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Calculations with the Temperley-Lieb algebra

W. B. R. LlCKORISH

1. Introduction

An entirely elementary proof of the existence of the SU(2)V invariants of Witten
[15], for closed 3-manifolds and for links in 3-manifolds, was given by the author
in [9] and [10]. The foundation of that proof was just the use of the Kauffman
bracket-polynomial (that gives the almost trivial approach to the Jones polynomial)
and its formalisation as the Temperley-Lieb algebra. A 3-manifold invariant is

associated with each primitive 4rth root of unity; a formula for the invariant
involves coefficients that dépend on r and the chosen root. The analysis in [9]
showed thèse coefficients exist, as solutions to some linear équations, but it gave no

way, and indeed little hope, of writing down a reasonable formula for them. That
defect is removed by this paper, so that an existence proof and a satisfactory
formula for thèse 3-manifold invariants can now be denved from the Kauffman
bracket approach. The formula is, as expected, essentially the same as that derived
from quantum groups; a précise relationship will be given. The quantum group
approach was pioneered by Reshetikhin and Turaev [11] and explored further by

Kirby and Melvin [5]. In fact in what follows an analogue is found, using the

Temperley-Lieb algebra, of the basic procédure (of the quantum group approach)
of allocating irreducible représentations of S\J(2)q to the components of a link or
of a tangle. The techniques hère explained are also used to give short proofs of the

symmetry principle of Kirby and Melvin and of formulae for the bracket polynomial

of (diagrams of) Hopf links and of certain cablings.
The much appreciated hospitality of the Mathematical Sciences Research Insti-

tute (Berkeley, Cahfornia, U.S.A.) produced the conception and much of the

writing of this paper.

1980 Mathematics Subject Classification (1985 revision) Pnmary 57 M 25

Secondary 57 N 10, 16 A 30
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2. Linear skein theory

Linear skein theory is useful rather than profound. A précis will recall the idea
and establish some notation; more discussion is in [8], [9], [2] and [13]. Throughout,
A is a fixed complex number that will eventually sometimes be required to be a

primitive 4rth root of unity. Consider link-diagrams of arcs and closed curves in a

square for which the boundary of the arcs is m standard points on the left-hand side

of the square and m on the right-hand side. The mth Temperley-Lieb algebra Vm

consists of formai linear sums, over C, of such diagrams quotiented by

(i) planar isotopy fixed on the boundary of the square;
(ii) lu (closed component with no crossing) — A ~2 — A2)X;
(iii) X =^X+ A~l)(.

Hère A&quot;is any diagram, and (iii) refers to three diagrams identical except where shown.

Juxtaposition ofdiagrams induces the product in Vm which, as an algebra, is generated

by the éléments lm, ex, e2, •. em _ x shown in Figure 1, where the convention is used

that a non-negative integer / beside a curve indicates the présence of i copies of that

curve, ail parallel in the plane. Thèse generators satisfy the following relations

\mx=x=x\m for ail xe Vm,

e2=(-A-2-A2)en

ete3 eje, if \i -j\ î&gt; 2,

elel± xet et provided el±x is defined.

Vo is the 1-dimensional vector space spanned by the empty diagram l0; it will thus
be identified with C, l0 corresponding to 1 e C. A link-diagram X of closed curves
in the interior of a square (or in R2) thus represents an élément of Vo and hence of
C. By définition, that élément is &lt;Ar&gt;, the Kauffman bracket of X.

The same manoeuvres can be executed with any surface (with or without
specified boundary points) in place of the square. Let 91 be the complex vector

m-i-l

Q

Figure 1
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Figure 2

space of link-diagrams of closed curves in an annulus modulo relations the same as

before, except that (ii) now refers only to components with no crossing that are

nul-homotopic in the annulus. The process of forming one annulus from two, by
identifying together one boundary component from each annulus, induces a

product structure on 2t. Note that in 81, and also in Vm, regularly isotopic diagrams
(that is diagrams related by a séquence of Reidemeister moves of types II and III)
represent the same éléments. Thus 81 becomes a commutative algebra. Let a g 81 be

represented by the diagram consisting of just one embedded curve encircling the

annulus. Then &lt;xm is represented by m parallel curves encircling the annulus and 81

is the polynomial algebra C[a]. The opération of inserting a diagram that represents
an élément of Vm into the small square in the annulus of Figure 2 (where the sides

of the square are connected by m parallel arcs around the annulus) induces a

well-defined linear map &lt;9m : Vm -»8I and Om(\m) aw.

