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H'-BMO duality on Riemann surfaces

HIROSHIGE SHIGA

1. Introduction

It is a famous result by Fefferman—Stein that the space of BMO functions
(functions of bounded mean oscillation) in R” is equal to H'(R")*, the dual space
of the Hardy space H'(R") ([5]). Recently, it is also shown on simply connected
Riemannian manifolds with negative curvatures ([1]). In particular, when n =1,
their theorem implies that the duality between certain spaces of holomorphic
functions holds on a simple Riemann surface, the unit disk (or the upper half
plane). In the previous paper [13], we have established the duality theorem between
H' and BMOA (the space of analytic BMO functions) on compact bordered
Riemann surfaces (another proof is given in [7]). However, as we noted there, the
duality does not hold on all Riemann surfaces. Furthermore, if we consider a
Riemann surface given by Heins in [8], we verify that the duality does not
necessarily hold for any Riemann surface even if the Riemann surface has the small
ideal boundary. Thus, it would be a natural and interesting problem to find a class
of Riemann surfaces where the duality theorem holds (Metzger also poses the
similar problem in [10]).

Hence, to consider the duality, we shall introduce the space of harmonic
functions on Riemann surfaces whose lifts on the universal covering surface are real
parts of ordinary H' functions in the universal covering surface. This space can be
said a harmonic version of ordinary H' space on Riemann surfaces and it is natural
to consider such a space. Actually, in Fefferman—Stein’s paper, the space H' on R”
is the space of integrable functions on R” whose Riesz transforms are also
integrable. They are regarded as boundary functions of harmonic functions on the
upper half space H"*! and when n = 1, Riesz transforms correspond to conjugate
harmonic functions in the upper half plane which is the universal covering surface
of itself.

In this paper, we shall show that the duality theorem for harmonic functions hold
on bordered Riemann surfaces with “small’ ideal boundaries. Namely, the follow-
ing theorem will be shown (as for the terminologies, see Sec. 2).
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THEOREM 1. Let R be an open Riemann surface of SOy end. Then, the duality
between h'(R) and BMOH(R), (h'(R))* = BMOH(R) holds. More precisely, for
every | € h'(R)* there exists a BMOH function g, on R such that it induces I. Namely,

l is the extension of a bounded linear functional on HB(R), which is a dense subspace
of h'(R), defined by

h j hg, do®
oR

for every h € HB(R). Furthermore, there exists a constant K > 1 such that it satisfies
an inequality:

K=& | er < 1] < K[&/ | 4,25 (1.1)
where ||g, |, is the BMO norm of g, and || is the operator norm of 1 € h'(R)*.

The proof of the theorem is rather long and complicated because of some
technical details while the idea is simple. So, we sketch the outline of the proof for
convenience of the reader.

Let R be a Riemann surface of SO,z end. We may assume that the relative
boundary dR consists of a finite number of analytic Jordan curves C; (j =1, ..., n).
First, we observe harmonic functions in A'(R). Every function 4 € h'(R) has the
non-tangential limits on each C;. Furthermore, the non-tangential boundary func-
tion is an integrable function with respect to the harmonic measure and conversely
a harmonic function 4 in #'(R) is determined by the boundary function. Thus, the
space h'(R) is regarded as a subspace of L'(0R) = II/_, L'(C;). On the other hand,
there exist neighbourhoods U; of C; (j=1,...,n) and conformal mappings f; on
U, v dU; such that f;(U;) = {r, <|z| < 1} and £;(C;) = {|z| = 1}. Under this identifi-
cation, we shall confirm that A'(R) is isomorphic to IT/_, h'(4), where 4 is the unit
disk (Proposition 3.1). Sec. 3 will be devoted to the proof of the result. To show it,
a theorem of Burkholder—Gundy-Silverstein and a consideration of hyperbolic
geometry in the unit disk are used. As a byproduct of the argument, we shall show
that the space of bounded harmonic functions is dense in A' on an SO, end
(Corollary 3.1).

Once the above identification is established, a linear functional /e h'(R)*
is regarded as an element in II}_, h'(4)*. Since (R'(OR)*=TI/_, h'(4)* =
IT7_, BMO(4) (Fefferman-Stein’s duality theorem), a BMO function on dR
is obtained from /e h'(R)*. Finally, after slightly long calculation we shall
show that the function is really a boundary function of a function in BMOH(R)
(Lemma 4.2).
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From the view point of automorphic function theory, Theorem I implies that if
the limit set of a Fuchsian group is of linear measure zero and if the “boundary
curves” are compact, then the duality between spaces of certain automorphic
functions for the Fuchsian group are valid. In the last section, a characterization of
the dual spaces of A! on more general Riemann surfaces is established in terms of
conditional expectations for Fuchsian groups. As an application of the characteri-
zation and the duality theorem, we see that on an SO, end, the conditional
expectation for the Fuchsian group which determines the Riemann surface pre-
serves the BMO property (Corollary 5.1).

