I/H of this fibration is a complex connected submanifold ofGjH and

(c) The pull-back of % to M is equal to %.

(d) If I/H is compact, then it is {complex) parallelizable.

The fibration described in this Theorem will be called the HK-fibration.

1.5. In the rest of this paper we will use frequently arguments on the Lie algebra
level.

First we recall the following resuit due to Koszul ([10]).

PROPOSITION. Let G be a real Lie group and H a closed subgroup. Then G/H
admits a G-invariant complex structure if and only if thère exists an endomorphism j
of g Lie G such that for ail x, y e g, r e H we hâve (h Lie H)

jhczh, (1.5.1)

fx= -x(moàh), (1.5.2)

Ad r • jx) =jAdr- ;c(mod A), 1.5.3)

] +j[x,jy]+[x9y](modh). (1.5.4)

Note that j is only determined modulo h. In what follows we will always assume

jh 0.

1.6. We retain the notation and the assumptions of Proposition 1.5. In addition
we assume that M G/H has a G-invariant volume form œ. We set

\l/(x) trace^ (ad/x -j ad x), x e g. (1.6.1)

Then

THEOREM ([10]). The Ricci form associated with œ is given by the formula

X(x, y) ij/([x, y]), x,yeg. (1.6.2)

Moreover, the Ricci form satisfies for x,y,zeg

x(JxJy)=x(x&gt;y\ O-6-3)

Xftx, y], z) + x([y, z], y) + *([z, y], x) 0, (1.6.4)

*(£,/?) =0. (1.6.5)
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Remark. If M G/H is a homogeneous pseudo-Kâhler manifold, then M has a
G-invariant volume élément and the results above apply to the associated Ricci
form.

1.7. In the rest of this chapter we will compare the subgroups / and J associated

with the HK-fibration (see 1.4) and the HOT-fibration (see 1.2) respectively. To be

able to do this we consider a connected complex homogeneous manifold M G/H,
where G is a real Lie group acting holomorphically on M. We also assume that M
admits a G-invariant volume form œ. We set g Lie G and h Lie H. From
Theorem 1.2 and Theorem 1.4 it is easy to dérive

l UQj {xeg;[xJy] =j[x,y](modh) for ail y eg}, (1.7.1)

i LieI {xeg;x(x,g)=0}. (1.7.2)

From [7] we know that y can also be described as follows: Let gc dénote the

complexification of g and set g_ {jc + ijx; x eg}. Then h=gng_ and

y gnnormfC(g_). (1.7.3)

Moreover, since we assume jh 0, (1.7.1) implies

y c normg (/?).

In particular, h is an idéal of y.

1.8. We retain the notation and assumptions of the last section.

LEMMA. Under the above assumptions we hâve y &lt;=!.

Proof. Let xey and y € g. Then (1.7.1) implies j[x, y] [x,jy] +h. Therefore

ad j[x, y]) -j ad [x, y] ad [xj&apos;y] + ad h -y[ad x, ad y]

[ad x, ad/y] + ad h — [ad xj ad y] + [ad xj] ad y

[ad x, ady&gt; -j ad &gt;&gt;] + ad h -h [ad x,y] ad &gt;&gt;.

We note that ad (y» —j ady and ad x leave h invariant. Therefore the trace of the

first summand vanishes on g/h. Since M admits an invariant volume form, we know

trace^/ô ad h 0 for ail h e h. Finally, (1.7.1) implies [ad x,j]g c: h, whence the last

term vanishes on g/h. Altogether this shows #(y,§) =0, proving the assertion.
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1 9 In this section we prove the first main resuit of this paper (Theorem C of
the introduction)

THEOREM Let M be a connected complex compact manifold and let G be a
connected real Lie group acting transitwely and holomorphicaily on M Assume that
M G/H admits a G-invariant volume élément

Then the Lie groups I and J defining the HK-fibration and the HOT-fibration are
connected and equal