Suppose that D is a planar diagram of an ordered «-component link. Neigh-
bourhoods of thèse components may be taken to be n annuli immersed in the plane
with over and under crossing information preserved from the crossings of D.
Consider the opération of taking n link diagrams in n standard annuli, inserting
them in the immersed annuli, obeying the over and under crossing instructions in
the obvious way, and then evaluating the Kauffman bracket. This opération induces

a well defined multi-linear map

&lt;PD : 81x81 x •• x8I-&gt;C.

(A choice of orientation on the curves is not needed for this.) Figure 3 shows some

link diagrams that will be used in conjunction with this idea.

Recall from [9] that a planar link-diagram D is said to represent a framed link
L if D is a diagram for L in the usual sensé and the framing of each component of
L is the writhe (that is, the sum of the ± 1 signs of the crossings) of the sub-diagram
of that component. The main resuit of [9] that describes the Witten 3-manifold
invariants (for 811(2)^) can, in this notation, be restated as follows.
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O &quot;O -©
-CD QOH(0;

Figure 3

THEOREM 1. Let A be a primitive 4rth root ofunity. Corresponding to A there
is a unique élément a e 21 that is in the span of {a0, a, a2,. ar ~ 2} such that

as maps from 2ï to C. Suppose the 3-manifold M is obtained by surgery on the

n-component framed link L that is represented by a planar diagram Z&gt;, and let a and
v be the signature and nullity of the linking matrix of L (with the framings on the

diagonal). Then the complex number

is an invariant of M.

(In [9], a was written as Vtzl kt0L\ a linear sum of base éléments of 21, and thus

#D(a, a,..., a) appeared as Zc e C(llf r) Àc{l)^c(2),.. Ac(n)&lt;c * /)&gt;, where C(«, r) was
the set of ail functions {1, 2,..., n) -? {0, 1,. r — 2} and c * D was the c-in-
duced paralleling of D.) This paper is devoted to finding an explicit expression for
a as a linear sum of base éléments of 21; it transpires that, at least in the first
instance, the base {a1} is not the base to use.

3. Chebyshev polynomials

In what follows, a Chebyshev polynomial Sn(x) will occur in a fairly natural

way. Although only elementary facts are required concerning thèse classical
polynomials it will help to list them hère. Proofs are but exercises for the reader;

together with much other information they can be found in [12].
For an integer n, n &gt; 0, the nth Chebyshev polynomial of the second kind (re-

normalised) is the polynomial Sn{x) defined inductively by ^(jc) 1, Sx{x) x and
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Note that Sn(x) is a monic polynomial of degree n with integer coefficients, and

Sn(x) — \)nSn(—x). The notation is motivated by the équation

Sn(2 cos 0)
sin (n + 1)0

sïn0

which follows from

~x) tn+x - t-n-\

The actual expansion of Sn(x) is given by

S,W= Ç &lt;-i)*Ç
0 &lt;: 2k &lt;: w

Sometimes this will be abbreviated to

Sn(x)=
k7&gt;0

where 5W k 0 if A: &gt; « and ¦?„,„ 1. The zéros of the polynomial are apparent from
the factorisation

$,(*)= fï U-2cos
kn

Sw(x) is also seen to be the déterminant of the matrix (with zéros off the three

diagonals)

x 1

1 x 1

1 x -

• x 1

1 jc

To whet the appetite, if Un is the «-dimensional irreducible représentation of sl2C
then the Clebsch-Gordan formula states that, in the Grothendieck représentation
ring, the irreducible représentations satisfy the Chebyshev récurrence formula
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with U1 C so that Un+1 Sn(VL2).