2. Basic facts and terminologies

First, we shall define BMO-functions and Hardy spaces of harmonic functions
on a Riemann surface. As for the detail of BMO, see [11] or [6].
A measurable function 4 on the unit circle 04 is called BMO function if there
exists a constant M > 0 such that for every interval I < 0A,

1
mj |h — h;| d6 < M,
I's

where |I| = (,d0 and h, = |I|~' {, h df. A harmonic (resp. analytic) function f on the
unit disk 4 is called a BMOH (resp. BMOA) function if it is represented by the
Poisson integral of a BMO-function on d4. We denote by BMOH(A) (resp.
BMOA( 4)) the set of BMOH (resp. BMOA) functions in 4. Both BMOH(4) and
BMOA(A) are Banach spaces with BMO norm

||fi|*=sup,|~11—|fl |f—f;| 46 +L"|f(e"0)|d9.

Similarly, we can define BMOH and BMOA on a Riemann surface R. Let R be
a Riemann surface of hyperbolic type. Then, R is represented by A/I', where I' is
a torsion free Fuchsian group on 4. We denote by n the canonical projection of 4
onto R. A harmonic (resp. analytic) function f on R is called a BMOH (resp.
BMOA)-function on R if the lift via = is a BMOH (resp. BMOA)-function on 4.
We denote by BMOH(R) (resp. BMOA(R)) the set of all BMOH (resp. BMOA)-
functions on R. The space BMOH(R) (resp. BMOA(R)) is regarded as the set of
BMOH (resp. BMOA) functions on 4 which are automorphic for I'. Thus, they are
also Banach spaces with norm ||f],z = ||/ |, for f€ BMOH(R) or BMOA(R).

Next, we shall define another space of harmonic functions on R. As is well
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known, Hardy space H?(R) (1 < p < o) is the set of all analytic functions f on R
such that |f]” has a harmonic majorant on the Riemann surface R. The space H?(R)
is a complex Banach space with norm

1A, = (@-H-M.g|f o))",

where L.H.M ., stands for the least harmonic majorant on R and z, is a fixed point
in R. Let HB(R) denote the set of all (real valued) bounded harmonic functions on
r. It is a real Banach space with usual supremum norm. Here, we define a harmonic
version of H?(R).

DEFINITION 2.1. Let R be an open Riemann surface of hyperbolic type, and
let # : 4 — R be the holomorphic universal covering mapping with n(0) = z,. A real
valued harmonic function 4 on R is called an A”-function if the lift 4 o & of & is the
real part of an H” function on 4. We denote by 4#”(R) the set of hA”-functions on R.

The space h”(R) is a real Banach space with norm

[#llor.m = o m +i*@ o m) |,

where || - ||, denote the H?-norm on 4 and *(u  7) is a conjugate harmonic function
of u o with *(u - m)(0) = 0. From Riesz’ theorem ([8]), for a finite number p > 1,
h”(R) is equal to the set of real valued harmonic functions A satisfying that |h o z}?
has a harmonic majorant on 4. Furthermore, it is also equal to the space of
harmonic functions which are represented by the Poisson integral of I'-
automorphic L? functions on 04. Therefore, it is immediately obvious that
(hP(Q)* =h%4) if 1<p<oo, where g=1/(p—1). It is also known that
HB(R) = BMOH(R) < U, < » < o h"(R).

PROPOSITION 2.1 (Fefferman—Stein [5]). The dual space of h'(4) is
BMOH(A). More precisely, for every | e h'(A)*, there exists a unigue BMOH
Sfunction f such that [ is the extension of the linear functional:

1 2n
h—— j hf do
2n

0

defined on the space of bounded harmonic functions on A. Moreover, the assignment
from h'(A4)* to BMOH(A) is isomorphic. Namely, there exists a constant K > 0 not
depending on | such that an inequality

K=" < (120 = K11

holds, where ||| is the operator norm of I.



596 HIROSHIGE SHIGA

Next, we note a relation between the norm of functions in A'(4) and the L'!
norm of the maximal functions.

DEFINITION 2.2. For each point e’ € 04, the Stolz region at ¢® is defined by
AE®)={zed:|z—e? <2(1—|z)}. (2.1
We define the maximal function of a harmonic function # on 4 by

u*(e®)= sup |u(2)|
se A(eif)

By using the maximal function, we can characterize harmonic functions in 4 '(4).

PROPOSITION 2.2 (Burkholder, Gundy, and Silverstein: [6] Chap. T1I-3). 4
harmonic function u on A belongs to h'(A) if and only if the maximal function u*
belongs to L'(0A). Furthermore, there exists a constant C >0 such that

CMw*y < ullra < Cllu*]h,
holds for all u € h'(4).

There are some equivalent definitions of BMO (cf. [11]). Here, we mention the
following one which will be used later.

PROPOSITION 2.3 ([2],[9]). Let R be a Riemann surface of hyperbolic type. A
harmonic function h in R is in BMOH(R) if and only if

sup L.H.M.r|h — h(p)|(p) < .