In particular, the fiber of this fibration is complex parallehzable

Proof From Proposition 1 3 we know that J is connected Hence Lemma 1 8

implies H a J cz Ioœ /, where /0 is the îdentity component of / From 1 7 we know
that h is an idéal ofy and [14, Theorem 1] implies that h is an idéal of i Hence J/Ho
is a Lie subgroup of the Lie group Io/Ho, where Ho dénotes the îdentity component
of H Moreover, from Theorem 1 4 and [9, §1 7, Corollary 5] ît follows that J/Ho
and Io/Ho are actually complex Lie groups Hence Io/J a GjJ is a closed complex
submanifold and therefore a projective manifold Since G/J is projective algebraic
ît embeds equivanantly into PN [9, Chapter I, Theorem 6] This implies that the

maximal solvable subgroups of /£ hâve a fixed point m Io/J by Borel&apos;s Fixed Point
Theorem [9, Chapter I] Therefore the stabihzer of /£ at e/J is parabohc and [9,

Chapter I, Theorem 6] implies that Io/J is a rational homogeneous space Finally,
we consider the two complex fibrations I0/H0-*I0/J and I0IH0-&gt;I0/I0 Both fibra-
tions hâve rational homogeneous spaces as bases and parallehzable homogeneous

spaces as fibers Therefore, by the uniqueness of the Tits-fibration (12) we get

J Io From Part (b) of Theorem 1 4 we know that I/H is connected Since H cz /0,
this implies I I0 J

COROLLARY ± Lie / =j Lie J

§2. The case of a reductive group action

The main goal of this section is to prove

THEOREM Let {M, q&gt;) be a connected compact symplectic manifold and let G

be a connected reductive Lie group acting transitwely and effectwely on M Assume

moreover that G leaves (p invariant
Then M G/H and H is connected and compact Moreover, LieG&apos;

[Lie G, Lie G] is a semisimple compact subalgebra of g, Lie H a Lie G&apos; and there

exists some w e Lie G&apos; such that Lie H {x e Lie G&apos;, [x, w] 0}
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Proof. Let G be the universai covering group of G and n : G -&gt; G the covering
homomorphism. Set Ë n~\H). Since G/H G/H M is compact and sym-
plectic, we know that M admits a finite invariant measure. Hence, by a resuit of
Selberg (see e.g. [12; Lemma 5.4]), H has &quot;property (S) in (?&quot;, i.e. for any
neighborhood M of the identity of G and for any élément g e G, there exists an

integer n &gt; 0 such that gn e MHM.
Next, since G is simply connected and reductive, we obtain G Gn x C x G(,

where (?„ corresponds to the sum of the non-compact factors in Lie G, Gc to the

sum of the compact factors and C to the center in Lie G. Let nn : G -+ &lt;?„ be the

canonical projection. Then nn(Ë) is a subgroup of Gn having property (S) in Gn.

Since Gw has no compact factors we can apply Borel&apos;s Density Theorem (see e.g.
[12; Corollary 5.16]) and obtain that the Lie algebra hn dnn(Lie H) is an idéal of
gn Lie Gn. On the other hand we know Lie G g ga+ c + gL Lie Gn +
LieC-hLieGc. Moreover, from a resuit of Matsushima [11; Theorem 1] we

know that the identity component Ho of H is contained in the maximal semisim-

ple subgroup S of G and that there exists an élément w e s Lie S — gn -f gc such

that h Lie H {x es;[x,w]=0}. Therefore, splitting w wn + wc,wn e gn,wc eg(9
we obtain that hn dnn{lÀQ Ë) is the centralizer of wn in gn. From this it is

easy to dérive, since g is reductive, that hn a h is an idéal of g. Since G acts

effectively, hn 0. This implies gn 0. Therefore G itself has no non-compact
factor. Matsushima&apos;s resuit thus implies that Ho is contained in the (maximal)
compact factor of G. In particular, HQ is compact. Hence, again using [11;
Theorem 1] we see that H is connected, whence also compact. This finishes the

proof of the Theorem.