4. A base for 91

In [9] attention was drawn to a séquence of éléments /0,/i,. ,/m_ x in the

Temperley-Lieb algebra Vm. Thèse éléments were discovered by Jones [3] and
formulated by Wenzl [14]. Define An to be Sn(-A-2-A2), so that

Then / is defined by /0 lm and

there is hère a proviso that A be chosen so that AXA2 * * &apos; Al ^ 0, otherwise/ is not
defined. Then short inductive arguments (see [14] or [9]) show that

f^^ejf, if i+2£/

Now, so that w may be allowed to vary, let/(m) be the final élément (i.e. fm_,) of
this séquence of éléments in Vm. Then (/(m))2 =/(m), and/(m)^ 0 ej(m) for ail

^ g KOT. Further (see [14] or [9]) (lm -f{m)) belongs to, and is an identity for, the

subalgebra of Vm generated by {eu e2,. em_,}. The fact that this subalgebra
was known to be semi-simple, and hence to hâve an identity, led Jones to the

discovery of/(m).
The Markov trace on Vm is the linear map tr : Vm -&gt; C induced by the opération

of taking a link-diagram in a square representing an élément of Vm, joining the m

points on the left side to those on the right side by disjoint arcs in the plane outside
the square, and then evaluating the Kauffman bracket. In the above terminology,
tr ;t 0u(0m(x)). It is shown in [14] and [9] and verified in the corollary to the

next theorem that

tr (/&lt;&quot;¦&gt;) =àm.
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Now define &lt;/&gt;„ g 91 by (j)n 5w(a), the nth Chebyshev polynomial évaluated in
the algebra 31 on the generator a. Then (\&gt;n =lék^QSnJcak, where sn k 0 if k &gt;n

and $„,„ 1. Thus {&lt;£0, &lt;/&gt;!,...,(/&gt;„} and {a0, a, a2,..., a*} are both bases for the

sanie subspace of SI; they are related by a lower triangular matrix with ones on the

diagonal which is hence invertible. The base {&lt;£0, $i, 02&gt; • • •} w^ turn out t0 be

distinctly easier for the purposes of calculation.

THEOREM 2. Suppose that AXA2 • • • Am_, # 0 (so thaï/(m) » defined). Then

&lt;f&gt;m em(fimy).

Proof. First note that for al x, y e Km, 0m(xj) Gm(yx). This follows from the

trick of pushing a diagram to the right of x ail the way around the annulus until
it is on the left of x. Now, working entirely with Vm, the définitions give that

However

»«(/„-2)

and

But

The very last step should be clear from Figure 4. By définition

Thus 0m(/(m))=a6&gt;m_1(/&quot;&quot;-|))-0m_2(/&quot;&quot;-2)). Of course, &lt;90(/(0&gt;) a° and

@|(/(1)) a, so the proof is complète.
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em-l em-2 f m-3

Figure 4

COROLLARY. t

/V00/. Note that &quot;) -A ~2 - A2)n, so that the theorem implies that

- ^2) Am.

5. Spécial éléments of Vm

The élément /(m) of Vm interacts with the standard generators of Vm in a

marvelously easy manner: /(&quot;°lm =/(m) and fim)et 0 ^/(m). As a vector space
Fw has a natural base consisting of ail diagrams in the square (with the given 2m

boundary points) that hâve no crossing and no closed loop. For each x e Vm let

1*(jc) be the coefficient of \m in the expansion of x as a linear sum of thèse base

éléments. Of course, every base élément other than lm is a non-empty product of the

e/s. Thus the following resuit is clear.

LEMMA 3. Ifx g Vm9 fmx

This means that/(m)x is a &apos;scalar multiple&apos; of/(m) for any x in Vm. That might be

compared with the fact that, in the language of the quantum group approach, if the
relevant i£-matrix-induced functor is applied to a 1-1 tangle whose strings are
labelled with irreducible représentations, then, by Schur&apos;s Lemma, there results an

endomorphism, of the module assigned to the through-string, that is a scalar

multiple of the identity. Likewise, use of &lt;£w e 91 is an analogue of &apos;colouring&apos; a

closed string with the (m + l)-dimensional irreducible représentation of sl2C.
Theorem 2 links this with the use of/(m).