PER

Furthermore,
Galth) = sup L.H.M.x |1 — h(p) |(p) + LH.M.x 1|z
defines an equivalent norm with the BMO norm |h||, g-

Let S be an open Riemann surface in Og, that is, has no Green’s function. A
subregion R of S is called to be an SO, end if it is non-compact and the relative
boundary dR consists of finite number of analytic Jordan curves. Thus, it is easily
seen that the class of SO,y ends is an extension of that of compact bordered
Riemann surfaces. Roughly speaking, an SO, z-end is a Riemann surface with very
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small ideal boundary. Because of this reason, it has many nice properties. Here, we
note the following one (cf. [14]).

PROPOSITION 2.4. Let R be an SO g-end with the compact relative boundary
OR. For every quasi-bounded harmonic function u, i.e., a harmonic function obtained
by difference of monotone limits of boundary harmonic functions, the following is valid.

(1) u is bounded near the ideal boundary.

(2) The Dirichlet integral of u is finite near the ideal boundary.

(3) (The maximum principle) For every subregion G of R whose closure does not

intersect with the relative boundary OR,

sup |u(z)| < sup |u(@)|
seCG zedG

holds for every quasi-bounded harmonic function u on R.
(4) u has a non-tangential limit almost every where in OR and every quasi-
bounded harmonic function is uniquely determined by the limit function on OR.
(5) For every p € R

L.H.M glu|(p) =J lu|do R,

where dw [ is the harmonic measure on R with respect to p.

3. Auxiliary results

In this section, we consider only an SO,z end R( =4/I') with smooth relative
boundary JdR. Let C,, ..., C, be the set of analytic Jordan curves of the relative
boundary 0R. We take the closed geodesics C - which are homotopic to C;
(j=1,...,n) and annular regions U,,...,U, in R bounded by C; and Cj
(j=1,...,n). Each U,udU; is conformally equivalent to an annulus 4;=
{z :0<r, <|z| <1} via a conformal mapping f; from U, onto 4, and C; corresponds
to the unit circle 04 under f,. Let 4,, ..., 4, be n copies of the unit disk 4 so that
each A4; is regarded as a subregion of 4; and 04; corresponds to C; via f;.

Now, take a harmonic function 4 € h'(R). Since 4 is a quasi-bounded harmonic
function on R, 4 has a non-tangential limits almost everywhere on C;= 04,
(j=1,...,n). Furthermore, the boundary functions is an integrable function on
0R with respect to the harmonic measure on R. Denote by 4, the solution of the
Dirichlet problem with respect to the boundary function of A in 4; (j=1,...,n).
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More precisely, it is the solution of Dirichlet problem for 4 o fj‘l on 4. Then, hAj
belongs to #'(A;). Indeed, it is easy to see that the modulus of the conjugate
harmonic function of A 4, has a harmonic majorant in A;. Therefore, the conjugate
harmonic function has the non-tangential boundary function on the unit circle
which is an integrable function with respect to the Lebesgue measure. This implies
that h, belongs to h'(4,).

The purpose of this section is to prove that 4'(R) is isomorphic to IT/_, h'(4)).

To show it, we shall estimate the L' norm of the maximal functions. Since
hy, € h'(4;) for h e h'(R), the maximal function A% of ha is in L' as a function
Ui=104; = Ui~ C;. Here, we define a ‘local’ maximal function h% of hy, is in L'
as a function on J/_, 04, = |J/_,C;. Here, we define a ‘local’ maximal function
h¥. on OR as follows:

Let n be the universal covering mapping from 4 onto R. Then = is extended
continuously to subarcs of 4 which corresponds to dR. Thus, we can take closed
arcs I;,...,1, in 04 such that n is an injection on the interior of (J;_, /; and a
surjection from I, onto C; (j=1,...,n). For each p e dR we define the local
maximal function of h by

ht(p) = (h o m)*(e®),

where e is a point in I = (J/, I, with n(e”®) = p. Note that ¥, depends on the
choice of I}, ..., I,. By using the identification fo C; and 04;, h}% is regarded as a
measurable function on IT}_, 04;.

We use the space {h¥ :h e h'(R)} as an intermediate space between A'(R) and
I17_, h'(4,). First, we compare {h}%, :heh'(R)} with h'(4)).

LEMMA 3.1. Let h be a harmonic function in h'(R). Then there is a constant
K > 1 not depending on h such that

SO CEICAES SH TR
J= J=

where both ||h% |, and ||hf.|, and L' norms with respect to the Lebesgue measures
of hj,‘l and hif. on 04; and II}_ | 04;, respectively.