§3. Reductivity of G

3.1. In this section we consider a compact pseudo-Kâhler manifold (M, q&gt;). We

assume that there exists a connected real Lie group G acting holomorphically,
effectively and transitively on M.

The goal of this chapter is to prove that G is reductive.

To fix some notation we note that we hâve M — G/H, where H is some closed

subgroup of G.

We set g Lie G and h Lie H. In what follows we will use intensively the

Lie algebras | and y as described in section 1.7.

We also set r rad (g) and dénote by s a maximal semisimple subalgebra of g.

Moreover, by su and sc we dénote the sum of ail noncompact and ail compact
summands of s respectively.
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3.2. In this section we prove

LEMMA. With the notation and under the assumptions o/3.1 we hâve

(a) | r + Sq +|c, where s Sq + s&quot;, s0 sn + s&apos;c and s&apos;c and s&quot; are ideaîs of sQ.

(b) £c is the centralizer of some wc e|c in s£.

Proof. From Theorem 1.9 we know that the HOT-fibration and the HK-fibra-
tion are the same. Therefore GII is a rational homogeneous, compact, pseudo-
Kâhlerian manifold realtive to #, the two-form on GII induced from the Ricci form

Xon M G/H. Moreover, from [13; Theorem 4.1] we know rad (Lie Gc) c Lie /c,
whence rczl =y holds. Let q dénote the maximal idéal of g contained in i and Q the

maximal (normal) subgroup of G satisfying Lie Q q. Then G/Q acts transitively
and effectively on G/I. Since r &lt;= g, we know that g/g is semisimple. Thus the

Theorem in §2 implies that gjq is a semisimple and compact Lie algebra. Moreover,
h/q is the centralizer of some élément [w] e g/q. From this the Lemma follows.

COROLLARY. With the notation and under the assumption 0/3.1 the algebra i£
is reductive, i.e. |£ çc + çs, where ç&amp; is semisimple and ç£ is abelian.

3.3. Our assumption always was that G be a real Lie group. In case G is actually
a complex Lie group, we hâve

LEMMA. We retain the notation and the assumptions of 3.1. Moreover we

assume that G is a complex Lie group. Then G/H is a complex abelian Lie group.

Proof Let &lt;p dénote the pullback of the given pseudo-Kâhler form on G/H.
This can be written (p Z&quot;= {clœl a œl where œl9...,con is a basis for the

Maurer-Cartan forms of g. Let us assume that œu œk are a basis for the

Maurer-Cartan forms of h. Since cp is pseudo-Kàhlerian, we know ct 0 for i ^ &amp;,

and ct ^ 0 for / &gt; k. The closedness condition of cp implies 0 dcp

Z cl(u&gt;l a dœt + dœl a œj. Note that hère the first term is of type (1,2) and the

second is of type (2,1). Therefore 0 &apos;Lclœl a dœl and 0 S ct do, a œt. But

dœl \ ZrvS clrscor a œs, where clrs dénotes the structure constants of g (see [3; §IV]).

Therefore, clrs 0 for ail / &gt; k and ail r, s. This implies [g, g] c h, and the assertion

follows.

3.4. Next we want to restrict our attention to the subalgebra | of g. We set

h&apos; {xeL;q&gt;(x,i)=0}. (3.4.1)

It is easy to see that h&apos; is y-invariant. From 1.7 it follows that h&apos;jh is a complex

subalgebra of the complex Lie algebra i/h. Moreover, the two form 0 induced from
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(p on ilh is non-degenerate and j-invariant modulo h&apos;/h. Therefore, from Lemma
3.3, we obtain

Û (ilk)l(k&apos;lh) is abelian. (3.4.2)

This implies in particular

h&apos; is an idéal of L (3.4.3)

We set r&apos; rad (i). Then

t&apos;=l+çc. (3.4.4)