Expressing an élément x of Vm as a linear sum of éléments of the natural base

is, in gênerai, not at ail easy. However finding 1*(jc) is a much easier task; in two
important instances it was carried out in [ 10] and [9] thus giving a proof of the next
lemma. Only simple manipulations of the relations that define Vm were used.
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o
zm

Figure 5

LEMMA 4. Let zm and (xm)1 be the éléments of Vm corresponding to the

diagrams in Figure 5, then

With the aid of this resuit calculations can begin. Recall the diagrams of Figure 3.

LEMMA 5

Proof. Suppose that the (non-zero) complex number A is chosen so that
Ai&quot;&apos; 4ax {,,,} -i#0so /(l&gt; and f(j) are defîned. Then

using Lemmas 3 and 4. Further use of thèse lemmas, and use of the corollary to
Theorem 2, shows that

The resuit now follows by using the results on Chebyshev polynomials, and, being
an identity between Laurent polynomials that has now been shown to be true for
ail but finitely many values of A, it is true for ail A.



580 W. B. R. LICKORISH

6. An explicit form of the 3-manifold invariant

In this section A is taken to be a primitive 4rth root of unity as required in
Theorem 1. That theorem asserts that the formula

defines a unique élément a e 21 in

Span {a0, a, a2,.. ar~2} Span {&lt;/&gt;0, &lt;£i,. &lt;rV-2}-

This élément can now be expressed in terms of {0O, $l5..., &lt;/&gt;r_2}-

LEMMA 6. a 2£~

Proof. Certainly a HrkZ20 tik(j)k f°r some fikeC By the defining formula for

r-2

for ail y. Thus, by Lemma 5 and the corollary to Theorem 2,

r-2

0

However, in a similar calculation, Kirby and Melvin (see [5] Lemma 5.1) use

elementary manipulations to show that, for any integers j and /,

r-2
y /^ 2/(* + 1) __ ^ -2/(* + 1)\/^| 2(A: + 1)(J + 1) _ £ -2(k + l)(y + 1)W (* -h 1)2 -h (j + 1)2 + /2

2 v *=
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The resuit then follows using the substitution / r + 1, because A2r — 1 implies

^2(r+l)(/r+l)_ ^ -2(r + 1)(A:+1) _ f _ |\* + I/4 2(* + D _ ^ -2(*+l)\

Note that the proof of this lemma has proved (by actually finding it) that there
is an a such that, as maps 2X-+C, $&gt;H{\, i)(a&gt; &amp;u( )• The proof was by verifying
the equality on the base {0,}; only results from this paper (including the quoted
Lemma 4 and the very elementary quote from [5] in the proof of Lemma 6) hâve

been used. The existence ofsuch an a is the only difficult fact that is needed in deducing
the existence of the 3-manifold invariant from Kirby&apos;s surgery theorem. The only use

made of the fact that A is a root of unity is in the proof of Lemma 6.

A tangible form for the theorem requires a calculation of #£/(_i)(a) and this is

now performed.

LEMMA 7. #c/&lt;-o(a) ~ l)r+lA6(GlG) where G is the Gauss sum defined by
2

Proof. The link-diagram U(\) is the diagram U( — 1) with its crossing switched.

Letting the map

&lt;*&gt;//(!, o(a, )=$u()

operate on &lt;/&gt;0 (the empty diagram in the annulus) shows that 0(y(1)(a) 1. So,

letting a HrkZo l*k&lt;l&gt;k&gt; where the \ik are determined in Lemma 6,

r-2

Complex conjugation, and the recollection that, when \A\ 1, the conjugate of &lt;/)&gt;

is &lt;Z)-reflected&gt;, shows that

r-2

But, from Lemma 6 and using A2r — — 1,

\xk G

and this is independent of k. Thus
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(-1)&apos;+^-«£*„&lt;_„(«) =^r£ nk&lt;PU(_n(&lt;pk) l.
CJ flk k 0

The following reformulation follows at once from thèse calculations.