Proof. We take a neighborhood V; of I, so small that on(}; n4) is a compact
subset of U,. Since = is extended conformally beyond 7, (f; o n)" #0in (V;n4) U I,
Hence, there exists an angle a > 0 which is greater than that of the Stolz region
(2.1) such that for all p € C; a Stolz region A(p) 4; at f;(p) € 04 with angle a
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contains f;(n(A4(e®) N V,;)), where A(e’) is the Stolz region defined by (2.1) at Sec.
2 for e” € I; with n(e®) = p. Obviously, for e € I,

sup |hom| < sup Ih n|+ sup |hon|

A(ei0) A(e0) — AeOynv,
= |h om|+ sup |A|. (3.1)
A(e‘o) n(A(e0)nV;)

Set u;(z) =hof;'(z) —h 4,(2) for z € f;(n(V; N 4)). The function u; is harmonic on
an annulus W, = {z:0 < p; < |z| < 1} which contains f;(n(V; N 4)). Since h - ;' and
h,, have the same boundary value on 04;, u; vanishes identically on 04;. R is an
SOy end, so we have

L.HM g |h|(f7'(w;)) =J lg| d>f-1, for a fixed w, e W,.
OR

Noting that the ratio of harmonic measures dwg-1,), to dwﬂj is bounded on
C; =04, and vice versa,

J |h|dw}f.1(wj)SKJ; lhdjlda)ﬂ; (j=1,...,n) (3.2)
') 4;

for some constant K not depending on A.
Since dn(V; n 4) is a compact subset of R, Harnack’s inequality implies that there
exists a constant K’ such that for all z € f;(on(V; N 4)),

;)| < |h o f; '(2)| + |hs)(2)| < LHM.g |h|(f7'(2) + L.HM.4|hy |(2)

<K Y | |hy| dod (3.3)

ji=1Joa;

and |u,(z)| < K" Z}_ faa, |y, | deo fjj in f;(V;) because u; = 0 on 84,. Therefore, we have

i <sup Jhy |+ sup | S HEHD) K Y | fhy|doil, (34)
j=1Ja

n(A(e lo)n ) 5@V, 2) 4
where (-)** means the maximal function determined by A

Next, we shall estimate sup 4.»)_ v, | o 7|. For each e” € I, the set n(A(e”®) — V)
is a subset of R—Uj_, ¥, and R—Jj_, V; is also an SO, end. From the
maximum principle for SO, ends, we have

hom|= |h| <  sup |h|<  sup L.HMylhl|

A(e ,g)_ n(A(e 10) on(U] =1 V n4) on(Ul = V;n4)
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Harnack’s inequality and (3.2) show that

hon| <K’ h, | d 3.5
A(elo) ‘ nl ng J\ i 4 ‘ w ( )
From (3.1), (3.4) and (3.5), we have for p € C;

loc(P) S h**(P) + K’ Z Ihdli dwﬂf'

J=1Jo4;

Integrating both sides, we have
latells < lA%x ]+ K Z lha,-l doy,. (3.6)

From the definition of A' norm, the L' norm of an A! function is less than the A'
norm. Thus, from Propositon 2.3,

[Afe]ls < KJ_:ZI [A%* 1.

It is known that the L' norm of the maximal function defined by a ‘wider’ Stolz
region A( p) is equivalent to the L' norm of the maximal function defined by the Stolz
region (2.1) ([6]). Thus,

AR SHTIN

The similar argument shows that the L' norm of the maximal function of hy, is
bounded by that of A, from above, and it shows another inequality. [J

Forh € h'(R) thelift & o nisa I'-automorphic function on 4. However, the maximal
function (h ° m)* may not be I'-automorphic because the Stolz region (2.1) is not in-
variant under non-trivial transformationsin I". But the following inequalities are valid.

LEMMA 3.2, Let I,,...,1, be the same ones as before. Then for each point
e®el=\)/_, I, and for each y € I', inequalities

(h om)*(e®) — (h o m)¥(y(e®)) < K'[ |h| do ¥, (3.7a)
oR
and

(h o m)3(p(e®)) — (h o m)*(e®) < K f k| doo®, (3.7b)
OR
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are valid for some constant K which does not depend on h, where (-)* is the
maximal function defined by (2.1) and (-)¥ and ()} are the maximal functions
defined by Stolz regtions whose angles are certain ones, a and B, respectively (see the
proof below).

Proof. Let r[e”] denote the radius from the origin to ¢ and let V,(E) de-
note the e-hyperbolic neighborhood of E < A. Since r[y(e®)] is a hyperbolic
geodesic in 4 for every y € I', so is y ~'(r[y(e®)]) which connects y ~!(0) with e®.
The point e? in I is not in the limit of I'. Therefore, the Euclidean distance
between e” and (J),.7y(0) is positive. Moreover, we see that there exists a
constant K >0 which does not depend on e” € I such that |y ~'(0) —e”| > K for
allyer.

