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Homology of maximal orders in central simple algebras

MlCHAEL LARSEN*

§0. Introduction

Let R be a Dedekind domain whose quotient field K is a local or global field.
Let L/K dénote a finite separable extension and 0 the intégral closure of jR in L. It
is known ([3]) that there are (non-canonical) isomorphisms of Hochschild homology

groups

HH*(0) s HH?+2(0) V/i * 1, (0.1)

and moreover that HHf(0) 0. Thèse two facts greatly facilitate the compilation
of the cyclic homology HC£(0) ([3]).

This paper présents non-commutative analogues of the main results of [3]. In
particular, L is to be replaced by a central simple algebra D over K, while O is taken
to be a maximal i?-order in D. Of course, (9 is not, in gênerai, uniquely defined by
R and D, but it turns out that the homology of O/R is independent of the choice
of maximal order. We prove that (0.1) remains valid in the non-commutative
context but that the odd Hochschild homology groups vanish.

The first section is devoted to generalities on Hochschild homology. We do not
claim to prove any new resuit but only to establish notation and give self-contained

proofs of various facts for which we could not find convenient références. The main
results, the periodicity theorem and the vanishing theorem, are proved in §2 where
R is a complète discrète valuation ring with perfect residue field. We construct an
élément in Hochschild cohomology such that Yoneda product gives the desired

periodicity. The calculations needed to compute the low-dimensional Hochschild
homology groups are laborious, but the resulting formulae are quite simple. The

globalization is carried out in §3 and is completely standard. The vanishing of odd
Hochschild homology causes the Connes séquence to split into small pièces, so it is
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614 MICHAEL LARSEN

easy to compute cyclic homology, in both the local and the global case, up to
extension. This is explained in §4, where the extension problem is partially solved by
an application of the universai coefficient theorem.

§1. Gêneralities

(1.1) Let R be a commutative ring and A an associative, unital flat i?-algebra.
Let Ae A ®RA°V, where Aop is the opposite ring of A. Then A has a natural
structure, Ah of left y4e-module and a natural structure, Ar, of right ^-module.
Hochschild homology is defined as

(,4):=Torf (Ar9At),

and Hochschild cohomology is defined

The Yoneda pairing gives natural maps

HH^(A) ximnR(A)-+mi&apos;Z + n(A) (1.1.1)

and

HH£ + „ (A) x HH^ (A) - HH£ (A). (1.1.2)

(1.2) There is a natural resolution, known as the standard resolution ([1] IX §6),

of At as ^4e-module:

^A &gt;0 (1.2.1)

where

and
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The complex (1.2.1) is acyclic because

Throughout this paper, A is always a projective R-module, so (1.2.1) is always a

projective resolution. There are natural isomorphisms

Ar ®AeA®n^A®n-1

and

Hom^ e {A ®n, A) £ Hom^ {A ®n ~ 2, A).

Therefore, Hochschild homology is the homology of the complex

where

b(xQ® &quot;-®xn)= b&apos;(x0® -&apos;®xn)+(- l)nxnx0® • • • ® xn_

Similarly, HH* is the cohomology of the complex

0-&gt; A-&gt;Hom^ (A, A)-+HomR (A®2, A) -&gt;Hom/? {A®\ A) -&gt;•••,

where the boundary of the multi-Z?-linear function/: Axn-&gt;A is

(df)(x0, ...,*„)= xof(xu xn) -f(xoxu x2,..., xn) +f(x0, xxx29..., xn)

--&gt; + (-\)nf{x0, ...,xn_xxn)

-{-\)nf{x0,...,xn_x)xn.

(1.3) Let F 6 Hom^e (^&lt;8&gt;w + 2, A) represents an élément of HH^ (A). We define

Fo to be the ^fe-linear map sending

]\-&gt;F(x0®&apos; -®xn®\)®xn+l.
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We extend Fo to a map of complexes

&gt; A®* A®3 A®2 &gt;0

where

Fm(x0® • • -®xn + m+l) — \)mnF(x0®&apos; &apos; -®x

This diagram commutes because the cocycle relation for HHW implies

F(b&apos;(x0®- ¦ -®xn+i)® 1) =F(b&apos;(x0®¦ ¦ ¦ ®xn+,® 1) +(-1)%®• • • ®xn

(-l)&quot;F(xb®-¦•«&gt;*„ + ,);

therefore,

-(-\yF(.xo®---®xn®\)®bXyo®---®ym))