Moreover, since A&apos; is an idéal of j, we hâve

h&gt;&apos; r&apos;nh&apos; + Qo + çs)nh&apos;. (3.4.5)

We also know that h is an idéal of i, consequently

h=r&apos;nh+(so + çs)nh. (3.4.6)

More precisely, (so + cs)nh =i&apos;Q + ç&apos;s, where s&apos;o and ç&apos;s is a direct summand of ^o

and çs respectively. Therefore, i/h^r&apos;/r&apos;nh+Sa/so + çJç&apos;s. But since ilh is a

complex Lie algebra and çjç&apos;s is a semisimple compact Lie algebra (or =0), we
obtain çs çfs c /?. Thus

A r/nA+^ + cf. (3.4.7)

By the same argument we see ^=^05^^. Next we look at h&apos;. We know

fe + çJnA^^+ç,, where £0 is an idéal of s$ containing ^o- Then h&apos;/h s
l&apos;nh&apos;lL&apos;r\h+Ss&gt;ls!ù and Uh^Hli&apos;rih&apos;+ Sal&amp;. Therefore û (ilh)l(h&apos;llù

r&apos;It&apos;nh&apos; + So/£Ô&lt; But é is abelian by (3.4.2), whence 50 5qc:A/. We thus hâve

shown

A^r&apos;nA&apos;+^o + ç,. (3.4.8)

3.5. In the following sections we will use the décompositions derived above to
clarify the structures ofX As usual, by nil (i) we dénote the nilradical of L We retain
the notation and the assumptions used above.
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LEMMA. m\(f)ar&apos;nh&apos;.

Proof. Consider the action of the semisimple Lie algebra s0 + çs on L Then
1 r&apos;n/?&apos; + a + lo + £*&gt; where a is invariant under ^ -f ç5. But since A&apos; is an idéal
of | and sJ0 + çsczh/9 this implies [so + c^fl] =0. Also, since £=!//?&apos; is abelian,
[a, g] a /?&apos;. From this it follows [Lt!] &lt;= h\ thus the claim.

COROLLARY 1. [r, [r, r\] 0.

Proof. As usual, by £ we dénote a maximal semisimple subalgebra of g. Then
&lt;K[£, [LdL£) c &lt;Kl&gt; kd) 0, since ra£ and [r, r] c nil (f) ah&apos;. Since [r, [r, d] c
nil (f) &lt;=:h&apos; and r cl we also hâve cp([r, [r, rj], r) 0, therefore [r, [r, r]] c /?. But
[L [l dl is an idéal of g, whence the claim.

COROLLARY 2. ad r consists of nilpotent endomorphisms of g.

3.6. The goal of this section is to show (still under the usual assumptions of this

chapter)

LEMMA. ^ 0.

Proof. Since s^ah&apos; and r ai, we hâve (p(sQ, r) 0. Moreover, using the notation

of 3.1 we hâve (p(sq9 sc) &lt;p(£o, [sc9 sc]) 0. This shows that cp is nondegener-
ate on Sq/s&apos;o. From the closedness condition of cp we obtain (p(x9 y) fi(b, [x, y]) for
ail x,yesQ, where /? dénotes the Killing form of £0- From this we dérive
s&apos;o {x g Sjq; [x, b] =0}. But ^o is an idéal of Sq, hence ^ s&apos;o. Since we know now
Sq ah and ra£, clearly [sq, r\ a h nr. It is easy to see that [^q, d is invariant under
s =is0-l-ic. Therefore, the idéal of g gênerated by Uo,d *s c°ntained in h, whence
[lo&gt; d 0- Thus £) is an idéal of g, but s$ah and 50 0 follows.

3.7. In this section we prove a resuit that will be used frequently in the rest of
this chapter. We retain the notation and the assumptions of this chapter.

LEMMA. Let xoeg and assume [xQ,f\ah. Moreover assume that ad x0 is

semisimple on g/r. Then SL 0, where S dénotes the semisimple part of ad x0.