From the definition of the Stolz region, we verify that there exists constants
g, ¢’ > 0 such that V,(r[e®]) = A(e®) = V. (r[e?]) for every e € 04, where A(e®) is
the Stolz region for ¢ defined by (2.1) at Sec. 2. Since y e I' is an isometry with
respect to the hyperbolic metric, we verify that y(4(e®)) o V,(r(y(e”))). Consider-
ing that y ~'(0), the initial point of y ~!(r[y(e?)]), is far from e we see that there
exists a neighborhood U(e®) of e such that

rle®1nU(e™) <y~ (V. (rly(e®)) n U(e®)

<y~ (A(™) N U(e?)

for all y e I'. Thus, there exists a neighborhood U of I such that for all e? € I and
for all yerI', rMe®]1nU cy - '(A(y(e®))) nU. We may take U satisfying that
U < r 7(U) N 4 does not contain the origin and any hyperbolic geodesic never goes
out from U if once it enters there. It is always possible because n(0) = z, ¢ [}~ U;.
And as in the proof of Lemma 3.1, we take an angle o which is greater than the
angle of A(e®®) so that A(e®)NnU <y~ '(4,(y(e®))) nU for all y eI’ and for all
e e I, where A, denotes Stolz region whose angle is . Similarly, we take an angle
B such that y ~'(A4s(y(e?))) "U = A(e®)n U for all y e I' and for all e® € 1. Since
|h o m| is I'-automorphic, SUp4q iy [h © 7| = SUP, —1 4¢e 0y [ © |. Thus, we have

(hom*Ee®)= sup |homn|< sup |hom|+ sup |homl.

y ~1(A(e 0)) A(e¥)ynU A(e0) — A(e0)A U
Then, from the relation y'(4,(y(e®)))nU > A(e®) N U,

sup |hom|< sup |h o m| < (hom)¥(e®). (3.8)

A(e®ynU y ~ WA (Pe®N)NU
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On the other hand, n(4(e®) — A(e®) "U) = R — n(U). Hence, from the maxi-
mum principle for SO, ends,

sup lhon|< sup |h|.
A(e9) — A(e®)nU (U 4)

Since 0n(U n 4) is a compact set in R, from Harnack’s inequality,

sup |k|< sup L.H.M.R|h|sKLR b dew ® (3.9)

on(Un 4) on(U ~ A)

for some constant K. From (3.8) and (3.9), we have

(h o m)*(e™®) < (ho m)*(y(e)) + Kj |h| dw ¥ (3.10)
oR
Conversely,
sup  |hom|< sup |hom|+ sup |h o =)
7 = dpr(e0) 7 =AM AU 7 =1 ApGe ) — 7 = (AgGe M AU

Considering y ~'(45(y(e”))) N U = A(e®) n U for all ¢ € I', we easily verify that the
similar argument as above gives the proof of another inequality

(hom)E(e®)) < (hom)*(e®) +Kj

|h| dw ¥ . (3.11)
OR
Thus, we have shown the desired inequalities (3.7a) and (3.7b). O

By using the above lemmas, we show that the ' norm of 4 in R is equivalent
to the &' norm of (4, , ..., h, )in \J/_, 4;, which is the main result of this section.

PROPOSITION 3.1. There exists a constant C > 1 such that

CYh|aye = .Zl Iha lcty.a, < CllA]lry.z-
Jj=

Proof. Because of Proposition 2.2, it suffices to show that similar inequalities
are valid for maximal functions which correspond to h and 4, .

By taking a conjugation of I in PSL(2,C), we may assume that n(0) =
2o ¢ U7 U;, where each U, is the regions defined at the beginning of this section.
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Since R is an SOy end, the linear measure of the limit set of I on 04 is zero.
Indeed, let y, be the characteristic function of the limit set A(I") of I'. The
solution of the Dirichlet problem H{ for y, is a I' automorphic function because
the limit set A(I') is invariant under I'. Hence it is regarded as a lift of a bounded
harmonic function on R which vanishes on the relative boundary dR. Since R is
an SOy end, it must be zero and so is H,. Therefore, the linear measure of the
limit set is zero.

Thus, we may consider the maximal function (4 - m)* only on Q(I') nd4,
where (I') is the region of discontinuity of I'.

We define a function 4 for 4 on 94 by the following way.

For a point e®el, we set i;(e"") = h.(p), where p is a point in dR with
n(e®) = p. For a point e® e y(I) (y € I' — {id.}), we set h(e®®) = h(y ~'(e™)).

Since 4 is an automorphic function on 04, the solution of the Dirichlet
problem H7 is an automorphic harmonic function too. This implies that H{ is a
lift of a harmonic function on R whose boundary value on 0R is A%.. Noting that
the ratio of the harmonic measure dw X on dR to that of 04 is bounded and vice
versa, we have

C——l 2n N C 27!A
s < (|hk |, S =— s 12
|, Al < Jasel <5 | (312

for some constant C > 0. Since (), ry({) =04 — A(I') and the linear measure of
A(T) is zero, we have from (3.7a), (3.7b)

h(z) — (h o m)*(2) < Kj Ih| dook,,
R

and

(h o T)%(2) — h(z) < Kf |h| dow ¥

[3]
for almost all z € 04. Integrating both inequalities, we have

il = Pz o+ [ o, (3130
and

i by < il K [ bl o, (3.130)
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Since |h¥|,, [|A%],, and |Ah*|, are comparable to each other and since
2] < ]|y < C|lA*||:, from (3.13a) and (3.13b) is follows that

”’;”1 <K

h*|

15 (3.14a)
and

|*], < K|k, (3.14b)

for some constant K’ > 0. Thus, we have from (3.12)

(€KY~ ], < [l < K

h*|,.