(-l)mn(F(x0®---®xn + l)®yl®---®ym

-F(x0®- --®xn® l)b&apos;(xn+l ®y,® • • • ®ym))

We conclude that the pairing (1.1.2) is given by

where

xH) F( 1 ® *, ® • • • ® xn ® 1).
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(14) An élément of HH^ (A) îs called a Hochschild extension ([5] 25 C) It îs

équivalent to an jR-spht iÊ-algebra extension of A by the square-zero idéal /,

such that / îs a free ,4-module of rank 1 To obtam a cocycle représentative, choose

any iÊ-linear section c A -*A2, and set

f(a,b)=c(a)c(b)-c(ab)

In particular, if V îs a discrète valuation ring with umformizer n and residue field
k and W îs a F-algebra, we hâve an extension

0 —&gt; W/nW-^&gt; W\%2W W/nW-^0

which gives nse to an élément of HH£ (W/nW)

(1 5) Let A be an iÊ-algebra and R&apos; a commutative i^-algebra, and let
A&apos; A ®RR
Then

A ®R ®R A&apos;^A ®RR&apos;®R A ®R®Rf ®R® ®RRr

(A ®R ®RA) ®RR\

so the universal coefficient spectral séquence says

E2pq Tor* (HH^ (A), R) =&gt; HH^+ (A)

When R&apos; îs flat over R,

HH;O4&apos;)sHH£O4)®*ir (15 1)

When R îs a discrète valuation ring with unifomizer n and residue field K9

(A) ®R R/nkR®TorR (HH^_ (A), R/nkR)

PROPOSITION (16). If AIR is an Azumaya algebra, then there exists an

invertible R-module M such that

0 otherwise
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Proof By [2] 5.1, there exists an integer neZ^1 and a faithfully flat étale

R -algebra R&apos; such that Af Mn(R&apos;). By Morita équivalence,

otherwise.

By faithful flatness, HH* (A) 0 for p &gt; 0. By faithfully flat descent for line
bundles, HH*(A) is the module of sections of a line bundle over R, i.e., an
invertible i£-module.

COROLLARY (1.7). IfR is an intégral domain with fraction field K and A is an
R-order in a central simple algebra D/K9 then HH* (^4) is a torsion module for p &gt; 0.

Proof Setting R&apos; K, A&apos; D, and applying (1.5.1), the resuit is an immédiate

conséquence of 1.6.

§2. Discrète valuation rings

(2.1) Let V be a complète discrète valuation ring with a uniformizer n, perfect
residue field k, and fraction field K. Let kf\k be a cyclic extension of degree n ^ 2,

and let a dénote a fixed generator of Gai (k&apos;jk). There exists a unique discrète

valuation ring V\ finite and unramified over V, such that the residue field of Vr is
k&apos; ([6] III Th. 2). If Kr dénotes its fraction field, there is a canonical isomorphism
Gai (K&apos;/K) A Gai (k&apos;/k); we view a indifferently as an automorphism of A:&apos; or of
K&apos;. By [7] IX Prop. 11, there exists a simple algebra D/K such that as ^-vector
space, D s K\x\j{xn — n), and the multiplication is given by the rule

(*,xa&quot;XMfl2) =*i*2ai*fll + fl*- (2.1.1)

The reduced trace of an élément k € K&apos; is Tr^^A:), while the trace of kxa is zéro for
1 &lt;, a &lt;n ([7] IX §3 (8)). The (unique) maximal order G in D is the F-span of
expressions vxk, where v eV and k ^ 0. There is a natural Z/«Z-grading, Gr* on
G given by

Gr*(0) jc*K&apos; V&apos;xk, 0£k&lt;n.