Proof Let ad x0 S + N the décomposition of ad x0 into its semisimple part S

and its nilpotent part N. We can assume that S leaves s invariant [4; Appendix].
Moreover, since S and N are polynomials in adx0 without constant term,
Srahn nil (g) and Nr a h nnil (g). Let rc=@r^ be the décomposition of rc,
the complexifîcation of r, into eigenspaces relative to S. Then

r£ a (h nnil (g))c for ail a ^ 0. (3.7.1)
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Suppose there exists some a # 0. In what follows we fix such an a. Let s% be any
eigenspace of S in sc. Then

UhrcJC£+pChc if a + 0*0. (3.7.2)

If p -a, then

(p(Sy,ls.c-a,L€-3])=0 ify + a#0. (3.7.3)

Indeed, &lt;p(xy, [y_x, zj) -q&gt;([xy, zj, j_J =0 if x7 esf, y^esi^, zae£c hc,
and y +&lt;x *0 since in this case [^Jr,/;*] &lt;=L^+y chc by (3.7.1).

Consider now the case y — a. From our assumption we obtain si^ Ss&apos;ia

&lt;=[xo,s€-x] +nil(|)c. Hence, &lt;p(sc_x, [sc_x,tf]) cz &lt;p([xo,sc_x] +nil (g)c, UÇa,^])
^&lt;P(^oc, [^o, nil (g)c]) + &lt;p([nil (g)c,£Ç], sc_x) 0, since [x0, nil (g)c] cz hc and

)c,r£] c=Ac. Therefore we hâve

&lt;p(sC-*Asc.x,rcx])=0. (3.7.4)

As a conséquence of the above results we obtain

q&gt;(sc,[sC,à])=0 ifa*0. (3.7.5)

Since rf c hc for y # 0, we clearly hâve (p(zf, g) 0 in this case. If y 0, then
&lt;P(£o, Uc,Z!a]) =&lt;K[£o&gt;/f ]&gt;£c]) =0. since [£o&gt;£«] c£a C6€. Thus, altogether we
hâve shown

&lt;K£c,Uc,r£])=0. (3.7.6)

Equations (3.7.5) and (3.7.6) together imply

Uc,£ac]c:Ac. (3.7.7)

Next we consider the vector space qc chcnrc spanned by the subspaces r£ and

[sc, £« ], a 7^ 0. It is easy to see that qc is invariant under complex conjugation
relative to q.

qc is an ^-module. (3.7.8)

Indeed, consider A [sf, U^,£«]- If /? + a#0, then the inner commutator is

contained in r£+ p, whence A c qc. If f} + a 0, then we use A [[^y, £*:«], r£] +
U-a» U-y»£a]« Clearly, the first summand is in qc. In the second summand we
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have [sf, r£] c r£+ fi c hc if a + y / 0. If a + y 0, then the whole second sum-
mand is contained in r^a, finishing the proof of (3.7.8). Now it is straight forward
to verify that the idéal of g generated by qcng is actually contained in h. But since

the transitive group G in question acts effectively, this idéal is trivial. In particular
we have r^ 0 for ail a ^ 0. Therefore Sr 0, proving the assertion.

3.8. In this section we continue our investigation of s. Since we know from 3.6

that ^o O holds, s is compact. We split s sa + sb, where

sa {xes;[x,r]=0} (3.8.1)

and sb is a complementary idéal of sa in s. Since |c is the centralizer of some élément

in s,

ic=la+ib9 where i# =lc n^, * a, b. (3.8.2)

Since 4 and j^ are reductive, with obvious notation we have

L ca+çsa and h+£b + csb. (3.8.3)

LEMMA. (a) sa and sb +r are ideals of g.
(b) h =hnr + çb+ça+çsa.

Proof. Clearly, sa and sb + r are ideals of g. Moreover, we have (p(sa,r)
&lt;KUfl&gt; sa]&gt; Ù — 0 and similarly (p(s_a, sb) 0. Therefore, sa and sb + r are perpendic-
ular. This implies h hnsa + hn(ib+r). From Lemma 3.1 it follows that hc\sa
is the centralizer of some wa e sa.