On the other hand, we know that the L' norm of A%, and the L' norms of the
maximal functions of hy (j =1, ..., n) are equivalent to each other ( Lemma 3.1).
Hence, we conclude that the L' norm of the maximal function of 4 and the sum of
the L' norms of the maximal functions of A 4, are equivalent and we obtain the
desired inequality for maximal functions. [

Since HB(4) is a dense subset of 4'(4), we have immediately the following from
the above lemma:

COROLLARY 3.1. Let R be an SO g-end with the relative boundary dR. Then,
HB(R), the set of bounded harmonic functions on R is dense in h'(R).

4. Proof of Theorem 1

Let / be an element in A'(R)*. Each h € h'(R) has a boundary function on 0R.
We use the same letter 4 for it. Take a function A 4 which belongs to 4'(4,) as in
Sec. 3. Then, we define a linear mapping L of 4'(R) to a Banach space IT/_, h'(4;)
by

Lihs(hy,s... hy).

Obviously, the mapping L is injective. And Lemma 3.2 implies L is bounded and
L' is also bounded of L(h'(R)) onto h'(R). Hence, /o L' is an element in
L(h'(R))*. Therefore, by the Hahn—Banach theorem, / ° L ~! extends to an element
in (IT/_, h'(4;))*. Thus, from Proposition 2.1 we obtain a function



H'-BMO duality on Riemann surfaces 605

8 =(&u,. -8, inII'_, BMOH(4;) which corresponds to / - L~'. In particular,
for every h € HB(R)

n Al

) =1oL-NL®) =Y. | (hof Vg, db

j=1Jaa,

doR

Zg?

lI-Ma

[ S} (db)
¢ h(gl,j f})( dwfo

j=1

where f7 (d0) is the pull back of the measure df, and f; is the conformal mapping
give in Sec. 3.

Since HB(R) is a dense subset of #'(R) (Corollary 3.1), we verify that a solution
of the Dirichlet problem H for g e L'(0R) induces /, where §; is a measurable
function on JR with

*(db
i) = (a1, X (S

)(p) ifpeC,(j=1,...,n).

Therefore, in order to prove Theorem 1, we must show that Hf € BMOH(R) if
g, €II7_, BMOH(4;). The function (f} (d)/dwX )(p) is continuous and it is equal
to an analytic function (—if}(dlogz))/(dwf +i* dwf) on dR. Thus, from a
theorem by Stegenga [12] we see that Hf|, is a BMOH(U,) function
(j=1,...,n), where U, is the annular region defined at the beginning of Sec. 3.

Indeed, (—if}(d logz))/(dwf +i* dwf)) is a sufficiently smooth function on
04. Hence, a mapping

—if} (dlog z)
dof +i* dof

[} (d9)

dof

g (fi'@) =¢ (fi'@)
defines a BMO multipler and it defines a bounded mapping on BMOH(U;). We can
take a constant K, >0 which does not depend on / so that

318 S sy S Ko e
Jj=

j=1

* (4.1)

where ||, o f; " x.4 is the BMO norm of

* (de))

~ —1 —1
gjof; =g1,j( 7 | o/
doz,

as a function on (Mj.
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Therefore, Hy/ ;1 is BMUOH in 4;. On the other hand, Hf —Hy/.,—1 ofiis a

bounded harmonic function in U,. Therefore, H §,| U, is a BMOH function in U,.
By the same argument we can show that for every (g,,...,g,)€

II}_, BMOH(4;), (Hf|y,, . .., HY|y,) belongs to IT7_, BMOH(U,), where g is a

measurable function on dR with g(p) =g;(p) if pe C; (j=1,...,n). Moreover,

LEMMA 4.1. The mapping

(gla"-9gn)H(Hg|Uls--'9H§|U,,)

defines a bounded mapping of II}_, BMOH(4;) to I1}_, BMOH(U;).

Proof. For simplicity, we assume that n = 1, but the following proof also works
when n > 1. Suppose that the above mapping is not bounded. Then, there exists a
sequence {g,, }ro_, such that the BMO norms in 4, converge to zero, but the BMO
norms of H} |, in U, is one. Let /,, (€h'(4,)*) be linear functionals determined by
gm(m=1,2,...). Then, we have

el = [ 1enl? 88 = ()] = i L
1

Therefore, the L, norms of {g,}°_, on 04, also converges to zero. Hence,
{HE }»_, converges to zero uniformly on every compact subset of R. Indeed, for
every point p € R

. dof \
[, lemldof = [ tenl( 705 )12 .

and a function dwR®/f¥(d) is continuous on dR. Thus, lim,, , ., [z g | dwy =0
and we verify that HY — 0 uniformly on every compact subset of R as m — co.