PROPOSITION (2.2). With notation as in 2.1,
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Proof. Computing with the standard complex, we obtain

0],

By [6] III Prop. 12, we can choose vQ e V such that V V[v0]; in particular, the

(mod n) réduction of v0 is a primitive élément of the extension k&apos;/k. For 1 &lt;&gt; i &lt;n,

Vq — v0 is therefore invertible, so the set of commutators

{[v0, vxl] 1v e V&apos;} {v(v$ - vo)xl \veV&apos;} V&apos;x1 Gr&apos;(0). (2.2.1)

Moreover,

{[x, vxn~ l] | v e V&apos;} {n(va -v)\veV&apos;}

{x g V | Tr^x) 0}n cz Gr°(«) (2.2.2)

by [6] X Prop. 1 and [6] XII Lemma 3. But every commutator lies in x(9 and has

reduced trace 0, so every commutator is a sum of an élément of (2.2.1) and an
élément of (2.2.2). Therefore,

HHjf (0) s Gr\(9)l{x e V \ Tr^x) 0}tt.

As VeIVis unramified, the relative différent is trivial, so the restriction of TrK&gt;/K is

a surjective map from V to V. The proposition follows immediately.

PROPOSITION (2.3). With notation as in 2.1,

HH\(J9)=0.

Proof. We use the standard complex to compute Hochschild homology. For
éléments a, fi e (9 ® v (9, we write a ~ p whenever a-jîe b{(9®2). Thus HHf (0)
consists of ker (0 ® v (9 -? (9) modulo the équivalence relation ~. The relation

a®xb ~ax®b + ba®x &quot;ia.be (9 (2.3.1)

shows that every élément of (9 ® v (9 is homologous to an élément of
0®x + (9®V.

The Z/wZ-grading Gr* on CD extends to the standard complex for Hochschild

homology and thus to a grading on Hochschild homology itself. The proposition is

équivalent to the claim that Gr*(HH}&quot;(0)) =0 for ail k.
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Suppose k ^ 0. Every a e Gr* ker (0 ® v (9 -* (9) is homologous to an élément
a&apos; e Gr* ker (0 ® v (9 -? (9) such that

a&apos; € vxk~ l®x + V&apos;xk® V\ v e V&apos;.

As vQk — vQ is invertible, we can set

V
W T

so

^) e (wvf - vow)xk~ 1 ®x + (9 ® V

It follows that a&apos; is homologous to

a&quot; g (V&apos;xk® V) nker (0 ® © -+(9).

As F&apos; K[y0], and

a®vQb ~avo®b +ba®v0 Va9be(9. (2.3.2)

Since &gt;&gt;® 1 =b(y® 1 ® 1) for ail y, this means a&quot; is homologous to v&apos;xk®voe

ker (# ® 0 -&gt; ^) for some v&apos; e F&apos;. Hence v&apos;xkv0 vov&apos;xk, or

In other words, t/ 0, so a ~ 0.

If a g Gr° ker (0 ® v (9 -&gt; 6^), we apply (2.3.1) to find a7 - a such that

a&apos; g vxn~ l ® x + K&apos; ® K\

for some v e V. As è(a&apos;) =0, va — v =0, so t; g F. But repeated application of
(2.3.1) gives

Xn~lW®X

WXn~l®X + XWX&quot;~2®X + • • * +Xn~ lW®X
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As V is unramified over F, vxn ~ l ® x ~ 0. Every élément in V ® V is a boundary
since by [6] III Prop. 14, HHf (K&apos;) QXV1V is annihilated by the différent of V&apos;/V,

which is the unit idéal.

KEY LEMMA (2.4). Let Xdénote the kernel ofb&apos; :@®3-+®®®. Then there exists

a surjective map &lt;j&gt; : X -+G such that M — ker (&lt;/&gt;) is a projective left-(9 e-module.

Proof. Let se V&apos;{x) dénote the twisted polynomial ring in one variable x
satisfying (2.1.1). Thus A is the quotient of se by the two-sided idéal (xn — n). By
1.4, the short exact séquence

0 A ^ sé\(xn - n)2sé &gt; A &gt; 0,

defines an élément of HH^ {(9) represented by the unique F-linear function satisfying

0 if a

for ail v, w e V and a, b e {0, 1,...,« — 1}. This élément gives (by 1.3) the vertical

arrows of the commutative square

The induced map on AV-cokernels, &lt;t)\X-*(9, is surjective because the map
0 ®4 -&gt; 0 ®2 is so; indeed f(x, xn ~ l) 1.