THEOREM 1 (restated). Let A be a primitive 4rth root of unity. Suppose the

3-manifold M is obtained by surgery on the n-comportent framed link L that is

represented by a planar diagram D, and let a and v be the signature and nullity of the

linking matrix of L (with the framings on the diagonal). Then the complex number

Q\{o+v-ri)l2~\ #D(a, «,..., a)

is an invariant of M, where G(A) (££r= { Ak2) and a g 91 is given by

If desired, coordinates can be changed to those corresponding to the base {a1}

of SI in the following manner. Let vk - \)k(A2(k+l) - A ~2{k+1)). Then, the séries

expansion for the Chebyshev polynomial gives

r-2 r-2 r-2v m v c t k\ v \r*

£ 0 k 0 k 0 i
0&lt;2i&lt;.k

Writing k — 2i c, this becomes

r-2 ,c.
&apos;ï E vc+2,(-i)&apos;(

0&lt;.2i&lt;.r-2-t

Hence a lfcz\ Xcolc where

Thus, in the notation of [9], the 3-manifold invariant becomes the product of

c e C(n, r) \j - 1

0 £ 2/^ r-2-c(j)
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+ 2,+ 1) _ A -2W;) + 2i+ 1))

with

Gauss sums are a well understood part of elementary number theory. In particular,
when A eln/{2r\ G(A) l^flr ein/4; a good account is given in [6],

If / is a primitive 4rth root of unity then so is — t. To align the above formulae
with those of Kirby and Melvin [5], derived from the quantum group approach of
Reshetikhin and Turaev, it is necessary to make the substitution A — t. It seems

désirable to record the way the invariant of this paper attunes with that of [5] in
order to prevent a profusion of such invariants ail known imprecisely to be

manifestations of the same thing. Unfortunately the invariant of [5] is there
discussed in détail only when t =elnK2r\

PROPOSITION 8. For any closed oriented 3-manifold M, and any integer r ^ 3,

the invariant described in Theorem 1 when A —em^2r) is equal to

em(6~3r)v/(4r)Tr(M)

where xr{M) is the invariant of[5] and v is the first Betti number of M {and hence v

is still the nullity of the previously discussed matrix).

Proof The checking of this proposition involves just a little more than a

merging of notations. First note that, for a 4rth root of unity A, it is easy to check

that Ar2G(—A) G(A). In the notation of the proof of Lemma 7, the substitution
A — t gives

Further, the formula for Xc becomes

where

{c}
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[] being defined by [k](t2- t~2) =(t2k-t~2k). (In [5] &quot;{c}&quot; is written
Thus, when A — t, the invariant of Theorem 1 is the product of

G(t) J V G(t)

and

c e C(n, r)

Now suppose that X is any link diagram with #X components. If w(X) is the sum
of the signs of the crossings of X with respect to some choice of orientation, iw(X)

is independent of that choice (i2 — 1). Then, for any t, the Kauffman bracket

polynomial satisfies

The invariant of link diagrams Jx{t) that émerges from quantum groups is shown
in [5] to be given by Jx(t) — i)w(X\X)A lt. It seems that this formula cornes

naturally from that représentation theory approach. This means that the final
summation above is

X {c(l)}{c(2)}&apos;&quot;{c(n)}JcmD(t).
c e C(n, r)

If now one makes the substitution t ein/(2r) so that G(t) l^flr em/4 then

pin(6 - 3r)/(2r)

G{t)

G(t) V r

The invariant of Theorem 1, when A — em/(2r\ then becomes

• • {c(n)}JcmD(t)

and this is em(6~3r)v/(4r)Tr(M) according to Theorem 4.17 of [5].
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7. Further formulae

The Temperley-Lieb algebra methods of this paper can be used to confirm
quickly other results first obtained by means of quantum groups; it is hoped that
such confirmation will give additional credence to both approaches. The proposition

that follows is a version of the Symmetry Principle of [5]. In [5] this principle
was a crucial part of the whole theory. That is not the case hère, but it is also

valuable in simplifying the calculation of the invariants of spécifie 3-manifolds (see

[5]).