Now let jc0 e h n (r + ça + c^). Clearly, [jc0, d &lt;= A, since h is an idéal of 1 and

r ci Moreover, adx0 is semisimple on g/r. Therefore, by the last lemma Sr =0,
where S dénotes the semisimple part of adx0. In view of Corollary 3.7.1 we can
write £ a + [a, a] where [5, a] c a. Hence xo c + a +n with ce^+Çi, aeç,
and n e [a, a]. Note [n, r) 0 by Corollary 3.5.1. Therefore ad x0 | r ad (c + a) \ r.
Since we know that the semisimple part of ad x0 vanishes on r, the endomorphism
A ad (c + a) | r is nilpotent. But ad c | r is semisimple and leaves a and [a, a]

invariant, while ad^ maps a into [a, a] and annihilâtes [a, a]. This shows

ad c | 2 0 and ad c | [a, a] 0, whence [c, r] 0. Therefore, c e ça and the assertion

follows.

3.9. Clearly, to show that g is reductive, we have to prove sb 0. This is the

goal of this section.
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LEMMA. sb 0.

Proof. From Corollary 3.7 we know that ad r consists of nilpotent endomor-
phisms of g. Moreover, ad c, c e ç^,, is semisimple on g and has only purely imaginary
eigenvalues. Restricting ad (r + çb) to the complex Lie algebra i/h we obtain the
radical of i/h. But this is a complex solvable Lie algebra, whence adç^ \i/h 0. In
particular we get [cb, d cz /?. From Lemma 3.7 we thus obtain [ç^,, r] 0, i.e. Çj, 0.

From Lemma 3.7 it follows easily that çbs 0 holds. Thus sb 0.

3.10. With the results of the previous sections it will be easy now to prove
(Theorem A of the introduction).

THEOREM. Let (M, cp) be a compact connected pseudo-Kâhler manifold and G

an effective transitive group of automorphisms of M. Then G is reductive and its

semisimple part is compact.

Proof From Lemma 3.9 it follows that g r + £,, where [r, sa] 0 and sa is

semisimple. Moreover, h hnr+ hnsa. Therefore, the radical of i/h is r/hnr.
Since this is y-invariant we can assume jr ar. Also, h nr is an idéal of g contained
in h, hence hnr=0. This implies h=ça + cas, by Lemma 3.8, and i/h ^r. In
particular, r is a complex Lie algebra and (p(r, sa) =0 shows that (r, 0,j, &lt;p) is a

pseudo-Kâhler algebra. Thus Lemma 3.3 shows that r is abelian. Therefore g is

reductive, proving the assertion.

3.11. In this section we will give the proof of Theorem B of the introduction.
First we note that Theorem A (see 3.10) shows that G is reductive and its

semisimple part S is compact. From the Theorem in §2 we thus obtain that the

isotropy subgroup H of G is connected, compact and contained in the maximal
semisimple Lie subgroup S of G. From [11; Theorem 1] it thus follows that S has

trivial center and that G C xS holds. Clearly, G/H C x S/H. Since G/H is

compact, we see that C is a complex torus. In particular, G is compact. It is easy

to see that Lie C and Lie S are perpendicular relative to the given pseudo-Kâhlerian
structure. Thus G/H C x S/H is the product of pseudo-Kâhler manifolds.

Therefore it only remains to prove that S/H is a rational homogeneous manifold
and that the given pseudo-Kâhler structures on C and S/H are a différence of Kâhler
structures. The first statement follows from 3.9, since i r + ças9 where h c^ ç^s

and r Lie C. The second statement follows from [6].

Added in proof. Recently we received the preprint: A. T. Huckleberry, Homogeneous

pseudo-Kâhlerian manifolds: A hamiltonian viewpoint. In this paper Theorem
B is proven by a différent method.
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