Every fini te Z)-module is projective, so to prove ker ($) is projective, it suffices

to prove the kernel of the map $ : X/nX X^&gt;(9 O/n&lt;9 is projective as a

left-^-module. The advantage of working (mod n) is that x&quot; 0, so the grading of
(9®k by total x-degree is actually a Z-grading rather than a Z/«Z-grading. Given a

graded module ®neNMn of fini te fc-vector spaces, there is an associated Poincaré

polynomial £„ dimz (Mn)tn. Thus, the polynomial associated to Ô®k is N(t)k9 where

The exactness of



622 MICHAEL LARSEN

implies that the Poincaré polynomial of X is

N(t)3 - N(t)2 + N(t).

Yoneda product with/(x, y) has degree — n, so the polynomial of ker(&lt;/&gt;) is

N(t)3 - N(t)2 + N(t) - N(t)tn

N(t)2(N(t)-\-—-

N(t)2[ntn-X +ntn-2 + • • • +nt2

As k &apos;\k is Galois, there is an algebra isomorphism

k&apos; ®k k&apos; ^k&apos; ®k&apos;®-

If / is an irreducible direct summand of k&apos; ®k k&apos;, we define

This is a projective left idéal of Ô\ and its Poincaré polynomial is (\/n)N(t)2. More
generally, if M is a graded (^-module and m g M is an élément of degree k such

that Ôem £ Ôej, then the Poincaré polynomial of (9em is (\/n)tkN(t)2. To prove the

lemma, it suffices to prove that ker (&lt;^) is a direct sum of free modules and modules

of the form (9 e,.

Given v ek&apos; with monic minimal polynomial Z, atvl 0, we define

Substituting r p + q

vr+1) 0.

Next we define the &amp;-linear opération

* : k&apos;®m x k[x]®m^&gt;(9®m
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such that

By construction,

dt{* * S) dt(a) * dt(S)

for ail /, a, and ô. In particular, when m 3,

b&apos;(a * ô) 4,(a * 5) - &lt;/,(« * 5) do(a) *

so if a and (5 lie in ker (&amp;&apos;), so does a * ô. Choose a basis kx,.. kn for &amp;&apos;/&amp;, and
let

Xft j 0Lk * I 1 ® JC1® 1 — Yj X1 l &apos;

Then /?,} e ker (A&apos;) for ail / and y. Next, let qt dénote generators of the irreducible
k&apos;®k k&apos;-submodules of

ker (k&apos; ®k k&apos; ®k kf -^-&gt;
k&apos; ®k k&apos;) c ker ($). (2.4.2)

Irreducible k&apos; ®kk&apos;-modules are identified with ^&apos;-factors in k&apos; ®kk&apos; and are
therefore of ^-dimension n. It follows that the module (2.4.2) breaks up into
n2 — n + \ irreducible pièces. Finally, let a, dénote générations of the irreducible
k&apos; ®kk&apos;-submodules of

m
ker (k&apos; ®k kf ®k kf k% (2.4.3)

where m dénotes the multiplication map a®b®cy-+ abc. The exact séquence of
fc&apos;® A:&apos;-modules

can be decomposed into a direct sum of fc^&amp;&apos;-isotypic exact subcomplexes by

tensoring with the irreducible summands of k&apos;®kf. In particular, as ^(a,) and

^,(a,) lie in ker (/?&apos;)&gt; we can find éléments fit and yl9 each annihilated by the full
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maximal idéal annihilating a,, such that

6(jS,)=&lt;/0(a,); 6(y,) =&lt;/,(*,).

Setting

r,=a, *(l®Jt® l)-ft *(jc®l®l)+y, *(1®

we hâve

b\rt) doM *(x®l)- &lt;/,(&lt;*,) * (1 ® x)

- b&apos;08, * (Je ® 1 + b&apos;(L * 1 ® x) 0.

As the A:-dimension of (2.4.3) is n3 — n, there are n2 — 1 generators rr
We claim that the (^-modules GepltJ are free, that the modules (ÏJeql and Ôerl are

of the form &amp;% and that

^ _ \ ^0 Oeql 0 0
i / \ l

®eP,j )®( © ^ |0( ® 0er, )• (2.4.4)