PROPOSITION 9. Let D be a planar link diagram, with Dl9D29...,Dn being
the subdiagrams of the link&apos;s components. Let A be a primitive 4rth root ofunity and

suppose k &lt; r — 2. Let w(D{) be the writhe of Dx. Thenfor any non-négative integers

where A ^2 denoting the linking number modulo two.

Proof First note that it is sufficient to check this formula in the case when Dx
is a diagram of the unknot. This is because crossings of Dx can be switched using
Theorem 1. To be more précise, let D and D&apos; be the diagrams shown in Figure 6

(where X represents an arbitrary diagram). By Theorem 1,

*l{n\ a).

Now

_ // _ *^w(D\)

&apos;n+1

D&apos;

Figure 6
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Figure 7

because w(D\) and w(Dx) are equal modulo four, and A4r=\. Further,
A2(D&apos;H+l9D&apos;l)=0.

Now suppose that /), is indeed a diagram of the unknot. Ail the terms of the
formula to be verified are invariant under regular isotopy, so it may be assumed that
Dx is a closed curve with no self crossing except for w(D\) kinks, as in Figure 7, and
that the remaining components are a diagram in the annulus of Figure 7. If D*
dénotes D with the kinks in Dx removed then, by Theorem 2 and Lemmas 3 and 4,

iD^0D.((t)k9 a&apos;(2), a&apos;(3),. a&apos;(w)) &lt;PD(&lt;t)k, a&apos;(2), a&apos;(3),..., atin))

But (-\)*Ak2 + 2k (-\y-2-kAir-2-k)2 + 2ir-2--k)(-\)k + r+lA-r\ and this
means that it is just required to check the formula for D*.

Thus it may be assumed that Dx has no self crossing, and the remaining
components form a link diagram in the annulus of Figure 7. Hence (recalling the

diagram if(0, 0) of Figure 3) it is sufficient to prove that

*tf(0. 0)(4&gt;*, P) - 1)&apos; + r*H(0, 0)(4&gt;,-2-k,P)

where the élément p of 21 is represented by a diagram that represents b in the

modulo two first homology of the annulus (that is, /? encircles the annulus b times

modulo two). However, /? can be expressed as a linear sum of the a&apos; using the

defining relations of 91, and each such usage produces diagrams with the same value

of b. Thus it remains to check that

and this follows from the fact that, by Theorem 2 and Lemmas 3 and 4,

*tf&lt;o.o)(&amp;, «&apos;) -A*k+1) - A -2(k+»)&lt;( - l)k(A2(k+l) - A ~2(* + ]))

x(A2-A~2)-1

The proof is complète.

In the preceding discussion, two bases, {a0, a, a2,...} and {&lt;/&gt;0, 0,, $2, •. •},
hâve been used for the linear skein of the annulus, namely the vector space 91. The
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first seems geometrically natural whilst use of the second facilitâtes calculations. By
définition, the Chebyshev polynomials express the second base in terms of the first,
but in performing calculations concerning parallels of link diagrams, it may well be

désirable to express the first base in terms of the second. Such an expression foliows
easily from the next simple (and presumably &apos;well known&apos;) lemma. First, how-

ever, ex tend the définition of the Chebyshev polynomial Sn(x) to allow n to be

négative by just continuing to use (in the &apos;négative direction&apos;) the récurrence
Sn(x) xSn_x(x) — Sn_2(x) with initial conditions S0(x) 1, S{(x) x as before.
Then S_n(x) — Sn_2(x) and, fr°m this, properties of Sn(x) for n &lt; 0 can easily be

deduced. For example, the identity

is true for ail integers n.