Therefore, Hf — H3'.,-1°f;—0 uniformly on U, as m —» oo and so do the
BMO norms, because they vanish on dR. Hence, the BMO norms of {HY |, =
Hf —Hj' .+ Hj3' .1}  converge to zero as m — oo and it is contradic-
tion. I

We have shown that the function g, induces / € (h!(R))* and H ?,lu, are in
BMOH(U;) (j=1,...,n). To complete the proof of Theorem 1, we shall show in
Lemma 4.2 below that the mapping

R R R
(Ha?llUl’ ctc H§1'Un) HHEI
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is a bounded mapping of I1}_, BMOH(U;) to BMOH(R). Then, from Lemma 4.1
we verify that the mapping g — Hf is bounded from IT/_, BMOH(4;) to
BMOH(R). On the other hand, from the construction of g, and from Proposition
2.1, we verify that there exists a constant ¢ >0 such that

3l b <<l
j=
Therefore, there exists a constant K, > 0 such that

IANESE

On the other hand, § € BMOH(R) induces an element [ € A I(4)* whose opera-
tor norm on h'(4) is greater than that of / on 4!(R) because 4!(R) is regarded as a
subset of h'(4). Hence, from Proposition 2.1,

120 < 11] < K12 [ .o

for some constant K, >0 and we obtain the desired inequality (1.1).

Conversely, an argument similar as in [13] shows that every BMOH function on
R induces an element in A'(R)* uniquely. And the statement of Theorem 1 is
proved.

Hence, we must show the following lemma which implies that BMO property is
a boundary property in SO, ends.

LEMMA 4.2. Let h be a quasi-bounded harmonic function on an SOyzend R.
Suppose that h|y (j=1,...,n) belong to BMOH(U,). Then, h is a BMOH function
on R. Furthermore, the mapping

(hly,s-- -, hly)—h

defines a bounded mapping of 1I;_, BMOH(U;) to BMOH(R).
Proof of Lemma 4.2. From Proposition 2.3,

GU/(h)<oo (j=1,...,n),
where

Gy,(h) = sup L.H.M.y |h — h(p)|p) + L.H.M.y |h|(z)). (4.2)

pe U;
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In order to show that 4 belongs to BMOH(R) and that the above mapping is
bounded, it suffices to prove that

G <K Y Gy, (h) (4.3)

j=1

for some constant K > 0 which does not depend on 4 (Proposition 2.3).
Considering the absolute continuity of the harmonic measure on R to harmonic
measures on U, (j=1,...,n), we confirm that

LHM. g|hl(zo) < Y, LH.M. h|(z)

Jj=1

is valid for some constant K > 0.

We denote by gr(z, w) (resp. g;(z, w)) Green’s function on R (resp. U;) with
pole at w. To estimate L.H.M.x|h — h(p)|(p). we take doubly connected subregions
V;and V] of R (j=1,...,n) satisfying the following conditions:

(1) One of their boundary curves is C;, and other boundary curves are analytic

Jordan curves in R which are homotopic to C;.

(2 ViuoV,cV,cV,udV,cU,.

We will show that there exists a constant k, > 0 such that

klgj(z9 W) 2 gR(z’ W) > Os (44)

for all (z,w) e V; x V7.

To show (4.4), put s5,(z) =k,g;(z, w) — gr(z, w) for some k, > 1. The function
s, () is a superharmonic funtion and vanishes on C;. Hence, if 5, >0 on d¥; for
every we ¥V then s,>0 in V; from the minimum principle. For z e dV,
5,.(z) = s,(w) because of the symmetric property of Green’s functions. When we
fix a point z on OV, it is easily seen that for sufficiently large k; > 1, 5, >0
on a compact subset K; of V,. Since s.(w) is a continuous function for (z, w),
we verify that there exists a sufficiently large k, > 1 such that s,(w) =k,g;(w, z) —
gr(w,z) >0 on 9V, x K,.

Next, we take a point w € C;. In a neighborhood of w, Z =g, +i*gp = X +iY
and W =g, +i*g; = U + iV are local coordinates. The function U vanishes along C f
which is the Y-axis. Thus,

oU
6_Y=0 on C;.
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Therefore,

a—,;eo on C;.

Thus, there exists a constant £k > 0 and a neighborhood 4,(z) of C;, which may
depend on z, such that g;(w,z) = U 2 kX = kgr(w, z) >0 for every we 4,(2).
Considering the continuity of Green’s functions for (z, w) again, we see that there
exists a neighborhood A, of C; such that

kg,(zs W) _gR(Z, W) 20
for (z, w) € OV, x A4;. Since V; — A4, is a compact subset of V;, the above inequality

holds for every (z, w) € 0V; x (V; — A;) because of the previous argument. There-
fore,

$,(2) = k1g,;(z, w) — grlz, w) >0

for (z, w) e 0V; x V} and (4.4) holds. It is known that for p € U,

(z, p) ds

1
LHM., lh — h(p)|(p) = o J; |h(z) —
UI

and

L.HM.g|h—h(p)|(p) = f i(z) — h(p)| 3

where s(z) is the length function and n, is the inner normal vector at z € IR N 0U,.
Hence,

1
sup L.H.M.q, |h = h(p)|(p) = 7 sup L.H.M.x |t — h(p)|(p).