The two sides hâve equal Poincaré polynomials, and ptJ, qx, r,eker(0), so it
suffices to prove that the factors on the right hand side of (2.4.4) are independent
submodules of the left hand side. Left multiplication by an élément of (9e does not
change the center coordinate of a decomposable tensor a ® b ® c. We can therefore
write (9®3 as a sum of free 0e-modules:

n- 1

Each ptJ is the sum of ternis of the form • ® kjX1® • g Mt and terms of lower
central degree. Since the Mt -components are independent over (9e, and since ail

qnrte MO®MX, the ptJ cannot appear in any non-trivial relation with the qt and

the rt. Similarly, the r, can be decomposed into their Mo and Mx coordinates. If

then
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in which case

for each / since the a, generate independent submodules of fc/&lt;8&gt;3. As Ann(a,)
Ann(£)=Ann(y,),

This implies

Since the qt hâve no Ml component, in any relation between the qt and the r7, the

qt contribution is a sum of terms of the form (2.4.5). Finally, the Ôeql are linearly
independent because ® (k&apos;®k&apos;)qt can be extended to a décomposition of k&apos;®3

into A:&apos;®A:&apos;-irreducible components. Tensoring over k&apos;®k&apos; with (9e, we see that the

Ôeqt are independent factors of 0®3. The lemma follows.

THEOREM (2.5). With notation as in 2.1,

HH?((9) =\k&apos;/k ifi &gt; 0 w ^e«, (2.5.1)

ï/ / w odd.

Proof. The case i 0 is Prop. 2.2. Let X ker (^®3^^02). The short exact

séquence

0 &gt;M &gt;X-^-&gt;(9 &gt;0

gives rise to a long exact séquence

• • • -Torf (0r, M) ^ Torf ((Pr, X) -Torf ((Pr, (P; -&gt; Torf_ (©r, M) ^ • • •.

(2.5.2)

As M is a projective left ^-module, for n ^ 1

Torf (0r, AT) c,HHBK((P),
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with equality for n &gt; 1. The projective resolution

implies that

Toif (Or,Jr)s

for n 2&gt; 1. By Prop. 2.3,

and by (2.5.2),

^((P) (2.5.3)

for « &gt; 1. Ail that remains is the computation of
To accomplish this, we note first that for ail /?, HH^ ((9) is the homology of a

complex of finitely generated F-modules, and therefore finitely generated. By
(1.5.1) and Prop. 1.6,

for ail p &gt; 0. Therefore, HHjf {(9) is a finitely generated torsion module. By (2.5.3),
we may choose j such that nJ annihilâtes HHJ ((9), for ail p &gt; 0. As M/nJM is a

projective ®e/nJ®e-modu\e, we hâve

The universal coefficient formula (1.5.2) implies

Tor (F/^F, HH2K(^)) HH2K(0) if « &gt; 0

To prove the theorem, therefore, it suffices to prove that the inclusion (2.5.4) is an
isomorphism. Since k&apos;jk is n -torsion, it suffices to prove this for y 1.
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Let

n — 1 n — 1

(=07=0

represent a class in HHf (Ô). We can lift a to an élément

« — 1 n — \

5= Z Z V&apos;^^/e^®^.
/ 0 7 0

As b(ot) 0, 6(a) is divisible by n xw. Therefore,

Z ^;x&apos;®^

Without loss of generality, then, we may assume atJ btJ 0 when / +j &lt; n.

Setting

Z ^,/^&apos;

we hâve 6(£) 0, so fi represents a class in HH^ (©). The map HH^ ((P) -HHf (G)
is given by Yoneda product with the (mod n) réduction,/ of the periodicity élément

(2.4.1). As

fi i—xx, which proves that (2.5.4) is surjective and therefore bijective.

§3. Dedekînd domains

(3.1) Let R dénote a Dedekind domain whose field of fractions, K is a global
field, i.e., a finite extension of Q or a finitely generated extension of a finite field of
transcendence degree 1. If M is a module over R and p a maximal idéal of iÊ, we

write Mp for the completion of the module M with respect to the idéal p. Let D
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dénote a central simple algebra over K. Then [D : K] n2 for some n eZ*1 ([7]
IX Prop. 3 Cor. 3), and for ail but a finite set of primes p,

([7] XI Th. 1). In gênerai Dp ^ MfJJEp\ where EpjKp is a division of dimension
e2p and epfp n ([7] XI §1). The algebra D is said to ramify when ep &gt; 1, and we
write Ram (Z&gt;/i?) for the set of ramifying primes.