LEMMA 10. For any non-negative integer n,

Proof. Use induction. The formula is true when n 0 so assume it for a given

n. Then

^

Of course, in the algebra 91, the définition 4&gt;n Sn((x) should now be extended

to négative integers n. The identity (j)_n — 4&gt;n-i enables an easy vérification to be

made of the formula that describes how &lt;PD(&lt;/&gt;„, changes, for any link
diagram D with components Dx, D2,. if a kink is removed in Dx (namely, for
ail «, &apos;multiply by (- \)nAn2 + 2n&apos;). Also, if D2 simply links Dx with just two
crossings, D2 having no other crossing, and if D&apos;is D with D2 removed, then it can

similarly be checked that

for ail integers n.
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PROPOSITION 11. (i) In the algebra % for n &gt; 0,

•&quot;¦-,?.(:)*-*?¦•

(ii) The bracket polynomial ofthe {n + \)-parallel of the diagram (7(1) of Figure
3, which is a diagram of the {n + \)-comportent positive Hopf link, is

(A2-A-2)&apos;1

Altematively this can be expressed as

A\A2-A-2)-1

(This final formula has already been proved, using other methods, by Kirby and

Melvin.)

Proof The first formula follows at once from Lemma 10. The bracket polyno-
mial of the (n -f l)-parallel of the diagram (7(1) is 4&gt;u(l)(ocn + l). By (i) this is

r 0

and, removing the kink of (7(1) by the above mentioned formula, and using the

Corollary to Theorem 2 (which is still valid for négative m), this becomes the first
formula of (ii). However,

Using (i) this becomes

Removing the two kinks as described above, and then removing the second

component, this is
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The Corollary to Theorem 2 then produces the required formula.

This last proposition facilitâtes the calculation of the Kauffman bracket of a

parallel of a link by re-expressing the problem in terms of the more amenable
{(j&gt;n }-basis of SI. The analogous calculation for when a component is replaced by a

single curve running around it n times will now be treated in a similar way.

PROPOSITION 12. Let yn, n &gt; 1, be the élément ofthe Temperley-Lieb algebra
Vn représentée by the first diagram of Figure 8. Then

Proof. Figure 8 represents an identity in Vn. Applying 0n to it gives

Hence, letting un A3~n0n(yn),

This récurrence relation for un is indeed that for the Chebyshev polynomials (with
a the indeterminate). Attention must be given to the initial conditions which are

m,

It is easy to check that the required solution is

this gives the required formula.

Figure 8
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COROLLARY. The Kauffman bracket polynomial of the diagram of the

(n, kn + X)-torus knot that is the closure of yn{zn)h is

_ \\nk + n£nlk + n- 3/^ 2 — ji~2)~l{A 2(&lt;nk + n + 2* — A 2^&quot;k ~ &quot;^

_^A -2(nk + n) _ A -2(nk-n + 2n

Proof. The required polynomial is 0u(0n(yn{zn)k) and use of the proposition
shows this to be

and this is

^ n - 3 + rïk/ j\n(k + 1) f^ 2(«A: + 1)/^ 2(« + 1) _ ^ -2(« + 1)\

which is the required formula.

Formulae for the Jones polynomial of torus knots are, of course, already
known, so this corollary is only intended as illustration of how the proposition
might be used. The resuit does agrée with Jones&apos; formula for his polynomial (in the

indeterminate yjt of a torus knot at least up to choice of ± -Jt.
Finally a very brief remark on invariants of framed links in 3-manifolds is in

order. Suppose a framed link L in S3, with components Lx, L2,.. Lm, is

represented by a diagram D. If n &lt; m let M be the 3-manifold obtained by surgery
along Lu L2,. Ln. The remaining components Ln+ Ln + 2&gt; • • &gt; A* form a

framed link in M. An invariant of this link is the (m — ri)-multilinear form on 31

given by

where &amp;D acts on n copies of a and m — n blanks, a is the élément defined in Theorem
1 and a and v are the signature and nullity of the linking matrix of L,, L2,..., Ln.
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