From the maximum principle, we have for pe R —Jj_, V;

LHM.gh—h(p)|(p) < L.HM.g|h|(p) + |h(p)|

<2 sup L.HM.|h|.
U’l

j"l
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Harnack’s principle gives inequalities

sup L.HM.g|h| <cL.H.M.y|h|(z)

U _ 0%
for some constant ¢ > 0. We complete the proof of the lemma. [

The construction of g, implies that g, induces / € h'(R)* for every function in
HB(R). Since HB(R) is dense in h'(R) (Corollary 3.1), we conclude that the
boundary function g, of a BMOH function Hf induces / € h'(R)*.

REMARK. As mentioned in the introduction, the relation (H'(R))* =
BMOA(R) does not hold on all Riemann surfaces in SO,z. In fact, there is a
counter example which is given by Heins [8]. His interesting example means that the
ideal boundary of harmonic measure zero is not negligible for certain kinds of
(quasi-bounded) analytic functions.

5. Conditional expectation and BMO

Let R be a Riemann surface which does not belong to the class Og;, namely the
Riemann surface R has a Green’s function. The Riemann surface R has non-con-
stant positive superharmonic functions. So, the universal covering surface of R is
(conformally equivalent to) and unit disk 4. Therefore, R is represented by a
Fuchsian group I' as 4/I'. Here, we consider a Borel o-field X(I') for I'. A Borel
subset U = 04 belongs to Z(I) if for each y, [U©y(U)| =0, where |-| means the
Lebesgue measure on 04 and 4 © B is the symmetric difference of the sets 4 and
B. We denote by L?(I') (1 < p < ) the set of all Z(I') measurable functions which
are in L?(04), the L? space with respect to the Lebesgue measure on 04.

DEFINITION 5.1. For each measurable function f in L?(04), there exists a
unique function E.[ f] € L?(I') so that

Jf(e"") do =j E [f]d6

for all U € Z(I'). We call E.-[ f] the conditional expectation of f.
The existence of E[f] is guaranteed by the measure theory (see Fisher [3] for
details). It is easily seen that E.[f] is I'-automorphic, that is,

E[f)(v(e®) = Er[fle®)

for all y € I' and for almost all e € d4.
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Now, we consider to characterize the dual space of A!'(R) in terms of the
conditional expectation E,. Take any element / € h'(R)*. Considering the lifts of
functions in A'(R), we see that h'(R) is regarded as a subspace of 4'(4) = Re H'(4).
Hence, by Hahn—Banach theorem, / is extended to an element /* of (Re H'(4))* and
it is given by a BM O -function ¢ on d4. Take any function A € L*(04). Then we have

I*(h) = j ho d6.
o4

If h is I'-automorphic, namely it is a lift of some HB(R) function, then

I(h) = I*(h) = f

a

ho db
A

- J E [ho) d = J. hE[¢] d.
od o4

The last equality is due to a property of the conditional expectation. Thus, / is
induced by E[¢]. Conversely, it is also seen that E.[¢] (¢ € BMO) induces an
element in A!(R)*, and we have established the following.

PROPOSITION 5.1. Let R be a Riemann surface represented by A[T'. If HB(R)
is a dense subspace of h'(R), then h'(R)* = E.[BMOH(4)).

The conditional expectation gives automorphic functions, like the Poincaré
operator. From the elementary view of the measure theory, we verify that E is a
bounded mapping from L?(64) onto L?(I') (1 <p < o0). From Theorem 1 and
Proposition 5.1, the similar results holds for BMO when the Riemann surface is an
SOy end.

COROLLARY 5.1. Let R = AT be an SOyp end. Then, the conditional expec-
tation E, is bounded linear mapping of BMOH(A) onto BMOH(R) o m.

Proof. From Corollary 3.1, the hypothesis of Proposition 5.1 is satisfied. Hence,
E [BMOH(4)] = (h'(R))*. Thus, Theorem 1 implies that for each ¢ € BMO(d4)
there exists a function f, €e BMOH(R) such that

J hE [¢] b =J h(f, o m) do
aqd a4

holds for every & € h*(R) o n = LX(I"). Therefore, E;[¢] =f, o n (€ BMO(04)) al-
most everywhere in d4. O
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REMARK. Earle-Marden [2] gives an explicit form of E. on L?(R) (p > 1)
for a compact bordered Riemann surface R in terms of the Poincaré series for I'.
But, to the best knowledge of the author, no explicit form of E. on LP(0R) is
known for a general Riemann surface.
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