(3.2) Let G be an order in D, i.e., a subring of D such that 0P is a compact
open subgroup of Dp for ail maximal ideals p of i?. Then 0p is a maximal

compact subring of Dp for ail but finitely many p ([7] XI Th. 1). Every order is

contained in a maximal order 0&apos; such that 0p is a maximal compact subring of
Dp for ail p; this is proved in the case of number fields Km [7] XI Prop. 4, but
the argument also works for function fields. We treat only the case that (9 is a

maximal order.

(3.3) The division algebras over a local field Kp are classified by their invariants

in\(Dp) e Br(A:p) s Q/Z ([7] XII Th. 1), where the dimension of the algebra
is the square of the denominator of inv(Dp). Moreover, the algebra with invariant
a/n, is generated over Kp by the unramified extension Kp of Kp of degree n and

an élément x satisfying (2.1.1), where g is the aih power of the Frobenius élément

in Gal(KpIKp). The maximal order 0p of Dp is the one described in 2.1. More
generally, the maximal orders of Mn(Dp) are ail of the form Mn((9p) ([7] X Th.
1).

THEOREM (3.4). If A is a central simple algebra over K, and 0 is a maximal
order of A with respect to R, then

HHf(O) s l ®peRamiA/R) (R/PY--1 ifi&gt;0 is even,

[0 if i is odd.

Proof As 0 is a finite R-module, the Hochschild homology modules are finite

over R. Assume /&gt;0. Applying (1.5.1) for R&apos;= K and Prop. 1.6, we see that

HHf(0) is torsion. From the structure theorem for modules over Dedekind

domains, we deduce

HHf (0) s © HHf*&gt; (6p). (3.4.1)
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Now, (9p is maximal, so by Morita équivalence,

HHf- (0p) HHf*- (Mfv) s HH*&lt;&gt; (0;,),

where 0^ is the maximal order of a division algebra of degree e], over #. By Th.
2.5.,

ifîiseven.

In particular, the primes p such that ep 1 contribute nothing to the sum (3.4.1),
so they may be omitted from the summation. This complètes the proof for / &gt; 0.

For / 0, we need to compute &amp;/[&amp;, 0], We hâve already noted that commuta-
tors in a simple algebra hâve reduced trace zéro. If (9&apos;p is defined as above, we hâve

already shown that the reduced trace map

Trd :&lt;!&gt;;,-&gt;*„

is surjective. It follows that

is surjective. Since Trd :$-»/? is i?-linear, its image is an idéal, and by the

compatibility of trace with completion, we see that the image is in fact ail of R.

Therefore, R is a quotient of HH£ (0), so there exists an /?-splitting HH£ (0) s
R®M. As HH£ (A) K, M is a fînite torsion module, so

The theorem follows from Prop. 2.2.

§4. Cyclic homology

(4.1) Let R be a ring and A an associative R -algebra. We defîne rotation

operator p : A ®R • • • ®R A -* A ®R • • • ®R A by setting
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The cyclic homology HCf (A) is defined as the homology of Tot(T J, where X is

the Tsygan double complex ([4] §1):

T N T N
0&lt; A®4 &lt; A04 &lt; A®4 &lt; A04 &lt;—

I- I- I- I
T N

A®3 &lt;—

0&lt; A®A &lt; A®A &lt;

I i

-b

0 10 1

0&lt; A &lt; A &lt; A &lt; A &lt;—

0 0 0 0

where

We use the first spectral séquence of this double complex, i.e., the one in which the

vertical differential is applied first, known in this context as the Connes spectral

séquence. As the ZZ-columns are exact, the E1 term of this spectral séquence is of
the form

HH2 (,4) &lt;-0 &lt;-HH2 (v4) *-0 &lt;~ • •

j (A) «-O^HH, (A) &lt;-0^- ••

o(A)^Q&lt;-imQ(A)&lt;-Q&lt;~-&apos;-

Thus the only non-zero differentials dr for r ^ 1 are the even differentials.
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(4.2) Let F, G, k, and k&apos; be deflned as in §2. By (2.5.1), the Connes long exact

séquence breaks up into short exact séquences

0 -&gt; HH2^ (G) -&gt; HC2^ (0) -&gt; HH2^ _ 2 (0) -&gt; 0

and séquences 0-&gt;HC^+ (0) -&gt;0. Thus,

HC(0)=O Vrodd, (4.2.1)

while for r even, HC^T (0) has a filtration whose quotients are

&apos;, Ll^J : (4.2.2)
r/7

We cannot fully settle the extension problem, but considérable light is cast on the

question by the tensoring with V/nV.

(4.3) Consider the Connes spectral séquence for HC* (G/k). We hâve already
seen that

pï =p2 fHH(ff) for p even,

[0 for/?odd.

The universal coefficient formula (1.5.2) implies

\k&apos;/k for/7&gt;0.

By horizontal periodicity, the differential

dépends only on q and on the parity of p, and of course it is non-trivial only for p
even. For v e k&apos;, let

&lt;Xv vxn~ 1 ® X ® Xn~ l ® JC (g) • • • ® Xn~ * ® JC G
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where, as usual, n [k&apos; : k]. Then &lt;xv represents an élément of E\lr_x HH^_ x (0).
Its image under d2 is représentée! by

T( -1 ® N(&lt;xv)) p( 1 ® tf(a„)) - 1 ® AT(a.).

The periodicity élément / obtained by reducing (2.4.1) (modrr) defines a séquence
of morphisms

| 2 A • • • A HHf (&lt;P) c^ HHg ((P){Ô) A HH|r_ 2 A • • • A HHf (&lt;P) c^ HHg ((P) k\

Note that HH2 &lt;= HH0 consists of the set of trace 0 éléments of k\ The composition
of thèse morphisms is given by the map

F : X x&lt;°&gt; (g) • • • ® *&lt;*&gt; k» X af/Xai1&apos;, a{2&gt;) • • -/(«!2r&quot; °, aPr))-

In particular, any tensor monomial with x\j) ek&apos; for some./&gt;0, maps to zéro.
Thus

From this we deduce that

F(T(~\ ®N(zv))) -F(l ®N(olv))

-F(\ ®at)) + F(l ® p(aj) - • • • + F(l ® plr~

-v + va - v -h va 1? + yff r{va - v).

As every trace 0 élément of k&apos; is of the form va — v (cf. 2.2), if r is invertible, d2

maps E\lr _, onto E\lr HH^ (^). By the horizontal symmetry of the Tsygan
complex, d2 maps Elp + 2,2r- i onto ElPar- Thus, £^ 0 for 0 &lt; q &lt; char(fc) and

for ail q if char(fc) 0. We conclude that if rechar(Af) or if char(fc) 0,

dim* HC2r (Ô/k) ^ dim* E\r# n, (4.3.1)

PROPOSITION (4.4). If char(k) 0 or r &lt; char{k\ then as a V-module,

lV)n-\ (4.4.1)
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Proof. Applying the universal coefficient theorem to the total Tsygan complex
for 0/V, by (4.2.1),

HC2r (ff/k) s HC£ ((9) ® K *. (4.4.2)

The structure theorem for finitely generated modules over discrète valuation rings
says that as K-module,

m

HCZ(e&gt;)sV © © V\nb&apos;V.

1= 1

By (4.2.2), a 1 and I, bt (n- 1) (r + 1). Moreover, 6, £ r + 1 because V/nb&gt;V

has a filtration with r + 1 quotients, each annihilated by n. By (4.3.1) and (4.4.2),
1+m^w, but HCq^^^F©^-1 is a quotient of HC£(0), so /h=#i-1.
Together thèse facts imply (4.4.1).

PROPOSITION (4.5). If R is a Dedekind domain whose field offractions K is a
global field and (9 is a maximal order of a central simple algebra D over K, then

ZJ/^R
[0 if r is odd,

where M is a finite module of order

n
p e Ram (D/R)

If moreover, r/2 is less thon the residue characteristic of every prime in Ram (D/R),
then

p e Ram (D/R)

Proof As cyclic homology groups are finitely generated, they are of the form

P®M, where P is projective and M is finite. The Chinese remainder theorem says

that M ®pMp. We apply the universal coefficient theorem to complétions

Rp/R. Equation (4.2.1) implies the vanishing of odd cyclic homology. By 4.2 and

Th. 3.4, P has rank 1 and M has the given order. Prof. 4.4. gives M explicitly for
r/2 less than for the residue characteristic of every p e Ram (D/R). To see that P
is free we note that HC£ (0) HH£ (G) contains R as a direct factor (Th. 3.4). As

HC0 is a factor of HCr for even r, this implies that P is free.
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